Отношение биссектрис в треугольнике. Основные элементы треугольника abc

Теорема. Биссектриса внутреннего угла треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам.

Доказательство. Рассмотрим треугольник ABC (рис. 259) и биссектрису его угла В. Проведем через вершину С прямую СМ, параллельную биссектрисе ВК, до пересечения в точке М с продолжением стороны АВ. Так как ВК - биссектриса угла ABC, то . Далее, как соответственные углы при параллельных прямых, и как накрест лежащие углы при параллельных прямых. Отсюда и поэтому - равнобедренный, откуда . По теореме о параллельных прямых, пересекающих стороны угла, имеем а ввиду получим , что и требовалось доказать.

Биссектриса внешнего угла В треугольника ABC (рис. 260) обладает аналогичным свойством: отрезки AL и CL от вершин А и С до точки L пересечения биссектрисы с продолжением стороны АС пропорциональны сторонам треугольника:

Это свойство доказывается так же, как и предыдущее: на рис. 260 проведена вспомогательная прямая СМ, параллельная биссектрисе BL. Читатель сам убедится в равенстве углов ВМС и ВСМ, а значит, и сторон ВМ и ВС треугольника ВМС, после чего требуемая пропорция получится сразу.

Можно говорить, что и биссектриса внешнего угла делит противолежащую сторону на части, пропорциональные прилежащим сторонам; нужно лишь условиться допускать «внешнее деление» отрезка.

Точка L, лежащая вне отрезка АС (на его продолжении), делит его внешним образом в отношении если Итак, биссектрисы угла треугольника (внутреннего и внешнего) делят противолежащую сторону (внутренним и внешним образом) на части, пропорциональные прилежащим сторонам.

Задача 1. Боковые стороны трапеции равны 12 и 15, основания равны 24 и 16. Найти стороны треугольника, образованного большим основанием трапеции и ее продолженными боковыми сторонами.

Решение. В обозначениях рис. 261 имеем для отрезка служащего продолжением боковой стороны пропорцию откуда легко находим Аналогичным способом определяем вторую боковую сторону треугольника Третья сторона совпадает с большим основанием: .

Задача 2. Основания трапеции равны 6 и 15. Чему равна длина отрезка, параллельного основаниям и делящего боковые стороны в отношении 1:2, считая от вершин малого основания?

Решение. Обратимся к рис. 262, изображающему трапецию. Через вершину С малого основания проведем линию, параллельную боковой стороне АВ, отсекающую от трапеции параллелограмм. Так как , то отсюда находим . Поэтому весь неизвестный отрезок KL равен Заметим, что для решения этой задачи нам не нужно знать боковых сторон трапеции.

3адача 3. Биссектриса внутреннего угла В треугольника ABC рассекает сторону АС на отрезки на каком расстоянии от вершин А и С пересечет продолжение АС биссектриса внешнего угла В?

Решение. Каждая из биссектрис угла В делит АС в одном и том же отношении, но одна внутренним, а другая внешним образом. Обозначим через L точку пересечения продолжения АС и биссектрисы внешнего угла В. Так как АК Обозначим неизвестное расстояние AL через тогда и мы будем иметь пропорцию Решение которой и дает нам искомое расстояние

Рисунок выполните самостоятельно.

Упражнения

1. Трапеция с основаниями 8 и 18 разбита прямыми, параллельными основаниям, на шесть полос равной ширины. Найти длины отрезков прямых, разбивающих трапецию на полосы.

2. Периметр треугольника равен 32. Биссектриса угла А делит сторону ВС на части, равные 5 и 3. Найти длины сторон треугольника.

3. Основание равнобедренного треугольника равно а, боковая сторона b. Найти длину отрезка, соединяющего точки пересечения биссектрис углов основания с боковыми сторонами.

Инструкция

Если заданный треугольник равнобедренным или правильным, то есть у него
две или три стороны, то его биссектриса, согласно свойству треугольника , будет являться также и медианой. А, следовательно, противолежащая будет делиться биссектрисой пополам.

Измерьте линейкой противолежащую строну треугольника , куда будет стремиться биссектриса. Поделите данную строну пополам и поставьте в середине стороны точку.

Проведите прямую линию, проходящую через построенную точку и противолежащую вершину. Это и будет биссектриса треугольника .

Источники:

  • Медианы, биссектрисы и высоты треугольника

Делить угол пополам и вычислить длину линии, проведенной из его вершины к противоположной стороне, необходимо уметь раскройщикам, землемерам, монтажникам и людям некоторых других профессий.

Вам понадобится

  • Инструменты Карандаш Линейка Транспортир Таблицы синусов и косинусов Математические формулы и понятия: Определение биссектрисы Теоремы синусов и косинусов Теорема о биссектрисе

Инструкция

Постройте треугольник необходимой и величины, в зависимости от того, что вам дано? дфе стороны и угол между ними, три стороны или два угла и расположенная между ними сторона.

Обозначьте вершины углов и стороны традиционными латинскими А, В и С. Вершины углов обозначают , противолежащие стороны - строчными. Обозначьте углы греческими буквами?,? и?

По теоремам синусов и косинусов вычислите углов и сторон треугольника .

Вспомните биссектрисы. Биссектриса - , делящая угол пополам. Биссектриса угла треугольника делит противолежащую на два отрезка, которых равно отношению двух прилежащих сторон треугольника .

Проведите биссектрисы углов. Полученные отрезки обозначьте названиами углов, написанными строчными буквами, с нижним индексом l. Сторона с делится на отрезки a и b с индексами l.

Вычислите длины получившихся отрезков по теореме синусов.

Видео по теме

Обратите внимание

Длина отрезка, которая одновременно является стороной треугольника, образованного одной из сторон исходного треугольника, биссектрисой и собственно отрезком, вычисляется по теореме синусов. Для того, чтобы вычислить длину другого отрезка этой же стороны, воспользуйтесь соотношением получившихся отрезков и прилежащих сторон исходного треугольника.

Полезный совет

Для того, чтобы не запутаться, проведите биссектрисы разных углов разным цветом.

Биссектрисой угла называют луч, который начинается в вершине угла и делит его на две равные части. Т.е. чтобы провести биссектрису , нужно найти середину угла . Наиболее простой способ это сделать - при помощи циркуля. В этом случае вам не нужно проводить никаких вычислений, и результат не будет зависеть от того, является ли величина угла целым числом.

Вам понадобится

  • циркуль, карандаш, линейка.

Инструкция

Оставив ширину раствора циркуля прежней, установите иглу в конце отрезка на одной из сторон и начертите часть окружности так, чтобы она располагалась внутри угла . То же самое сделайте и со второй . У вас получится две части окружностей, которые будут пересекаться внутри угла - примерно посередине. Пересекаться части окружностей могут в одной или двух точках.

Видео по теме

Полезный совет

Для построения биссектрисы угла можно использовать транспортир, но этот способ требует большей точности. При этом, если величина угла не будет являться целым числом, вероятность погрешностей в построении биссектрисы возрастает.

При строительстве или разработке домашних дизайн-проектов часто требуется построить угол , равный уже имеющемуся. На помощь приходят шаблоны и школьные знания геометрии.

Инструкция

Угол образуют две прямые, исходящие из одной точки. Эта точка будет называться вершиной угла, а линии будут являться сторонами угла.

Для обозначения углов используйте три : одна у вершины, две у сторон. Называют угол , начиная с той буквы, которая стоит у одной стороны, далее называют букву, стоящую у вершины, и затем букву у другой стороны. Используйте и другие для обозначения углов, если вам удобнее иначе. Иногда называют только одну букву, которая стоит у вершины. А можно обозначать углы греческими буквами, например, α, β, γ.

Встречаются ситуации, когда необходимо угол , чтобы он был уже данному углу. Если при построении использовать транспортир возможности нет, можно обойтись только линейкой и циркулем. Допустим, на прямой, обозначенной на буквами MN, нужно построить угол у точки К, так, чтобы он был равен углу В. То есть из точки K необходимо провести прямую, с линией MN угол , который будет равен углу В.

В начале отметьте по точке на каждой стороне данного угла, например, точки А и С, дальше соедините точки С и А прямой линией. Получите треугол ьник АВС.

Сейчас постройте на прямой MN такой же треугол ьник, чтобы его вершина В находилась на линии в точке К. Используйте правило построения треугол ьника по трем . Отложите от точки К отрезок KL. Он должен быть равен отрезку ВС. Получите точку L.

Из точки K вычертите окружность радиусом равным отрезку ВА. Из L вычертите окружность радиусом СА. Полученную точку (Р) пересечения двух окружностей соедините с К. Получите треугол ьник КPL, который будет равен треугол ьнику ABC. Так вы получите угол К. Он и будет равен углу В. Чтобы это удобнее и быстрее, от вершины В отложите равные отрезки, используя один раствор циркуля, не сдвигая ножек, опишите этим же радиусом из точки К окружность.

Видео по теме

Совет 5: Как построить треугольник по двум сторонам и медиане

Треугольник - это простейшая геометрическая фигура, имеющая три вершины, попарно соединенные между собой отрезками, которые образуют стороны этого многоугольника. Отрезок, соединяющий вершину с серединой противоположной стороны, называют медианой. Зная длины двух сторон и медианы, соединяющихся в одной из вершин, можно построить треугольник, не имея данных о длине третьей стороны или величинах углов.

Инструкция

Проведите из точки A отрезок, длина которого одной из известных сторон треугольника (a). Точку окончания этого отрезка обозначьте буквой B. После этого одну из сторон (AB) искомого треугольника уже можно считать построенной.

Начертите с помощью циркуля окружность с радиусом, равным удвоенной длине медианы (2∗m), и с центром в точке A.

Начертите с помощью циркуля вторую окружность с радиусом, равным длине известной стороны (b), и с центром в точке B. Отложите на время циркуль, но оставьте на нем отмеренный - он вам снова понадобится немного позже.

Постройте отрезок, соединяющий точку A с точкой пересечения двух нарисованных вами . Половина этого отрезка будет , который вы строите - отмерьте эту половину и поставьте точку M. На этот момент у вас есть одна сторона искомого треугольника (AB) и его медиана (AM).

Начертите с помощью циркуля окружность с радиусом, равным длине второй известной стороны (b), и с центром в точке A.

Проведите отрезок, который должен начинаться в точке B, проходить через точку M и заканчиваться в точке пересечения прямой с проведенной вами на предыдущем шаге окружностью. Обозначьте точку пересечения буквой C. Теперь в искомом построена и неизвестная по условиям задачи сторона BC.

Умение разделить любой угол биссектрисой нужно не только для того, чтобы получить «пятерку» по математике. Эти знания очень пригодятся строителю, дизайнеру, землемеру и портнихе. В жизни многое надо уметь делить пополам.

Все в школе учили шуточное про крысу, которая бегает по углам и делит угол пополам. Звали этого шустрого и умного грызуна Биссектрисой. Не известно, каким образом крыса делила угол, а математиков в школьном учебнике «Геометрия» могут быть предложены следующие способы.

С помощью транспортира

Самый простой способ проведения биссектрисы - с использованием прибора для . Нужно приложить транспортир к одной стороне угла, совместив точку отсчета с его острием О. Затем замерить величину угла в градусах или радианах и разделить ее на два. Отложить с помощью того же транспортира полученные градусы от одной из сторон и провести прямую линию, которая и станет биссектрисой, до точки начала угла О.

С помощью циркуля

Нужно взять циркуль и развести его на любой произвольный размер (в пределах чертежа). Установив острие в точке начала угла О, начертить дугу, пересекающую лучи, отметив на них две точки. Обозначают их А1 и А2. Затем, устанавливая циркуль поочередно в эти точки, следует провести две окружности одинакового произвольного диаметра (в масштабе чертежа). Точки их пересечения обозначаются С и В. Далее необходимо провести прямую линию через точки О, С и В, которая и будет искомой биссектрисой.

С помощью линейки

Для того чтобы начертить биссектрису угла с помощью линейки, нужно отложить от точки О на лучах (сторонах) отрезки одинаковой длины и обозначить их точками А и В. Затем следует соединить их прямой линией и с помощью линейки разделить получившийся отрезок пополам, обозначив точку С. Биссектриса получится, если провести прямую через точки С и О.

Без инструментов

Если нет измерительных инструментов, можно воспользоваться смекалкой. Достаточно просто начертить угол на кальке или обычной нетолстой бумаге и аккуратно сложить листок так, чтобы лучи угла совместились. Линия сгиба на чертеже и будет искомой биссектрисой.

Развернутый угол

Угол больше 180 градусов можно разделить биссектрисой такими же способами. Только делить надо будет не его, а прилежащий к нему острый угол, оставшийся от окружности. Продолжение найденной биссектрисы и станет искомой прямой, делящей развернутый угол пополам.

Углы в треугольнике

Следует помнить, что в равностороннем треугольнике биссектриса является также медианой и высотой. Поэтому в нем биссектрису можно найти, просто опустив перпендикуляр на противоположную от угла сторону (высота) или разделив эту сторону пополам и соединив точку середины с противоположным углом (медиана).

Видео по теме

Мнемоническое правило «биссектриса-это крыса, которая бегает по углам и делит их пополам» описывает суть понятия, но не дает рекомендаций по построению биссектрисы. Чтобы ее начертить, кроме правила вам понадобится циркуль и линейка.

Инструкция

Допустим, что вам нужно построить биссектрису угла A. Возьмите циркуль, поставьте его острием в точку A ( угла) и начертите окружность любого . Там, где она пересечет стороны угла, поставьте точки B и C.

Замерьте радиус первой окружности. Начертите еще одну, с таким же радиусом, поставив циркуль в точку B.

Проведите следующую окружность (по размеру равную предыдущим) с центром в точке C.

Все три окружности должны пересечься в одной точке – назовем ее F. С помощью линейки проведите луч, проходящий через точки A и F. Это и будет искомая биссектриса угла A.

Существует несколько правил, помогут вам в нахождении . Например, она противоположную в , равном отношению двух прилежащих сторон. В равнобедренном

Сегодня будет очень лёгкий урок. Мы рассмотрим всего один объект — биссектрису угла — и докажем важнейшее её свойство, которое очень пригодится нам в будущем.

Только не надо расслабляться: иногда ученики, желающие получить высокий балл на том же ОГЭ или ЕГЭ, на первом занятии даже не могут точно сформулировать определение биссектрисы.

И вместо того, чтобы заниматься действительно интересными задачами, мы тратим время на такие простые вещи. Поэтому читайте, смотрите — и берите на вооружение.:)

Для начала немного странный вопрос: что такое угол? Правильно: угол — это просто два луча, выходящих из одной точки. Например:


Примеры углов: острый, тупой и прямой

Как видно из картинки, углы могут быть острыми, тупыми, прямыми — это сейчас неважно. Часто для удобства на каждом луче отмечают дополнительную точку и говорят, мол, перед нами угол $AOB$ (записывается как $\angle AOB$).

Капитан очевидность как бы намекает, что помимо лучей $OA$ и $OB$ из точки $O$ всегда можно провести ещё кучу лучей. Но среди них будет один особенный — его-то и называют биссектрисой.

Определение. Биссектриса угла — это луч, который выходит из вершины этого угла и делит угол пополам.

Для приведённых выше углов биссектрисы будут выглядеть так:


Примеры биссектрис для острого, тупого и прямого угла

Поскольку на реальных чертежах далеко не всегда очевидно, что некий луч (в нашем случае это луч $OM$) разбивает исходный угол на два равных, в геометрии принято помечать равные углы одинаковым количеством дуг (у нас на чертеже это 1 дуга для острого угла, две — для тупого, три — для прямого).

Хорошо, с определением разобрались. Теперь нужно понять, какие свойства есть у биссектрисы.

Основное свойство биссектрисы угла

На самом деле у биссектрисы куча свойств. И мы обязательно рассмотрим их в следующем уроке. Но есть одна фишка, которую нужно понять прямо сейчас:

Теорема. Биссектриса угла — это геометрическое место точек, равноудалённых от сторон данного угла.

В переводе с математического на русский это означает сразу два факта:

  1. Всякая точка, лежащая на биссектрисе некого угла, находится на одинаковом расстоянии от сторон этого угла.
  2. И наоборот: если точка лежит на одинаковом расстоянии от сторон данного угла, то она гарантированно лежит на биссектрисе этого угла.

Прежде чем доказывать эти утверждения, давайте уточним один момент: а что, собственно, называется расстоянием от точки до стороны угла? Здесь нам поможет старое-доброе определение расстояния от точки до прямой:

Определение. Расстояние от точки до прямой — это длина перпендикуляра, проведённого из данной точки к этой прямой.

Например, рассмотрим прямую $l$ и точку $A$, не лежащую на этой прямой. Проведём перпендикуляр $AH$, где $H\in l$. Тогда длина этого перпендикуляра и будет расстоянием от точки $A$ до прямой $l$.

Графическое представление расстояния от точки до прямой

Поскольку угол — это просто два луча, а каждый луч — это кусок прямой, легко определить расстояние от точки до сторон угла. Это просто два перпендикуляра:


Определяем расстояние от точки до сторон угла

Вот и всё! Теперь мы знаем, что такое расстояние и что такое биссектриса. Поэтому можно доказывать основное свойство.

Как и обещал, разобьём доказательство на две части:

1. Расстояния от точки на биссектрисе до сторон угла одинаковы

Рассмотрим произвольный угол с вершиной $O$ и биссектрисой $OM$:

Докажем, что эта самая точка $M$ находится на одинаковом расстоянии от сторон угла.

Доказательство. Проведём из точки $M$ перпендикуляры к сторонам угла. Назовём их $M{{H}_{1}}$ и $M{{H}_{2}}$:

Провели перпендикуляры к сторонам угла

Получили два прямоугольных треугольника: $\vartriangle OM{{H}_{1}}$ и $\vartriangle OM{{H}_{2}}$. У них общая гипотенуза $OM$ и равные углы:

  1. $\angle MO{{H}_{1}}=\angle MO{{H}_{2}}$ по условию (поскольку $OM$ — биссектриса);
  2. $\angle M{{H}_{1}}O=\angle M{{H}_{2}}O=90{}^\circ $ по построению;
  3. $\angle OM{{H}_{1}}=\angle OM{{H}_{2}}=90{}^\circ -\angle MO{{H}_{1}}$, поскольку сумма острых углов прямоугольного треугольника всегда равна 90 градусов.

Следовательно, треугольники равны по стороне и двум прилежащим углам (см. признаки равенства треугольников). Поэтому, в частности, $M{{H}_{2}}=M{{H}_{1}}$, т.е. расстояния от точки $O$ до сторон угла действительно равны. Что и требовалось доказать.:)

2. Если расстояния равны, то точка лежит на биссектрисе

Теперь обратная ситуация. Пусть дан угол $O$ и точка $M$, равноудалённая от сторон этого угла:

Докажем, что луч $OM$ — биссектриса, т.е. $\angle MO{{H}_{1}}=\angle MO{{H}_{2}}$.

Доказательство. Для начала проведём этот самый луч $OM$, иначе доказывать будет нечего:

Провели луч $OM$ внутри угла

Снова получили два прямоугольных треугольника: $\vartriangle OM{{H}_{1}}$ и $\vartriangle OM{{H}_{2}}$. Очевидно, что они равны, поскольку:

  1. Гипотенуза $OM$ — общая;
  2. Катеты $M{{H}_{1}}=M{{H}_{2}}$ по условию (ведь точка $M$ равноудалена от сторон угла);
  3. Оставшиеся катеты тоже равны, т.к. по теореме Пифагора $OH_{1}^{2}=OH_{2}^{2}=O{{M}^{2}}-MH_{1}^{2}$.

Следовательно, треугольники $\vartriangle OM{{H}_{1}}$ и $\vartriangle OM{{H}_{2}}$ по трём сторонам. В частности, равны их углы: $\angle MO{{H}_{1}}=\angle MO{{H}_{2}}$. А это как раз и означает, что $OM$ — биссектриса.

В заключение доказательства отметим красными дугами образовавшиеся равные углы:

Биссектриса разбила угол $\angle {{H}_{1}}O{{H}_{2}}$ на два равных

Как видите, ничего сложного. Мы доказали, что биссектриса угла — это геометрическое место точек, равноудалённых до сторон этого угла.:)

Теперь, когда мы более-менее определились с терминологией, пора переходить на новый уровень. В следующем уроке мы разберём более сложные свойства биссектрисы и научимся применять их для решения настоящих задач.

Средний уровень

Биссектриса треугольника. Подробная теория с примерами (2019)

Биссектриса треугольника и ее свойства

Знаешь ли ты, что такое середина отрезка? Конечно же знаешь. А центр круга? Тоже. А что такое середина угла? Ты можешь сказать, что такого не бывает. Но почему же, отрезок можно разделить пополам, а угол нельзя? Вполне можно - только не точкой, а…. линией.

Помнишь шутку: биссектриса это крыса, которая бегает по углам и делит угол пополам. Так вот, настоящее определение биссектрисы очень похоже на эту шутку:

Биссектриса треугольника - это отрезок биссектрисы угла треугольника, соединяющий вершину этого угла с точкой на противолежащей стороне.

Когда-то древние астрономы и математики открыли очень много интересных свойств биссектрисы. Эти знания сильно упростили жизнь людей. Стало легче строить, считать расстояния, даже корректировать стрельбу из пушек… Нам же знание этих свойств поможет решить некоторые задания ГИА и ЕГЭ!

Первое знание, которое поможет в этом - биссектриса равнобедренного треугольника.

Кстати, а помнишь ли ты все эти термины? Помнишь чем они отличаются друг от друга? Нет? Не страшно. Сейчас разберемся.

Итак, основание равнобедренного треугольника - это та сторона, которая не равна никакой другой. Посмотри на рисунок, как ты думаешь, какая это сторона? Правильно - это сторона.

Медиана - это линия, проведенная из вершины треугольника и делящая противоположную сторону (это снова) пополам.

Заметь, мы не говорим: «Медиана равнобедренного треугольника». А знаешь почему? Потому что медиана, проведенная из вершины треугольника, делит противоположную сторону пополам в ЛЮБОМ треугольнике.

Ну, а высота - это линия, проведенная из вершины и перпендикулярная основанию. Ты заметил? Мы опять говорим о любом треугольнике, а не только о равнобедренном. Высота в ЛЮБОМ треугольнике всегда перпендикулярна основанию.

Итак, разобрались? Ну почти. Чтобы еще лучше понять и навсегда запомнить что такое биссектриса, медиана и высота, их нужно сравнить друг с другом и понять в чем они похожи и чем они отличаются друг от друга. При этом, чтобы лучше запомнить, лучше описать все «человеческим языком». Потом ты легко будешь оперировать языком математики, но сначала ты этот язык не понимаешь и тебе нужно осмыслить все на своем языке.

Итак, в чем они похожи ? Биссектриса, медиана и высота - все они «выходят» из вершины треугольника и упираются в противоположную сторону и «что-то делают» либо с углом из которого выходят, либо с противоположной стороной. По-моему просто, нет?

А чем они отличаются ?

  • Биссектриса делит угол, из которого выходит, пополам.
  • Медиана делит противоположную сторону пополам.
  • Высота всегда перпендикулярна противоположной стороне.

Теперь все. Понять - легко. А раз понял, можешь запомнить.

Теперь следующий вопрос. Почему же в случае с равнобедренным треугольником биссектриса оказывается одновременно и медианой и высотой?

Можно просто посмотреть на рисунок и убедиться, что медиана разбивает на два абсолютно равных треугольника. Вот и все! Но математики не любят верить своим глазам. Им нужно все доказывать. Страшное слово? Ничего подобного - все просто! Смотри: у и равны стороны и, сторона у них вообще общая и. (- биссектриса!) И вот, получилось, что два треугольника имеют по две равные стороны и угол между ними. Вспоминаем первый признак равенства треугольников (не помнишь, загляни в тему ) и заключаем, что, а значит = и.

Это уже хорошо - значит, оказалась медианой.

А вот что такое?

Посмотрим на картинку - . А у нас получилось, что. Значит, и тоже! Наконец, ура! и.

Показалось ли тебе это доказательство тяжеловатым? Посмотри на картинку - два одинаковых треугольника говорят сами за себя.

В любом случае твердо запомни:

Теперь сложнее: мы посчитаем угол между биссектрисами в любом треугольнике! Не бойся, все не так уж хитро. Смотри на рисунок:

Давай его посчитаем. Ты помнишь, что сумма углов треугольника равна ?

Применим этот потрясающий факт.

С одной стороны, из:

То есть.

Теперь посмотрим на:

Но биссектрисы, биссектрисы же!

Вспомним про:

Теперь через буквы

\angle AOC=90{}^\circ +\frac{\angle B}{2}

Не удивительно ли? Получилось, что угол между биссектрисами двух углов зависит только от третьего угла !

Ну вот, две биссектрисы мы посмотрели. А что, если их три??!! Пересекутся ли они все в одной точке?

Или будет так?

Как ты думаешь? Вот математики думали-думали и доказали:

Правда, здорово?

Хочешь знать, почему же так получается?

Итак…два прямоугольных треугольника: и. У них:

  • Общая гипотенуза.
  • (потому что - биссектриса!)

Значит, - по углу и гипотенузе. Поэтому и соответствующие катеты у этих треугольников - равны! То есть.

Доказали, что точка одинаково (или равно) удалена от сторон угла. С пунктом 1 разобрались. Теперь перейдём к пункту 2.

Почему же верно 2?

И соединим точки и.

Значит, то есть лежит на биссектрисе!

Вот и всё!

Как же все это применить при решении задач? Вот например, в задачах часто бывает такая фраза: «Окружность касается сторон угла….». Ну, и найти нужно что-то.

То быстро соображаешь, что

И можно пользоваться равенством.

3. Три биссектрисы в треугольнике пересекаются в одной точке

Из свойства биссектрисы быть геометрическим местом точек, равноудаленных от сторон угла, вытекает следующее утверждение:

Как именно вытекает? А вот смотри: две-то биссектрисы точно пересекутся, правда?

А третья биссектриса могла бы пройти так:

Но на самом деле-то всё гораздо лучше!

Давай рассмотрим точку пересечения двух биссектрис. Назовём её .

Что мы тут оба раза применяли? Да пункт 1 , конечно же! Если точка лежит на биссектрисе, то она одинаково удалена от сторон угла.

Вот и получилось и.

Но посмотри внимательно на эти два равенства! Ведь из них следует, что и, значит, .

А вот теперь в дело пойдёт пункт 2 : если расстояния до сторон угла равны, то точка лежит на биссектрисе…какого же угла? Ещё раз смотри на картинку:

и - расстояния до сторон угла, и они равны, значит, точка лежит на биссектрисе угла. Третья биссектриса прошла через ту же точку! Все три биссектрисы пересеклись в одной точке! И, как дополнительный подарок -

Радиусы вписанной окружности.

(Для верности посмотри ещё тему ).

Ну вот, теперь ты никогда не забудешь:

Точка пересечения биссектрис треугольника - центр вписанной в неё окружности.

Переходим к следующему свойству… Ух и много же свойств у биссектрисы, правда? И это здорово, потому что, чем больше свойств, тем больше инструментов для решения задач про биссектрису.

4. Биссектриса и параллельность, биссектрисы смежных углов

Тот факт, что биссектриса делит угол пополам, в каких-то случаях приводит к совершенно неожиданным результатам. Вот, например,

Случай 1

Здорово, правда? Давай поймём, почему так.

С одной стороны, - мы же проводим биссектрису!

Но, с другой стороны, - как накрест лежащие углы (вспоминаем тему ).

И теперь выходит, что; выкидываем середину: ! - равнобедренный!

Случай 2

Представь треугольник (или посмотри на картинку)

Давай продолжим сторону за точку. Теперь получилось два угла:

  • - внутренний угол
  • - внешний угол - он же снаружи, верно?

Так вот, а теперь кому-то захотелось провести не одну, а сразу две биссектрисы: и для, и для. Что же получится?

А получится прямоугольный!

Удивительно, но это именно так.

Разбираемся.

Как ты думаешь, чему равна сумма?

Конечно же, - ведь они все вместе составляют такой угол, что получается прямая.

А теперь вспомним, что и -биссектрисы и увидим, что внутри угла находится ровно половина от суммы всех четырех углов: и - - то есть ровно. Можно написать и уравнением:

Итак, невероятно, но факт:

Угол между биссектрисами внутреннего и внешнего угла треугольника равен.

Случай 3

Видишь, что здесь все так же, как и для внутреннего и внешнего углов?

Или ещё раз подумаем, почему так получается?

Снова, как и для смежных углов,

(как соответственные при параллельных основаниях).

И опять, составляют ровно половину от суммы

Вывод: Если в задаче встретились биссектрисы смежных углов или биссектрисы соответственных углов параллелограмма или трапеции, то в этой задаче непременно участвует прямоугольный треугольник, а может даже и целый прямоугольник.

5. Биссектриса и противоположная сторона

Оказывается, биссектриса угла треугольника делит противоположную сторону не как-нибудь, а специальным и очень интересным образом:

То есть:

Удивительный факт, не правда ли?

Сейчас мы этот факт докажем, но приготовься: будет немного сложнее, чем раньше.

Снова - выход в «космос» - дополнительное построение!

Проведём прямую.

Зачем? Сейчас увидим.

Продолжим биссектрису до пересечения с прямой.

Знакомая картинка? Да-да-да, точно так же, как в пункте 4, случай 1 - получается, что (- биссектриса)

Как накрест лежащие

Значит, - это тоже.

А теперь посмотрим на треугольники и.

Что про них можно сказать?

Они…подобны. Ну да, у них и углы равны как вертикальные. Значит, по двум углам.

Теперь имеем право писать отношения соответствующих сторон.

А теперь в коротких обозначениях:

Ой! Что-то напоминает, верно? Не это ли самое мы хотели доказать? Да-да, именно это!

Видишь, как здорово проявил себя «выход в космос» - построение дополнительной прямой - без неё ничего бы не вышло! А так, мы доказали, что

Теперь можешь смело использовать! Разберём ещё одно свойство биссектрис углов треугольника - не пугайся, теперь самое сложное кончилось - будет проще.

Получаем, что

Теорема 1:

Теорема 2:

Теорема 3:

Теорема 4:

Теорема 5:

Теорема 6:

Биссектрисой треугольника называется отрезок, который делит угол треугольника на два равных угла. К примеру, если угол треугольника 120 0 , то проведя биссектрису, мы построим два угла по 60 0 .

А так как в треугольнике имеется три угла, то можно провести три биссектрисы. Все они имеют одну точку пресечения. Эта точка является центром окружности, вписанной в треугольник. По-другому эту точку пересечений называют инцентром треугольника.

При пересечении двух биссектрис внутреннего и внешнего угла, получается угол 90 0 . Внешний угол в треугольнике угол, смежный с внутренним углом треугольника.

Рис. 1. Треугольник, в котором проведены 3 биссектрисы

Биссектриса делит противоположную сторону на два отрезки, которые имеют связь со сторонами:

$${CL\over{LB}} = {AC\over{AB}}$$

Точки биссектрисы равноудаленные от сторон угла, это значит, что они находятся на одинаковом расстоянии от сторон угла. То есть, если из любой точки биссектрисы опустить перпендикуляры на каждую из сторон угла треугольника, то эти перпендикуляры будут равны..

Если с одной вершины провести медиану, биссектрису и высоту, то медиана будет самым длинным отрезком, а высота самым коротким.

Некоторые свойства биссектрисы

В определенных видах треугольников, биссектриса имеет особые свойства. В первую очередь это относится к равнобедренному треугольнику. Эта фигура имеет две одинаковые боковые стороны, а третья называется основанием.

Если из вершины угла равнобедренного треугольника провести биссектрису к основанию, то она будет иметь свойства одновременно и высоты и медианы. Соответственно, длина биссектрисы совпадает с длиной медианы и высоты.

Определения:

  • Высота – перпендикуляр, опущенный из вершины треугольника к противоположной стороне..
  • Медиана – отрезок, который соединяет вершину треугольника и середину противоположной стороны.

Рис. 2. Биссектриса в равнобедренном треугольнике

Это касается и равностороннего треугольника, то есть треугольника, в котором все три стороны равны.

Пример задания

В треугольнике ABC: BR биссектриса, причем AB = 6 см, BC = 4 см, а RC = 2 см. Вычесть длину третей стороны.

Рис. 3. Биссектриса в треугольнике

Решение:

Биссектриса делит сторону треугольника в определенной пропорции. Воспользуемся этой пропорцией и выразим AR. После найдем длину третьей стороны как сумму отрезков, на которые эту сторону поделила биссектриса.

  • ${AB\over{BC}} = {AR\over{RC}}$
  • $RC={6\over{4}}*2=3 см$

Тогда весь отрезок AC = RC+ AR

AC = 3+2=5 см.

Всего получено оценок: 107.