Квантовое стирание опыт. Вопрос о квантовом стирании данных

Интерференция света в опыте Юнга

Иллюстрация: Timm Weitkamp (CC BY)

Команда физиков из Австралийского национального университета реализовала мысленный эксперимент Уилера с отложенным выбором, заменив фотоны сверххолодными метастабильными атомами гелия. Новая работа подтвердила классические положения принципа дополнительности Нильса Бора. опубликована в Nature Physics .

В 1978 году Джон Арчибальд Уилер предложил более изощренный вариант классического двущелевого опыта Юнга, доказавшего волновую природу света. По Юнгу пучок света направляется на перегородку с двумя узкими щелями. При этом размер каждой щели примерно соответствует длине волны излучаемого света. Проходя сквозь щели, свет попадает на проекционный экран позади. Если бы фотоны проявляли исключительно корпускулярные свойства, то на экране были бы два ярко освещенных участка позади щелей и темный участок между ними. В то же время, если фотоны проявляют волновые свойства, то каждая щель становится вторичным источником волн. Эти волны интерферируют, и вместо двух освещенных полос, возникает множество светлых и темных зон на проекционном экране. Причем один из локальных максимумов освещенности находится там, где должно быть темное место (в случае, если бы фотон был только частицей).

Казалось бы, волновая природа света экспериментально доказана, однако, математически это значило, что фотон одновременно проходит через обе щели. Тогда физики попытались, посредством измерения, определить - через какую щель в действительности пролетает один фотон. Выяснилось, что в случае наблюдения фотон вновь начал действовать как частица, как если бы «знал», что за ним наблюдают. Факт наблюдения словно разрушает волновую функцию. И наоборот, как только наблюдения нет, фотон вновь начинает интерферировать сам с собой, действуя как волна.

Констатируя экспериментально наблюдаемый корпускулярно-волновой дуализм, Нильс Бор постулировал принцип дополнительности. Он гласит, что если наблюдатель измеряет свойства квантового объекта как частицы, то он ведет себя как частица. Если же измеряются его волновые свойства, то для наблюдателя он ведет себя как волна. Поэтому для полного описания квантовомеханических явлений необходимо применять два, казалось бы, противоречащих друг другу представления, которые, в итоге, оказываются взаимно дополняющими, что и отражено в названии принципа.

Чтобы преодолеть это противоречие и проверить эффект наблюдателя Уилер предложил использовать интерферометр Маха – Цандера . Он состоит из четырех зеркал. Первое расщепляет поток света на два пучка, которые затем отражаются от двух непрозрачных зеркал и сводятся вновь вместе в четвертом зеркале. По двум сторонам от него стоят детекторы. Фотоны необходимо выпускать по одному.

Одиночный фотон как бы расщепляется на два в первом зеркале, или, иными словами, проявляет волновые свойства. Затем он отражается от двух идеальных зеркал, вновь интерферирует сам с собой в четвертом полупрозрачном зеркале, и наконец попадает в один из детекторов. Для каждого конкретного фотона срабатывает только один из детекторов, но если повторять опыт много раз, получится некоторое нетривиальное соотношение отсчетов двух детекторов. Это соотношение показывает, что частица, достигнув четвертого зеркала, ведет себя как волна. Если же четвертое зеркало убрать, то соотношение между срабатываниями будет 50:50. Это выглядит так, как будто в момент первого расщепления частица уже «решила», по какому пути она пойдет.

Идея Уилера заключалась в том, чтобы появление в схеме четвертого зеркала решалось посредством генератора случайных чисел уже после того, как фотон вошел в интерферометр, но до того, как его поглотил один из детекторов – так называемый отложенный выбор. Таким образом, экспериментаторы лишали бы фотон возможности «узнать», производится ли наблюдение или нет, и тем самым определить свое «поведение» – предстать частицей или волной. Впервые эту гипотетическую схему удалось реализовать лишь в 2007 году.


Схема интерферометра Маха - Цендера

Изображение: Wikimedia Commons


Слева классическая схема эксперимента Уиллера. Справа его новая реализация на атомах и с использованием лазерных имульсов

Изображение: Manning A.G. et als.

В новом исследовании австралийские физики использовали более массивные частицы – атомы, тем самым протестировав экспериментальную схему Уилера в совершенно новых условиях.

Ученые использовали сверххолодные атомы гелия, выпуская их поодиночке из оптической дипольной ловушки . Под действием гравитации атомы начинали падать в специальный детектор в виде микроканальной пластины . Спустя миллисекунду после начала падения лазерный луч «ударял» по атому, заставляя его занять суперпозицию двух дипольных моментов , направленных в разные стороны. Это был аналог «первого расщепляющего зеркала» Уилера.

Затем ученые решали – применить ли им второй лазерный импульс, для рекомбинации этих двух состояний. Всего могло быть два варианта такого смешанного состояния: первое в виде суммы двух волн и второе в виде разности. Какое из них возникнет, определял квантовый генератор случайных чисел. После применения второго лазерного импульса уже нельзя было определенно сказать - в каком из двух состояний находится атом. Всего таких экспериментальных проб было совершено больше тысячи.

Выяснилось, что если второй лазерный импульс не применялся, то вероятность детекции каждого из дипольных моментов равнялась 0,5. В то же время, после воздействия второго лазерного импульса наблюдалась четкая картина интерференции, выраженной в виде синусоиды, так же как и в опыте Юнга.

Таким образом, подтвердилось предположение Нильса Бора о том, что не имеет смысла приписывать то или иное поведение частицам – как волны или как собственно частицы - до того как было произведено измерение. Впрочем, существует еще одно маловероятное объяснение, что частицы каким-то образом получают информацию из будущего. Оно предполагает, что информация может передаваться быстрее света, что невозможно с точки зрения теории относительности.

8 мая 2016 в 01:52

Спросите Итана №46: Что такое квантовое наблюдение

  • Научно-популярное ,
  • Физика
  • Перевод
Можно увидеть многое, просто наблюдая
- Йоги Бера

Читатель спрашивает:

А что такое «наблюдение»? У меня есть два примера, которые я тем меньше понимаю, чем больше о них думаю: эксперимент Юнга и теорема Белла. Чем больше я о них думаю, тем меньше я понимаю, что на самом деле означает «наблюдение».

Давайте начнём с рассмотрения этих двух классических примеров странности квантового мира.

Сначала возьмём эксперимент Юнга. Давно известно, что частицы ведут себя не так, как волны. Если вы возьмёте экран с двумя щелями и будете кидать туда камушки, или пульки, или другие макроскопические предметы, большинство камушков будет задержано экраном. Несколько пролетят через щели. Можно ожидать, и по сути, так и происходит, что несколько камушков пролетят через левую щель, и несколько – через правую.


И у вас будут две кучки камушков, составляющих кривую в виде колокола (нормальное распределение), по одной для каждой щели. И это происходит вне зависимости от того, смотрите вы на камушки в момент броска, или нет. Побросали камушки, получили такую картинку. Всё.

А что, если у вас есть бассейн с водой, и вы с одной его стороны создаёте волны? Вы можете разместить экран с двумя щелями, чтобы волны могли проходить только через щели. В результате у вас появится два источника волн.

В результате вы получите картину интерференции, где есть пики и провалы, а также промежутки, где будет просто средняя высота воды без волн. Это называется интерференцией – иногда пики и провалы складываются и усиливают друг друга, иногда пик складывается с провалом и взаимно компенсируются.

Эксперимент Юнга был серией экспериментов, проводимых с 1799 по 1801 года. Через две щели светили светом, чтобы понять, будет он вести себя, как частицы, или как волны. Теперь этот стандартный эксперимент студенты повторяют в лабораториях. В результате получается такая картина:

Очевидно, тут происходит интерференция. Открытый в начале 1900-х фотоэлектрический эффект, согласующийся с идеей квантификации света на фотоны с разными энергиями, вроде бы говорил о том, что свет состоит из частиц, а не из волн – и всё равно он создавал такую интерференционную картину, проходя через две щели.

Дальше ещё страньше. В 1920-х физики решили провести тот же эксперимент, только с электронами вместо фотонов. Что случится, если направить поток электронов (например, от радиоактивного источника, испытывающего бета-распад) на две щели с экраном позади них? Какую картину мы увидим?

Как ни странно, источник электронов также даёт интерференционную картину!

«Погодите-ка»,- сказали все. «Каким-то образом электроны интерферируют с другими электронами от источника распада. Давайте-ка будем пускать их поодиночке и посмотрим, что получится на экране».

Поэтому они так и сделали, и начали смотреть, какая картинка будет вырисовываться после каждого электрона. Вот, что они увидели.

Получилось, что каждый электрон интерферировал сам с собой, проходя через щели! Чот и привело физиков к вопросу о том, как это происходит – раз электроны являются частицами, они могут проходить только через одну из щелей, словно камушки или пульки.

Так как же? Они сделали «ворота» (в которые можно светить фотонами, чтобы те взаимодействовали с тем, что проходит через щель), чтобы определить, через какую щель проходит каждый конкретный электрон. В результате, конечно, получилось, что электрон проходил через одну из двух щелей. Но затем, посмотрев на получающуюся картинку, они обнаружили, что она превратилась в картину, нарисованную частицами, а не волнами. Иначе говоря, электрон будто бы знал, наблюдаете вы за ним или нет!

Или, как говорят физики, акт наблюдения изменяет результат эксперимента. Это может показаться странным, но именно это и происходит во всех квантовых системах, организованных таким образом: всё работает так, как будто оно находится в волновой суперпозиции всех возможных результатов, но как только вы делаете ключевое «наблюдение», оно заставляет систему выдать вам один реальный ответ.

Другой пример, о котором говорит наш читатель, это квантовая запутанность.

Многие частицы можно создать так, что они будут находиться в запутанном состоянии: когда вы будете знать, например, что у одной должен быть положительный спин, а у другой – отрицательный (например, ±½ для электронов, ±1 для фотонов, и т.п.), но не знаете, у какой из них какой спин. Пока вы не совершите измерение, вам придётся обращаться с ними так, будто каждая частица находится в суперпозиции позитивного и негативного состояния. Но когда вы «наблюдаете» свойства одной из них, вы сразу же узнаёте о соответствующем свойстве другой.

Это странно – как и в случае с электронами, проходящими через щель, частицы ведут себя по разному, в зависимости от того, находятся они в суперпозиции состояний, или же их заставили принять одно из «чистых» состояний. В теории можно запутать две частицы, передвинуть одну из них на расстояние светового года, пронаблюдать первую, узнать её спин, и сразу же узнать спин другой. Вам не надо будет ждать год, чтобы сигнал пришёл к вам со скоростью света.

Если вам кажется, что это странно, то так оно и есть. Сам Эйнштейн был обескуражен этим, и решение этого, сделанное Беллом, состоит в том, что квантовая запутанность – это нелокальный феномен.


Если вы наблюдаете две частицы, а затем разводите их на большую дистанцию, то получаете (а). Если вы запутываете их, а затем разводите, они обе не определены, пока вы не одну из них не наблюдали (b). Но, пронаблюдав одну из них, вы тут же узнаёте состояние другой (с).

При этом тот, кто находится рядом с частицей, отодвинутой на световой год, не сможет заметить в ней никаких изменений, когда вы измерите свою. Только после того, как вы сведёте ваши частицы вместе (или передадите информацию о них, что ограничивается скоростью света), вы сможете пронаблюдать состояния обеих частиц.

Теперь можно ответит на вопрос читателя: что есть наблюдение?

Несмотря на то, что вы могли подумать, прочтя эти строки, наблюдение не имеет ничего общего с вами, с наблюдателем. Все разговоры про измерения и наблюдения прячут правду – чтобы произвести эти измерения, вам надо сделать так, чтобы квантовая частица провзаимодействовала с той, которую мы пытаемся наблюдать. И если нам нужно провести эти измерения, нам нужно, чтобы это взаимодействие прошло с определённым уровнем энергии.

Это не имеет ничего общего с вами или с «актом наблюдения», а зависит от того, провзаимодействуете ли вы с достаточной энергией для того, чтобы «сделать наблюдение», или, иначе говоря, удастся ли вам перевести частицу в одно из квантовых состояний.

Для электрона, проходящего сквозь щель, это означает взаимодействие с фотоном, который ограничит его позицию достаточно для того, чтобы он явно прошёл через одну из щелей. Для фотона со спином +1 или -1 это означает проведение измерения чувствительного к его поляризации, что означает взаимодействие, чувствительное к типу электромагнитного поля, создаваемого фотона.

Поэтому, наблюдение – это квантовое взаимодействие, достаточное для определения квантового состояния системы.

В "опыте Юнга" электроны (фотоны) из электронной (фотонной) пушки пролетают через одну или две щели в преграде и оставляют след на экране.

При пролете через одну щель электроны оставляют одну полоску на экране напротив щели, как будто, электрон - частица.

Интересное происходит при пролете через 2 щели в преграде.

При пролете через две щели электроны проявляют себя как волна (интерференционная картина из множества полос как результат наложения 2 волн, исходящих из каждой щели). Позже этот опыт усовершенствовали до такой степени, что смогли стрелять не пучком электронов, а отдельными электронами. Для интереса решили наблюдать , через какую из 2 щелей пролетел каждый электрон. И под наблюдением к изумлению ученых на экране появились две полоски (то есть, электроны вели себя как частицы).

Что значит "наблюдать"? Это значит, на пути полета частицы ставился специальный детектор, который подавал сигнал, если через него пролетала частица.

Получается 2 возможных варианта:

1. Поведение электрона зависит от того, ведется ли за ним наблюдение или нет.

2. На электрон влияет то техническое устройство ("детектор"), которое фиксирует через какую щель он летит

К еще большему удивлению ученых выяснилось, что результат одинаков для разных видов детекторов, точнее для разных технологий наблюдения. При чем, тот же результат для фотонов и некоторых других частиц. Наблюдение влияет поведение.

У очень серьезных ученых возникла ненаучная мистическая гипотеза, что на поведение частиц влияет информация о записи данных. Чтобы разобраться с этим, решили усложнить опыт так, чтобы полностью исключить влияние детектора. Решили обхитрить природу. Каким образом? Поставили эксперимент так, чтобы детектор срабатывал ПОСЛЕ того как частица уже проявила себя либо как частица, либо как волна.

Как именно стираются данные? Квантовым методом. Это называется "Эксперимент квантового ластика ". (иностранное слово "Ластик" - это аналог стирательной резинки, то есть, средство удаления информации).

Вот самое главное оттуда:

Основной результат эксперимента заключается в том, что не имеет значения, был процесс стирания выполнен до или после того, как фотоны достигли экрана детектора.

В чем суть эксперимента? В начале пути полета фотона к экрану его помечают определенным образом, чтобы знать через какую щель он пролетит. И тогда, будучи помеченным, он оставляет на экране точечный след, как частица. А, если на пути полета к экрану с этого же фотона снять уже поставленную метку (стереть квантовым ластиком), то, этот фотон оставит на экране след как волна (интерференционная картина).

А теперь самое интересное. У этого эксперимента есть вариант с возможностью удалить информацию "после того как", после того как фотон достигнет экрана. И о чудо! Выяснилось, что если метку стереть уже "после того как", то это стирание влияет на след на экране оставленный ранее! То есть, будущее действие повлияло на прошлое событие.

Этот вариант эксперимента называется "Эксперимент квантового ластика с отложенным выбором ".

Возникает вопрос: каким образом можно стереть метку с фотона после того как он уже прилетел на экран? Разве такое возможно?

Возможно! Для этого из одного фотона создают два, каждый из которых обладает половиной энергии исходного фотона. Это называется "запутанная пара " фотонов. Эти 2 фотона так связаны между собой, что находясь на любом расстоянии друг от друга , обладают взаимосвязанными свойствами таким образом, что изменения какого либо параметра одного фотона запутанной пары очень быстро влияют на этот же параметр другого фотона, даже если он находится на другом краю вселенной.

Что такое очень быстро? Это по крайней мере в 100 000 раз быстрее скорости света!!! (А возможно, эта скорость передачи информации внутри запутанной пары вообще бесконечна!!!).

Итак, в начале фотон пропускается через кристалл бета-бората бария (BBO), который преобразует единичный фотон в пару запутанных фотонов пониженной частоты которые летят в разные стороны. Их называют условно сигнальный и холостой. Сигнальный пролетает через 2 щели на экран, где и оставляет след как от частицы или как след от волны. А вот холостой летит в другую сторону, не будучи ограниченным расстоянием до экрана. И именно над ним производится манипуляция по снятию метки, после чего детектор не может определить через какую щель пролетел сигнальный фотон.

В пользу того, что на результат влияет сам факт наблюдения, а не наличие физического детектора, говорит то, что самые выдающиеся нобелевские физики 20 века Эйнштейн, Бор и другие много обсуждали это явление. Если бы всё упиралось в обычное физическое влияние детектора, никто бы не удивился, и говорить было бы не о чем. Напротив, ученые повыдвигали много сложных теорий по объяснению феномена. Точнее, по законам микромира на основании открытого феномена при котором будущее наблюдение как-то влияет на прошлое событие. В частности, Эйншейн так выразился:

«Вы действительно верите в то, что Луны нет на небе, пока мы не взглянем на неё?»

Из того что я накопал в интернете выходит, что в дискуссиях на русском языке народ разделился на 2 категории - одни считают, что хоть стирай данные, хоть не стирай, всё равно, на экране будут 2 полоски, другие считают что при стирании данных с детекторов на экране получится волновая картина с множеством полос (более 2).

Я брал инфу, в том числе, отсюда:

(текстовая версия тут http://lampalap.blogspot.com/2014/12/blog-post_16.html )

Вот инфа о нём:

Том Кэмпбелл (Thomas Campbell) - физик-ядерщик, работал на NASA.

все эти квантовые дела подробно описываются словами и картинками со схемами в книге Грина Брайана "Ткань космоса: Пространство, время и текстура реальности" http://e-libra.ru/read/311672-tkan-kosmosa:-prostranstvo,-vremya-i-tekstura-realnosti.html . В сети многие цитируют эту книгу.

Бра́йан Рэ́ндолф Грин (англ. Brian Randolph Greene, 9 февраля 1963 года) — физик-теоретик и один из наиболее известных струнных теоретиков, с 1996 года является профессором Колумбийского университета .

Математические способности Брайана были настолько высоки, что в двенадцать лет он начал брать частные уроки у профессора Колумбийского университета , поскольку к тому времени он уже освоил школьную программу.

После окончания Стайвесантской школы (Stuyvesant High School) Брайан Грин в 1980 году поступил на физический факультет Гарвардского университета, где получил степень бакалавра. Став обладателем стипендии Родса, он продолжил обучение в Оксфордском университете и в 1987 году получил докторскую степень .

В 1996 году Грин перешёл в Колумбийский университет, где он работает по сей день. В Колумбийском университете Грин является содиректором университетского Института струн, космологии и астрофизики (ISCAP) и руководит исследовательской программой, посвящённой приложению теории струн к проблемам космологии. До этого, с 1990 года, Грин работал на физическом факультете Корнеллского университета. Там он стал профессором в 1995 году.

Профессор Грин часто даёт лекции вне стен университетских аудиторий, как на популярном, так и на специальном уровне, в более чем двадцати пяти странах.

Один из его последних проектов — организация ежегодного Всемирного фестиваля науки (World Science Festival), который проходит в Нью-Йорке с 2008 года.

Брайан Грин — вегетарианец с детства и веган с 1997 года

Книга Брайана Грина «Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории» (1999) была первой попыткой популяризации теории струн и М-теории. Она стала финалистом Пулитцеровской премии в разделе нехудожественной литературы и лауреатом премии The Aventis Prizes for Science Books в 2000 году.

Эта книга легла в основу телевизионного научно-популярного минисериала на канале PBS, а профессор Грин выступил в роли ведущего. Его вторая книга «Ткань космоса: Пространство, время и текстура реальности» (2004) является ещё более популяризированной версией «Элегантной Вселенной».

В этом видео https://www.youtube.com/watch?v=SnQkTfSpfOU ("ДОКАЗАТЕЛЬСТВА ВИРТУАЛЬНОСТИ НАШЕГО МИРА") на времени 10:35 это называется эксперимент с "отложенным выбором" и что этот эксперимент проведен в 2006 году.