Классическая вероятность и ее свойства. Задачи на классическое определение вероятности.Примеры решений

Теория вероятностей - математическая наука, изучающая закономерности в случайных явлениях. Возникновение теории относится к середине XVII века и связано с именем Гюйгенса, Паскаля, Ферма, Я. Бернулли.

Неразложимые исходы,..., некоторого эксперимента будем называть элементарными событиями, а их совокупность

(конечным) пространством элементарных событий, или пространством исходов.

Пример 21. а) При подбрасывании игральной кости пространство элементарных событий состоит из шести точек:

б) Подбрасываем монету два раза подряд, тогда

где Г - "герб", Р - "решетка" и общее число исходов

в) Подбрасываем монету до первого появления "герба", тогда

В этом случае называется дискретным пространством элементарных событий.

Обычно интересуются не тем, какой конкретно исход имеет место в результате испытания, а тем, принадлежит ли исход тому или иному подмножеству всех исходов. Все те подмножества, для которых по условиям эксперимента возможен ответ одного из двух типов: "исход " или "исход ", будем называть событиями.

В примере 21 б) множество = {ГГ, ГР, РГ} является событием, состоящим в том, что выпадает по крайней мере один "герб". Событие состоит из трех элементарных исходов пространства, поэтому

Суммой двух событий и называется событие, состоящее в выполнении события или события.

Произведением событий и называется событие, состоящее в совместном исполнении события и события.

Противоположным по отношению к событию называется событие, состоящее в непоявлении и, значит, дополняющее его до.

Множество называется достоверным событием, пустое множество - невозможным.

Если каждое появление события сопровождается появлением, то пишут и говорят, что предшествует или влечет за собой.

События и называются равносильными, если и.

Определение. Вероятностью события называется число, равное отношению числа элементарных исходов, составляющих событие, к числу всех элементарных исходов

Случай равновозможных событий, (называется "классическим", поэтому и вероятность

называется "классической".

Элементарные события (исходы опыта), входящие в событие, называются "благоприятными".

Свойства классической вероятности:

Если (и - несовместные события).

Пример 22 (задача Гюйгенса). В урне 2 белых и 4 черных шара. Один азартный человек держит пари с другим, что среди вынутых 3 шаров будет ровно один белый. В каком отношении находятся шансы спорящих?

Решение 1 (традиционное). В данном случае испытание = {вынимание 3 шаров}, а событие - благоприятствующее одному из спорящих:

= {достать ровно один белый шар}.

Поскольку порядок вынимания трех шаров не важен, то

Один белый шар можно достать в случаев, а два черных - , и тогда по основному правилу комбинаторики. Отсюда а по пятому свойству вероятности Следовательно,

Решение 2. Составим вероятностное дерево исходов:

Пример 23. Рассмотрим копилку, в которой осталось четыре монеты - три по 2 руб. и одна в 5 руб. Извлекаем две монеты.

Решение. а) Два последовательных извлечения (с возвращением) могут привести к следующим исходам:

Какова вероятность каждого из этих исходов?

В таблице показаны все шестнадцать возможных случаев.

Следовательно,

К тем же результатам ведет и следующее дерево:

б) Два последовательных извлечения (без повторения) могут привести к следующим трем исходам:

В таблице покажем все возможные исходы:

Следовательно,

К тем же результатам ведет и соответствующее дерево:

Пример 24 (задача де Мере). Двое играют в "орлянку" до пяти побед. Игра прекращена, когда первый выиграл четыре партии, а второй - три. Как в этом случае следует поделить первоначальную ставку?

Решение. Пусть событие = {выиграть приз первым игроком}. Тогда вероятностное дерево выигрыша для первого игрока следующее:

Отсюда, и три части ставки следует отдать первому игроку, а второму - одну часть.

Покажем эффективность решения вероятностных задач с помощью графов и на следующем примере, который мы рассматривали в §1 (пример 2).

Пример 25. Является ли выбор с помощью "считалки" справедливым?

Решение. Составим вероятностное дерево исходов:

и, следовательно, при игре в "считалки" выгодней стоять вторым.

В последнем решении использованы интерпретации на графах теорем сложения и умножения вероятностей:

и в частности

Если и - несовместные события

и, если и - независимые события.

Статическая вероятность

Классическое определение при рассмотрении сложных проблем наталкивается на трудности непреодолимого характера. В частности, в некоторых случаях выявить равновозможные случаи может быть невозможно. Даже в случае с монеткой, как известно существует явно не равновероятная возможность выпадения "ребра", которую из теоретических соображений оценить невозможно (можно только сказать, что оно маловероятно и то это соображение скорее практическое). Поэтому еще на заре становления теории вероятностей было предложено альтернативное "частотное" определение вероятности. А именно, формально вероятность можно определить как предел частоты наблюдений события A, предполагая однородность наблюдений (то есть одинаковость всех условий наблюдения) и их независимость друг от друга:

где - количество наблюдений, а - количество наступлений события.

Несмотря на то, что данное определение скорее указывает на способ оценки неизвестной вероятности - путем большого количества однородных и независимых наблюдений - тем не менее в таком определении отражено содержание понятия вероятности. А именно, если событию приписывается некоторая вероятность, как объективная мера его возможности, то это означает, что при фиксированных условиях и многократном повторении мы должны получить частоту его появления, близкую к (тем более близкую, чем больше наблюдений). Собственно, в этом заключается исходный смысл понятия вероятности. В основе лежит объективистский взгляд на явления природы. Ниже будут рассмотрены так называемые законы больших чисел, которые дают теоретическую основу (в рамках излагаемого ниже современного аксиоматического подхода) в том числе для частотной оценки вероятности.

МУНИЦИПАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ГИМНАЗИЯ № 6

на тему «Классическое определение вероятности».

Выполнила ученица 8 «Б» класса

Климантова Александра.

Учитель по математике: Виденькина В. А.

Воронеж, 2008


Во многих играх используют игральный кубик. У кубика 6 граней, на каждой грани отмечено различное количество точек-от 1 до 6. Играющий бросает кубик и смотрит, сколько точек имеется на выпавшей грани (на той грани, которая располагается сверху). Довольно часто точки на грани кубика заменяют соответствующим числом и тогда говорят о выпадении 1, 2 или 6. Бросание кубика можно считать опытом, экспериментом, испытанием, а полученный результат-исходом испытания или элементарным событием. Людям интересно угадывать наступление того или иного события, предсказывать его исход. Какие предсказания они могут сделать, когда бросают игральный кубик? Например, такие:

1) событие А-выпадает цифра 1, 2, 3, 4, 5 или 6;

2) событие В-выпадает цифра 7, 8 или 9;

3) событие С-выпадает цифра 1.

Событие А, предсказанное в первом случае, обязательно наступит. Вообще, событие, которое в данном опыте обязательно наступит, называют достоверным событием .

Событие В, предсказанное во втором случае, никогда не наступит, это просто невозможно. Вообще, событие, которое в данном опыте наступить не может, называют невозможным событием .

А событие С, предсказанное в третьем случае, наступит или не наступит? На этот вопрос мы с полной уверенностью ответить не в состоянии, поскольку 1 может выпасть, а может и не выпасть. Событие, которое в данном опыте может как наступить, так и не наступить, называют случайным событием .

Думая про наступление достоверного события, мы слово «вероятно» использовать, скорее всего, не будем. Например, если сегодня среда, то завтра четверг, это-достоверное событие. Мы в среду не станем говорить: «Вероятно, завтра четверг», мы скажем коротко и ясно: «Завтра четверг». Правда, если мы склонны к красивым фразам, то можем сказать так: «Со стопроцентной вероятностью утверждаю, что завтра четверг». Напротив, если сегодня среда, то наступление назавтра пятницы-невозможное событие. Оценивая это событие в среду, мы можем сказать так: «Уверен, что завтра не пятница». Или так: «Невероятно, что завтра пятница». Ну а если мы склонны к красивым фразам, то можем сказать так: «Вероятность того, что завтра пятница, равна нулю». Итак, достоверное событие-это событие, наступающее при данных условиях со стопроцентной вероятностью (т. е. наступающее в 10 случаях из 10, в 100 случаях из 100 и т. д.). Невозможное событие-это событие, не наступающее при данных условиях никогда, событие с нулевой вероятностью .

Но, к сожалению (а может быть, и к счастью), не все в жизни так четко и ясно: это будет всегда (достоверное событие), этого не будет никогда (невозможное событие). Чаще всего мы сталкиваемся именно со случайными событиями, одни из которых более вероятны, другие менее вероятны. Обычно люди используют слова «более вероятно» или «менее вероятно», как говорится, по наитию, опираясь на то, что называют здравым смыслом. Но очень часто такие оценки оказываются недостаточными, поскольку бывает важно знать, на сколько процентов вероятно случайное событие или во сколько раз одно случайное событие вероятнее другого. Иными словами, нужны точные количественные характеристики, нужно уметь охарактеризовать вероятность числом.

Первые шаги в этом направлении мы уже сделали. Мы говорили, что вероятность наступления достоверного события характеризуется как стопроцентная , а вероятность наступления невозможного события-как нулевая . Учитывая, что 100 % равно 1, люди договорились о следующем:

1) вероятность достоверного события считается равной 1;

2) вероятность невозможного события считается равной 0.

А как подсчитать вероятность случайного события? Ведь оно произошло случайно , значит, не подчиняется закономерностям, алгоритмам, формулам. Оказывается, и в мире случайного действуют определенные законы, позволяющие вычислять вероятности. Этим занимается раздел математики, который так и называется–теория вероятностей .

Математика имеет дело с моделью некоторого явления окружающей нас действительности. Из всех моделей, используемых в теории вероятностей, мы ограничимся самой простой.

Классическая вероятностная схема

Для нахождения вероятности события А при проведении некоторого опыта следует:

1) найти число N всех возможных исходов данного опыта;

2) принять предположение о равновероятности (равновозможности) всех этих исходов;

3) найти количество N(А) тех исходов опыта, в которых наступает событие А;

4) найти частное; оно и будет равно вероятности события А.

Принято вероятность события А обозначать: Р(А). Объяснение такого обозначения очень простое: слово «вероятность» по-французски–probabilite , по-английски–probability .В обозначении используется первая буква слова.

Используя это обозначение, вероятность события А по классической схеме можно найти с помощью формулы

Р(А)=.

Часто все пункты приведенной классической вероятностной схемы выражают одной довольно длинной фразой.

Классическое определение вероятности

Вероятностью события А при проведении некоторого испытания называют отношение числа исходов, в результате которых наступает событие А, к общему числу всех равновозможных между собой исходов этого испытания.

Пример 1 . Найти вероятность того, что при одном бросании игрального кубика выпадет: а) 4; б) 5; в) четное число очков; г) число очков, большее 4; д) число очков, не кратное трем.

Решение . Всего имеется N=6 возможных исходов: выпадение грани куба с числом очков, равным 1, 2, 3, 4, 5 или 6. Мы считаем, что ни один из них не имеет никаких преимуществ перед другими, т. е. принимаем предположение о равновероятности этих исходов.

а) Ровно в одном из исходов произойдет интересующее нас событие А–выпадение числа 4. Значит, N(A)=1 и

P ( A )= =.

б) Решение и ответ такие же, как и в предыдущем пункте.

в) Интересующее нас событие В произойдёт ровно в трёх случаях, когда выпадает число очков 2, 4 или 6. Значит,

N ( B )=3 и P ( B )==.

г) Интересующее нас событие С произойдет ровно в двух случаях, когда выпадет число очков 5 или 6. Значит,

N ( C ) =2 и Р(С)=.

д) Из шести возможных выпавших чисел четыре (1, 2, 4 и 5) не кратны трем, а остальные два (3 и 6) делятся на три. Значит, интересующее нас событие наступает ровно в четырех из шести возможных и равновероятных между собой и равновероятных между собой исходах опыта. Поэтому в ответе получается

. ; б) ; в) ; г) ; д).

Реальный игральный кубик вполне может отличаться от идеального (модельного) кубика, поэтому для описания его поведения требуется более точная и детальная модель, учитывающая преимущества одной грани перед другой, возможное наличие магнитов и т. п. Но «дьявол кроется в деталях», а большая точность ведет, как правило, к большей сложности, и получение ответа становится проблемой. Мы же ограничиваемся рассмотрением простейшей вероятностной модели, где все возможные исходы равновероятны.

Замечание 1 . Рассмотрим еще пример. Был задан вопрос: «Какова вероятность выпадения тройки при одном бросании кубика?» Ученик ответил так: «Вероятность равна 0, 5». И объяснил свой ответ: «Тройка или выпадет, или нет. Значит, всего есть два исхода и ровно в одном наступает интересующее нас событие. По классической вероятностной схеме получаем ответ 0, 5». Есть в этом рассуждении ошибка? На первый взгляд–нет. Однако она все же есть, причем в принципиальном моменте. Да, действительно, тройка или выпадет, или нет, т. е. при таком определении исхода бросания N=2. Правда и то, что N(A)=1 и уж, разумеется, верно, что

=0, 5, т. е. три пункта вероятностной схемы учтены, а вот выполнение пункта 2) вызывает сомнения. Конечно, с чисто юридической точки зрения, мы имеем право считать, что выпадение тройки равновероятно ее невыпадению. Но вот можем ли мы так считать, не нарушая свои же естественные предположения об «одинаковости» граней? Конечно, нет! Здесь мы имеем дело с правильным рассуждением внутри некоторой модели. Только вот сама эта модель «неправильная», не соответствующая реальному явлению.

Замечание 2 . Рассуждая о вероятности, не упускайте из виду следующее важное обстоятельство. Если мы говорим, что при бросании кубика вероятность выпадения одного очка равна

, это совсем не значит, что, кинув кубик 6 раз, вы получите одно очко ровно один раз, бросив кубик 12 раз, вы получите одно очко ровно два раза, бросив кубик 18 раз, вы получите одно очко ровно три раза и т. д. Слово вероятно носит предположительный характер. Мы предполагаем, что скорее всего может произойти. Вероятно, если мы бросим кубик 600 раз, одно очко выпадет 100 раз или около 100.

Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определённое число, которое тем больше, чем более возможно событие. Такое число мы назовём вероятностью события. Таким образом, вероятность события есть численная мера степени объективной возможности этого события.

Первым по времени определением вероятности следует считать классическое, которое возникло из анализа азартных игр и применялось вначале интуитивно.

Классический способ определения вероятности основан на понятии равновозможных и несовместных событий, которые являются исходами данного опыта и образуют полную группу несовместных событий.

Наиболее простым примером равновозможных и несовместных событий, образующих полную группу, является появление того или иного шара из урны, содержащей несколько одинаковых по размеру, весу и другим осязаемым признакам шаров, отличающихся лишь цветом, тщательно перемешанных перед выниманием.

Поэтому об испытании, исходы которого образуют полную группу несовместных и равновозможных событий, говорят, что оно сводится к схеме урн, или схеме случаев , или укладывается в классическую схему.

Равновозможные и несовместные события, составляющие полную группу, будем называть просто случаями или шансами. При этом в каждом опыте наряду со случаями могут происходить и более сложные события.

Пример : При подбрасывании игральной кости наряду со случаями А i - выпадение i- очков на верхней грани можно рассматривать такие события, как В - выпадение чётного числа очков, С - выпадение числа очков, кратных трём …

По отношению к каждому событию, которое может произойти при осуществлении эксперимента, случаи делятся на благоприятствующие , при которых это событие происходит, и неблагоприятствующие, при которых событие не происходит. В предыдущем примере, событию В благоприятствуют случаи А 2 , А 4 , А 6 ; событию С - случаи А 3 , А 6 .

Классической вероятностью появления некоторого события называется отношение числа случаев, благоприятствующих появлению этого события, к общему числу случаев равновозможных, несовместных, составляющих полную группу в данном опыте:

где Р(А) - вероятность появления события А; m - число случаев, благоприятствующих событию А; n - общее число случаев.

Примеры:

1) (смотри пример выше) Р(В) = , Р(С) = .

2) В урне находятся 9 красных и 6 синих шаров. Найти вероятность того, что вынутые наугад один, два шара окажутся красными.

А - вынутый наугад шар красный:

m = 9, n = 9 + 6 = 15, P(A) =

B - вынутые наугад два шара красные:

Из классического определения вероятности вытекают следующие свойства (показать самостоятельно):


1) Вероятность невозможного события равна 0;

2) Вероятность достоверного события равна 1;

3) Вероятность любого события заключена между 0 и 1;

4) Вероятность события, противоположного событию А,

Классическое определение вероятности предполагает, что число исходов испытания конечно. На практике же весьма часто встречаются испытания, число возможных случаев которых бесконечно. Кроме того, слабая сторона классического определения состоит в том, что очень часто невозможно представить результат испытания в виде совокупности элементарных событий. Ещё труднее указать основания, позволяющие считать элементарные исходы испытания равновозможными. Обычно о равновозможности элементарных исходов испытания заключают из соображений симметрии. Однако такие задачи на практике встречаются весьма редко. По этим причинам наряду с классическим определением вероятности пользуются и другими определениями вероятности.

Статистической вероятностью события А называется относительная частота появления этого события в произведённых испытаниях:

где - вероятность появления события А;

Относительная частота появления события А;

Число испытаний, в которых появилось событие А;

Общее число испытаний.

В отличие от классической вероятности статистическая вероятность является характеристикой опытной, экспериментальной.

Пример : Для контроля качества изделий из партии наугад выбрано 100 изделий, среди которых 3 изделия оказались бракованными. Определить вероятность брака.

.

Статистический способ определения вероятности применим лишь к тем событиям, которые обладают следующими свойствами:

Рассматриваемые события должны быть исходами только тех испытаний, которые могут быть воспроизведены неограниченное число раз при одном и том же комплексе условий.

События должны обладать статистической устойчивостью (или устойчи- востью относительных частот). Это означает, что в различных сериях испытаний относительная частота события изменяется незначительно.

Число испытаний, в результате которых появляется событие А, должно быть достаточно велико.

Легко проверить, что свойства вероятности, вытекающие из классического определения, сохраняются и при статистическом определении вероятности.

Классическое определение вероятности.

Как было сказано выше, при большом числе n испытаний частота P*(A)=m/ n появления события A обладает устойчивостью и дает приближенное значение вероятности события A , т.е. .

Это обстоятельство позволяет находить приближенно вероятность события опытным путем. Практически такой способ нахождения вероятности события не всегда удобен. Ведь нам нужно заранее знать вероятность некоторого события, еще до опыта. В этом и состоит эвристическая, предсказательная роль науки. В ряде случаев вероятность события удается определить до опыта с помощью понятия равновероятности событий (или равновозможности).

Два события называются равновероятными (или равновозможными ), если нет никаких объективных причин считать, что одно из них может наступить чаще, чем другое.

Так, например, появления герба или надписи при бросании монеты представляют собой равновероятные события.

Рассмотрим другой пример. Пусть бросают игральную кость. В силу симметрии кубика можно считать, что появление любой из цифр 1, 2, 3, 4, 5 или 6 одинаково возможно (равновероятно).

События в данном опыте образуют полную группу , если в результате опыта должно произойти хотя бы одно из них. Так, в последнем примере полная группа событий состоит из шести событий - появлений цифр 1, 2, 3, 4, 5 и 6.

Очевидно, любое событие A и противоположное ему событие образуют полную группу.

Событие B называется благоприятствующим событию A , если наступление события B влечет за собой наступление события A . Так, если A - появление четного числа очков при бросании игральной кости, то появление цифры 4 представляет собой событие, благоприятствующее событию A .

Пусть события в данном опыте образуют полную группу равновероятных и попарно несовместных событий. Будем называть их исходами испытания. Предположим, что событию A благоприятствуют исходов испытания. Тогда вероятностью события A в данном опыте называют отношение . Итак, мы приходим к следующему определению.

Вероятностью P(A) события в данном опыте называется отношение числа исходов опыта, благоприятствующих событию A, к общему числу возможных исходов опыта, образующих полную группу равновероятных попарно несовместных событий: .

Это определение вероятности часто называют классическим . Можно показать, что классическое определение удовлетворяет аксиомам вероятности.

Пример 1.1. На завод привезли партию из 1000 подшипников. Случайно в эту партию попало 30 подшипников, не удовлетворяющих стандарту. Определить вероятность P(A) того, что взятый наудачу подшипник окажется стандартным.

Решение: Число стандартных подшипников равно 1000-30=970 . Будем считать, что каждый подшипник имеет одинаковую вероятность быть выбранным. Тогда полная группа событий состоит из равновероятных исходов, из которых событию A благоприятствуют исходов. Поэтому .

Пример 1.2. В урне 10 шаров: 3 белых и 7 черных. Из урны вынимают сразу два шара. Какова вероятность р того, что оба шара окажутся белыми?

Решение: Число всех равновероятных исходов испытания равно числу способов, которыми можно из 10 шаров вынуть два, т. е. числу сочетаний из 10 элементов по 2 (полная группа событий):

Число благоприятствующих исходов (сколькими способами можно из 3 шаров выбрать 2) : . Следовательно, искомая вероятность .

Забегая вперед, эту задачу можно решить и другим способом.

Решение: Вероятность того, что при первом испытании (вытаскивании шара) будет вынут белый шар, равна (всего шаров 10 , из них 3 белых). Вероятность того, что при втором испытании будет вынут снова белый шар равна (всего шаров стало 9, т.к. один вынули, белых стало 2, т.к. вынули именно белый). Следовательно, вероятность совмещения событий равна произведению их вероятностей, т.е. .

Пример 1.3. В урне 2 зеленых, 7 красных, 5 коричневых и 10 белых шаров. Какова вероятность появления цветного шара?

Решение: Находим соответственно вероятности появления зеленого, красного и коричневого шаров: ; ; . Так как рассматриваемые события, очевидно, несовместны, то, применяя аксиому сложения, найдем вероятность появления цветного шара:

Либо, другим способом. Вероятность появления белого шара равна . Тогда вероятность появления небелого шара (т.е. цветного), т.е. вероятность противоположного события, равна .

Геометрическое определение вероятности . Чтобы преодолеть недостаток классического опре­деления вероятности (оно непри­менимо к испытаниям с бесконечным числом исходов), вводят геометрические определение вероятности - вероятности попа­дания точки в область (отрезок, часть плоскости и т. д.).

Пусть отрезок составляет часть отрезка . На отре­зке наудачу поставлена точка, что означает выполнение следующих предположений: поставленная точка может оказаться в любой точке отрезка , вероятность попадания точки на отрезок пропорциональна длине этого отрезка и не зависит от его расположения относи­тельно отрезка . В этих предположениях вероятность попадания точки на отрезок определяется равенством