Основные положения электронной теории. Элементарная классическая теория электропроводности металлов

ЛАБОРАТОРНАЯ РАБОТА - № 217

ИЗУЧЕНИЕ ЗАВИСИМОСТИ СОПРОТИВЛЕНИЯ МЕТАЛЛОВ И ПОЛУПРОВОДНИКОВ ОТ ТЕМПЕРАТУРЫ

ЦЕЛЬ РАБОТЫ: Исследование температурной зависимости сопротивления металлов и полупроводников, определение температурного коэффициента сопротивления металла и ширины запрещенной зоны полупроводника.

ПРИНАДЛЕЖНОСТИ: Образцы - медная проволока и полупроводник, электронагреватель, термометр, прибор комбинированный цифровой Щ 4300 или вольтметр электронный цифровой ВК7 - 10А.

Основные положения классической теории электропроводности металлов

С позиций классической электронной теории высокая электропроводность металлов обусловлена наличием огромного числа свободных электронов, движение которых подчиняется законам классической механики Ньютона. В этой теории пренебрегают взаимодействием электронов между собой, а взаимодействие их с положительными ионами сводят только к соударениям. Иными словами, электроны проводимости рассматриваются как электронный газ, подобный одноатомному, идеальному газу. Такой электронный газ должен подчи­няться всем законам идеального газа. Следовательно, средняя кинетическая энергия теплового движения электрона будет равна , где - масса электрона, - его среднеквадратичная скорость, k - постоянная Больцмана, Т - термодинамическая температура. Отсюда при Т=300 К среднеквад­ратичная скорость теплового движения электронов »105 м/с.

Хаотичное тепловое движение электронов не может привести к возникнове­нию электрического тока, но под действием внешнего электрического поля в проводнике возникает упо­рядоченное движение электронов со скоростью . Оценить величину можно из соотношения , для j - плотности тока, где - концентрация электронов, e - заряд электрона. Как по­казывает расчет, »8×10-4 м/с. Чрезвычайно малое значение величины по сравнению с величиной объясняется весьма частыми столкновениями электронов с ионами решетки. Каза­лось бы, полученный результат для противоречит тому факту, что передача электрического сигнала на очень большие расстояния происходит практически мгновенно. Но дело в том, что замыкание электрической цепи влечет за собой распро­странение электрического поля со скоростью 3×108 м/с (скорость света). Поэтому упорядоченное движение электронов со скоростью под действием поля возникнет практически сразу же на всем протяжении цепи, что и обеспечивает мгновенную передачу сиг­нала. На базе классической электронной теории был выведен закон электрического тока - закон Ома в диф­фе­ренциальной форме , где g-удельная проводимость, зависящая от природы металла. Электр­оны проводимости, перемещаясь в металле, переносят с собой не только электриче­ский заряд, но и кинетическую энергию беспорядочного теплового движения. Поэтому те метал­лы, кото­рые хорошо проводят электрический ток, являются хорошими проводни­ками тепла. Классическая электронная теория качественно объяснила природу электриче­с­кого сопротивления металлов. Во внешнем поле упорядоченное движение элек­тронов нарушается их соударениями с положительными ионами решетки. Между двумя столкновениями электрон движется ускоренно и приобретает энергию, кото­рую при последующем столкновении отдает иону. Можно считать, что движение электрона в металле происходит с трением, подобным внутреннему трению в газах. Это трение и создает сопротивление металла.

Исходя из представлений о свободных электронах, Друде разработал классическую теорию электропроводности металлов, которая затем была усовершенствована Лоренцем. Друде предположил, что электроны проводимости в металле ведут себя подобно молекулам идеального газа. В промежутках между соударениями они движутся совершено свободно, пробегая в среднем некоторый путь . Правда в отличие от молекул газа, пробег которых определяется соударениями молекул друг с другом, электроны сталкиваются преимущественно не между собой, а с ионами, образующими кристаллическую решетку металла. Эти столкновения приводят к установлению теплового равновесия между электронным газом и кристаллической решеткой. Полагая, что на электронный газ могут быть распространены результаты кинетической теории газов, оценку средней скорости теплового движения электронов можно произвести по формуле . Для комнатной температуры ( 300К) вычисление по этой формуле приводит к следующему значению: . При включении поля на хаотическое тепловое движение, происходящее, со скоростью , накладывается упорядоченное движение электронов с некоторой средней скоростью . Величину этой скорости легко оценить, исходя из формулы, связывающей плотность тока j с числом n носителей в единице объема, их зарядом е и средней скоростью :

(18.1)

Предельная допустимая техническими нормами плотность тока для медных проводов составляет около 10 А/мм 2 = 10 7 А/м 2 . Взяв для n=10 29 м -3 , получим

С позиций классической электронной теории высокая электропроводность металлов обусловлена наличием огромного числа свободных электронов, движение которых подчиняется законам классической механики Ньютона. В этой теории пренебрегают взаимодействием электронов между собой, а взаимодействие их с положительными ионами сводят только к соударениям. Иными словами, электроны проводимости рассматриваются как электронный газ, подобный одноатомному, идеальному газу. Такой электронный газ должен подчи­няться всем законам идеального газа. Следовательно, средняя кинетическая энергия теплового движения электрона будет равна , где - масса электрона, - его среднеквадратичная скорость, k - постоянная Больцмана, Т - термодинамическая температура. Отсюда при Т=300 К среднеквад­ратичная скорость теплового движения электронов »10 5 м/с.

Хаотичное тепловое движение электронов не может привести к возникнове­нию электрического тока, но под действием внешнего электрического поля в проводнике возникает упо­рядоченное движение электронов со скоростью . Оценить величину можно из ранее выведенного соотношения , где j - плотность тока, - концентрация электронов, e - заряд электрона. Как по­казывает расчет, »8×10 -4 м/с. Чрезвычайно малое значение величины по сравнению с величиной объясняется весьма частыми столкновениями электронов с ионами решетки. Каза­лось бы, полученный результат для противоречит тому факту, что передача электрического сигнала на очень большие расстояния происходит практически мгновенно. Но дело в том, что замыкание электрической цепи влечет за собой распро­странение электрического поля со скоростью 3×10 8 м/с (скорость света). Поэтому упорядоченное движение электронов со скоростью под действием поля возникнет практически сразу же на всем протяжении цепи, что и обеспечивает мгновенную передачу сиг­нала.

На базе классической электронной теории были выведены рассмотренные выше основные законы электрического тока - законы Ома и Джоуля-Ленца в диф­фе­ренциальной форме и . Кроме того, классическая теория дала качественное объяснение закону Видемана-Франца. В 1853 г. И.Видеман и Ф.Франц установили, что при определенной темпе­ра­туре отношение коэффициента теплопроводности l к удельной проводимости g оди­наково для всех металлов. Закон Видемана-Франца имеет вид , где b - постоянная, не зависящая от природы металла. Классическая электронная теория объясняет и эту закономерность. Электр­оны проводимости, перемещаясь в металле, переносят с собой не только электриче­ский заряд, но и кинетическую энергию беспорядочного теплового движения. Поэтому те метал­лы, кото­рые хорошо проводят электрический ток, являются хорошими проводни­ками тепла. Классическая электронная теория качественно объяснила природу электриче­с­кого сопротивления металлов. Во внешнем поле упорядоченное движение элек­тронов нарушается их соударениями с положительными ионами решетки. Между двумя столкновениями электрон движется ускоренно и приобретает энергию, кото­рую при последующем столкновении отдает иону. Можно считать, что движение электрона в металле происходит с трением, подобным внутреннему трению в газах. Это трение и создает сопротивление металла.


Вместе с тем классическая теория встретилась с су­щественными затруднениями. Перечислим некоторые из них:

1. Несоответствие теории и эксперимента возникло при расчете теплоемко­сти металлов. Согласно кинетической теории молярная теплоемкость металлов должна складываться из теплоемкости атомов и теплоемкости свободных электронов. Так как атомы в твердом теле совершают только колебательные движения, то их молярная теплоемкость равна С=3R (R=8.31 Дж/(моль×К) - молярная газовая постоянная); свободные электроны двигаются только поступательно и их молярная теплоемкость равна С=3/2R. Общая теплоемкость должна быть С»4.5R , но согласно опытным данным С=3R.

2. По расчетам электронной теории, сопротивление R должно быть пропор­цио­нальным , где Т - термодинамическая температура. Согласно опытным дан­ным, R~Т.

3. Полученные опытным путем значения электропроводности g дают для сред­ней длины свободного пробега электронов в металлах величину порядка сотен меж­доузельных расстояний. Это гораздо больше, чем по классической теории.

Расхождение теории с опытом объясняется тем, что движение электронов в ме­талле подчиняется не законам классической механики, а законам квантовой ме­ханики. Достоинством классической электронной теории являются простота, на­глядность и правильность многих качественных ее результатов.

Классическая электронная теория металлов развита Друде, Томсоном и Лоренцем. Согласно этой теории электронный газ в металле рассматривается как идеальный газ, и к нему применяют законы классической механики и статистики. В отсутствие внешнего электрического поля свободные электроны в металле совершают хаотическое тепловое движение, не создающее направленного переноса электрического заряда. При наложении электрического поля Е на каждый электрон действует сила

направленная против поля и приводящая к возникновению электрического тока. Движение электрона в кристалле представляет собой сложное движение вследствие постоянного его столкновения с ионами в узлах кристаллической решетки. Между двумя актами столкновения электрон ускоряется. В конце длины свободного пробега λ под действием силы F электрон приобретает скорость направленного движения

где m – масса электрона; а - его ускорение; τ – время движения электрона между двумя столкновениями. τ называется временем свободного пробега . В результате столкновения с ионом скорость электрона обращается в нуль. Поэтому средняя скорость упорядоченного движения равна:

.

Так как ,

то ,

где - средняя скорость теплового движения электронов.

Величина называется подвижностью . Подвижность равна скорости, приобретаемой электроном в электрическом поле, напряженность которого равна Е=1 В/м.

В электрическом токе движение электрона является сложным движением, представляющим собой наложение хаотического теплового движения с упорядоченным движением со скоростью в электрическом поле. Электрическое сопротивление металла обусловлено столкновением электронов с узлами кристаллической решетки и выходом их из общего потока. Чем чаще электрон сталкивается с узлами, тем выше электрическое сопротивление металла.

При средней скорости упорядоченного движения через площадку в 1 м 2 , расположенную перпендикулярно к потоку, за 1 секунду пройдут все электроны, заключенные в параллелепипеде с ребром . Объем этого параллелепипеда равен , число электронов в нем - , n – концентрация электронов в металле. Эти электроны перенесут заряд, равный . Тогда плотность тока в проводнике будет равна

.

Для удельной проводимости имеем

Подставляя в формулу (1) значение u для проводимости металла получим выражение:

Таким образом, согласно классической теории проводимость металла определяется средней длиной свободного пробега электрона в кристалле и средней скоростью теплового движения. Средняя длина свободного пробега равна примерно межатомному расстоянию в решетке. Для выяснения справедливости такого предположения, оценим величину для серебра используя экспериментальные данные по проводимости. Среднюю скорость теплового движения электронов определим из соотношения:

Тогда для температуры Т~300 K получим . Эта величина на два порядка больше, чем межатомное расстояние для серебра. Следовательно, экспериментальные значения проводимости металлов могут быть объяснены, если предположить, что длина свободного пробега электрона намного превышает среднее расстояние между атомами. При своем движении электрон не так часто сталкивается с ионами в узлах кристаллической решетки, как предполагает классическая теория. Прежде чем испытать столкновение электрон пролетает достаточно большое расстояние, равное, примерно 100 межатомным расстояниям в кристалле. Этот факт классическая теория не в состоянии объяснить.

Следующее затруднение классической теории сводится к температурной зависимости электросопротивления. Согласно классической теории средняя длина свободного пробега не зависит от температуры и равна среднему межатомному расстоянию в кристалле. Поэтому, согласно формуле (2) температурная зависимость сопротивления определяется температурной зависимостью скорости теплового движения . Тогда удельное сопротивление согласно классической теории определяется выражением . Однако, экспериментальные данные показывают, что для металлов сопротивление в широком интервале растет линейно с ростом температуры .

Знали они и то, что носителями электрического тока в металлах являются отрицательно заряженные электроны. Оставалось составить описание электрического сопротивления на атомном уровне. Первую попытку такого рода предпринял в 1900 году немецкий физик Пауль Друде (Paul Drude, 1863-1906).

Смысл электронной теории проводимости сводится к тому, что каждый атом металла отдает валентный электрон из внешней оболочки, и эти свободные электроны растекаются по металлу, образуя некое подобие отрицательно заряженного газа. Атомы металла при этом объединены в трехмерную кристаллическую решетку, которая практически не препятствует перемещению свободных электронов внутри нее (см. Химические связи). Как только к проводнику прикладывается электрическая разность потенциалов (например, посредством замыкания на два его конца двух полюсов аккумуляторной батареи), свободные электроны приходят в упорядоченное движение. Сначала они движутся равноускоренно, но длится это недолго, поскольку очень скоро электроны перестают ускоряться, сталкиваясь с атомами решетки, которые, в свою очередь, от этого начинают колебаться всё с большей амплитудой относительно условной точки покоя, и мы наблюдаем термоэлектрический эффект разогревания проводника.

На электроны же эти столкновения оказывают затормаживающее воздействие, аналогично тому, как, допустим, человеку тяжело с достаточно большой скоростью передвигаться в плотной людской толпе. В результате скорость электронов устанавливается на некоей усредненной отметке, которая называется скоростью миграции , и скорость эта, на самом деле, отнюдь не высока. Например, в обычной бытовой электропроводке средняя скорость миграции электронов составляет всего несколько миллиметров в секунду, то есть, электроны отнюдь не летят по проводам, а скорее ползут по ним темпами, достойными разве что улитки. Свет же в лампочке зажигается практически моментально лишь потому, что с места все эти медлительные электроны трогаются одновременно , как только вы нажимаете на кнопку выключателя, и электроны в спирали лампочки также приходят в движение сразу же. То есть, нажимая на кнопку выключателя, вы производите в проводах эффект, аналогичный тому, как если бы включили насос, подсоединенный к поливочному шлангу, до отказа заполненному водой, — струя на противоположном от насоса конце хлынет из шланга незамедлительно.

Друде весьма серьезно подошел к описанию свободных электронов. Он предположил, что внутри металла они ведут себя подобно идеальному газу, и применил к ним уравнение состояния идеального газа , достаточно справедливо проведя аналогию между соударениями электронов и тепловыми соударениями молекул идеального газа. Это позволило ему сформулировать формулу электрического сопротивления, как функции среднего времени между соударениями свободных электронов с атомами кристаллической решетки. Подобно многим простым теориям, электронная теория проводимости хорошо описывает некоторые основные явления из области электропроводности, но бессильна описать многие нюансы этого явления. В частности, она не только не объясняет явления сверхпроводимости при сверхнизких температурах (см. Теория сверхпроводимости , но, напротив, предсказывает неограниченный рост электрического сопротивления любого вещества при стремлении его температуры к абсолютному нулю. Поэтому сегодня электропроводящие свойства вещества принято интерпретировать в рамках квантовой механики (см.