Где учился Ньютон. Надпись на его могиле гласит

Великий английский физик, математик и астроном. Автор фундаментального труда «Математические начала натуральной философии» (лат. Philosophiae Naturalis Principia Mathematica), в котором он описал закон всемирного тяготения и так называемые Законы Ньютона, заложившие основы классической механики. Разработал дифференциальное и интегральное исчисление, теорию цветности и многие другие математические и физические теории.


Исаак Ньютон, сын мелкого, но зажиточного фермера, родился в деревне Вулсторп (графство Линкольншир), в год смерти Галилея и в канун гражданской войны. Отец Ньютона не дожил до рождения сына. Мальчик родился болезненным, до срока, но всё же выжил и прожил 84 года. Факт рождения под Рождество Ньютон считал особым знаком судьбы.

Покровителем мальчика стал его дядя по матери, Вильям Эйскоу. По окончании школы (1661) Ньютон поступает в Тринити-колледж (Колледж святой Троицы) Кембриджского университета. Уже тогда сложился его могучий характер - научная дотошность, стремление дойти до сути, нетерпимость к обману и угнетению, равнодушие к публичной славе. В детстве Ньютон, по отзывам современников, был замкнут и обособлен, любил читать и мастерить технические игрушки: часы, мельницу и т. п.

Судя по всему, научной опорой и вдохновителями творчества Ньютона в наибольшей степени были физики: Галилей, Декарт и Кеплер. Ньютон завершил их труды, объединив в универсальную систему мира. Меньшее, но существенное влияние оказали другие математики и физики: Евклид, Ферма, Гюйгенс, Меркатор, Валлис. Конечно, нельзя недооценивать и огромное влияние его непосредственного учителя Барроу.

Похоже на то, что значительную часть своих математических открытий Ньютон сделал ещё студентом, в «чумные годы» 1664-1666. В 23 года он уже свободно владел методами дифференциального и интегрального исчислений, включая разложение функций в ряды и то, что впоследствии было названо формулой Ньютона-Лейбница. Тогда же, по его утверждению, он открыл закон всемирного тяготения, точнее, убедился, что этот закон следует из третьего закона Кеплера. Кроме того, Ньютон в эти годы доказал, что белый цвет есть смесь цветов, вывел формулу «бинома Ньютона» для произвольного рационального показателя (включая отрицательные), и др.

1667: эпидемия чумы отступает, и Ньютон возвращается в Кембридж. Избран членом Тринити-колледжа, а в 1668 году становится магистром.

В 1669 году Ньютон избирается профессором математики, преемником Барроу. Барроу пересылает в Лондон сочинение Ньютона «Анализ с помощью уравнений с бесконечным числом членов», содержавшее сжатое изложение некоторых наиболее важных его открытий в анализе. Оно получило некоторую известность в Англии и за ее пределами. Ньютон готовит полный вариант этой работы, но найти издателя так и не удаётся. Он был опубликован лишь в 1711 году.

Продолжаются эксперименты по оптике и теории цвета. Ньютон исследует сферическую и хроматическую аберрации. Чтобы свести их к минимуму, он строит смешанный телескоп-рефлектор (линза и вогнутое сферическое зеркало, которое полирует сам). Всерьёз увлекается алхимией, проводит массу химических опытов.

1672: демонстрация рефлектора в Лондоне - всеобщие восторженные отзывы. Ньютон становится знаменит и избирается членом Королевского общества (британской Академии наук). Позже усовершенствованные рефлекторы такой конструкции стали основными инструментами астрономов, с их помощью были открыты иные галактики, красное смещение и др.

Разгорается полемика по поводу природы света с Гуком, Гюйгенсом и другими. Ньютон даёт зарок на будущее: не ввязываться в научные споры.

1680: Ньютон получает письмо Гука с формулировкой закона всемирного тяготения, послужившее, по признанию первого, поводом его работ по определению планетных движений (правда, потом отложенных на некоторое время), составивших предмет «Начал». Впоследствии Ньютон по каким-то причинам, быть может, подозревая Гука в незаконном заимствовании каких-то более ранних результатов самого Ньютона, не желает признавать здесь никаких заслуг Гука, но потом соглашается это сделать, хотя и довольно неохотно и не полностью.

1684-1686: работа над «Математическими началами натуральной философии» (весь трёхтомник издан в 1687 году). Приходит всемирная слава и ожесточённая критика картезианцев: закон всемирного тяготения вводит дальнодействие, несовместимое с принципами Декарта.

1696: Королевским указом Ньютон назначен смотрителем Монетного двора (с 1699 года - директор). Он энергично проводит денежную реформу, восстанавливая доверие к основательно запущенной его предшественниками монетной системе Великобритании.

1699: начало открытого приоритетного спора с Лейбницем, в который были вовлечены даже царствующие особы. Эта нелепая распря двух гениев дорого обошлась науке - английская математическая школа вскоре увяла на целый век, а европейская - проигнорировала многие выдающиеся идеи Ньютона, переоткрыв их много позднее. На континенте Ньютона обвиняли в краже результатов Гука, Лейбница и астронома Флемстида, а также в ереси. Конфликт не погасила даже смерть Лейбница (1716).

1703: Ньютон избран президентом Королевского общества, которым управлял двадцать лет.

1705: королева Анна возводит Ньютона в рыцарское достоинство. Отныне он сэр Исаак Ньютон . Впервые в английской истории звание рыцаря присвоено за научные заслуги.

Последние годы жизни Ньютон посвятил написанию «Хронологии древних царств», которой занимался около 40 лет, и подготовкой третьего издания «Начал».

В 1725 году здоровье Ньютона начало заметно ухудшаться (каменная болезнь), и он переселился в Кенсингтон неподалёку от Лондона, где и скончался ночью, во сне, 20 (31) марта 1727 года.

Надпись на его могиле гласит:

Здесь покоится сэр Исаак Ньютон , дворянин, который почти божественным разумом первый доказал с факелом математики движение планет, пути комет и приливы океанов.

Он исследовал различие световых лучей и появляющиеся при этом различные свойства цветов, чего ранее никто не подозревал. Прилежный, мудрый и верный истолкователь природы, древности и Св. писания, он утверждал своей философией величие Всемогущего Бога, а нравом выражал евангельскую простоту.

Пусть смертные радуются, что существовало такое украшение рода человеческого.

В честь Ньютона названы:

кратеры на Луне и на Марсе;

единица силы в системе СИ.

На статуе, воздвигнутой Ньютону в 1755 г. в Тринити-колледже, высечены стихи из Лукреция:

Qui genus humanum ingenio superavit (Разумом он превосходил род человеческий)

Научная деятельность

С работами Ньютона связана новая эпоха в физике и математике. В математике появляются мощные аналитические методы, происходит вспышка в развитии анализа и математической физики. В физике основным методом исследования природы становится построение адекватных математических моделей природных процессов и интенсивное исследование этих моделей с систематическим привлечением всей мощи нового математического аппарата. Последующие века доказали исключительную плодотворность такого подхода.

По словам А. Эйнштейна, «Ньютон был первым, кто попытался сформулировать элементарные законы, которые определяют временной ход широкого класса процессов в природе с высокой степенью полноты и точности» и «… оказал своими трудами глубокое и сильное влияние на всё мировоззрение в целом».

Математический анализ

Ньютон разработал дифференциальное и интегральное исчисление одновременно с Г. Лейбницем (немного раньше) и независимо от него.

До Ньютона действия с бесконечно малыми не были увязаны в единую теорию и носили характер разрозненных остроумных приёмов (см. Метод неделимых), по крайней мере, отсутствовала опубликованная систематическая формулировка и не была достаточно выявлена мощь аналитических приемов к решению таких сложных задач, как задачи небесной механики в их полноте. Создание математического анализа сводит решение соответствующих задач, в значительной степени, до технического уровня. Появился комплекс понятий, операций и символов, ставший отправной базой дальнейшего развития математики. Следующий, XVIII век, стал веком бурного и чрезвычайно успешного развития аналитических методов.

Повидимому, Ньютон пришёл к идее анализа через разностные методы, которыми много и глубоко занимался. Правда, в своих «Началах» Ньютон почти не использовал бесконечно малых, придерживаясь античных (геометрических) приёмов доказательства, но в других трудах применял их свободно.

Отправной точкой для дифференциального и интегрального исчисления были работы Кавальери и особенно Ферма, который уже умел (для алгебраических кривых) проводить касательные, находить экстремумы, точки перегиба и кривизну кривой, вычислять площадь её сегмента. Из других предшественников сам Ньютон называл Валлиса, Барроу и шотландского астронома Джеймса Грегори. Понятия функции ещё не было, все кривые он трактовал кинематически как траектории движущейся точки.

Уже будучи студентом Ньютон понял, что дифференцирование и интегрирование - взаимно обратные операции (по-видимому, первая опубликованная работа, содержащая этот результат в форме детально разобранной двойственности задачи о площадях и задачи о касательных, принадлежит учителю Ньютона Барроу).

Ньютон почти 30 лет не заботился о публикации своего варианта анализа, хотя в письмах (в частности, к Лейбницу) охотно делится многим из достигнутого. Тем временем вариант Лейбница широко и открыто распространяется по Европе с 1676 года. Лишь в 1693 году появляется первое изложение варианта Ньютона - в виде приложения к «Трактату по алгебре» Валлиса. Приходится признать, что терминология и символика Ньютона по сравнению с лейбницевской довольно неуклюжи: флюксия (производная), флюэнта (первообразная), момент величины (дифференциал) и т. п. Сохранились в математике только ньютоновское обозначение «o» для бесконечно малой dt (впрочем, эту букву в том же смысле использовал ранее Грегори), да ещё точка над буквой как символ производной по времени.

Достаточно полное изложение принципов анализа Ньютон опубликовал только в работе «О квадратуре кривых» (1704), приложении к его монографии «Оптика». Почти весь изложенный материал был готов ещё в 1670-1680-е годы, но лишь теперь Грегори и Галлей уговорили Ньютона издать работу, которая, с опозданием на 40 лет, стала первым печатным трудом Ньютона по анализу. Здесь у Ньютона появляются производные высших порядков, найдены значения интегралов разнообразных рациональных и иррациональных функций, приведены примеры решения дифференциальных уравнений 1-го порядка.

1711: наконец напечатан, спустя 40 лет, «Анализ с помощью уравнений с бесконечным числом членов». Ньютон с одинаковой лёгкостью исследует как алгебраические, так и «механические» кривые (циклоиду, квадратрису). Появляются частные производные, но почему-то нет правила дифференцирования дроби и сложной функции, хотя Ньютону они были известны; впрочем, Лейбниц на тот момент их уже опубликовал.

В этом же году выходит «Метод разностей», где Ньютон предложил интерполяционную формулу для проведении через (n + 1) данные точки с равноотстоящими или неравноотстоящими абсциссами параболической кривой n-го порядка. Это разностный аналог формулы Тейлора.

1736: посмертно издаётся итоговый труд «Метод флюксий и бесконечных рядов», существенно продвинутый по сравнению с «Анализом с помощью уравнений». Приводятся многочисленные примеры отыскания экстремумов, касательных и нормалей, вычисления радиусов и центров кривизны в декартовых и полярных координатах, отыскания точек перегиба и т. п. В этом же сочинении произведены квадратуры и спрямления разнообразных кривых.

Надо отметить, что Ньютон не только достаточно полно разработал анализ, но и сделал попытку строго обосновать его принципы. Если Лейбниц склонялся к идее актуальных бесконечно малых, то Ньютон предложил (в «Началах») общую теорию предельных переходов, которую несколько витиевато назвал «метод первых и последних отношений». Используется именно современный термин «предел» (limes), хотя внятное описание сущности этого термина отсутствует, подразумевая интуитивное понимание.

Теория пределов изложена в 11 леммах книги I «Начал»; одна лемма есть также в книге II. Арифметика пределов отсутствует, нет доказательства единственности предела, не выявлена его связь с бесконечно малыми. Однако Ньютон справедливо указывает на бо́льшую строгость такого подхода по сравнению с «грубым» методом неделимых.

Тем не менее в книге II, введя моменты (дифференциалы), Ньютон вновь запутывает дело, фактически рассматривая их как актуальные бесконечно малые.

Другие математические достижения

Первые математические открытия Ньютон сделал ещё в студенческие годы: классификация алгебраических кривых 3-го порядка (кривые 2-го порядка исследовал Ферма) и биномиальное разложение произвольной (не обязательно целой) степени, с которого начинается ньютоновская теория бесконечных рядов - нового и мощнейшего инструмента анализа. Разложение в ряд Ньютон считал основным и общим методом анализа функций, и в этом деле достиг вершин мастерства. Он использовал ряды для вычисления таблиц, решения уравнений (в том числе дифференциальных), исследования поведения функций. Ньютон сумел получить разложение для всех стандартных на тот момент функций.

В 1707 году выходит книга «Универсальная арифметика». В ней приведены разнообразные численные методы.

Ньютон всегда уделял большое внимание приближённому решению уравнений. Знаменитый метод Ньютона позволял находить корни уравнений с немыслимой ранее скоростью и точностью (опубликован в «Алгебре» Валлиса, 1685). Современный вид итерационному методу Ньютона придал Джозеф Рафсон (1690).

Примечательно, что теорией чисел Ньютон совершенно не интересовался. По всей видимости, физика ему была гораздо ближе математики.

Теория тяготения

Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Эпикур, Кеплер, Декарт, Гюйгенс, Гук и другие. Кеплер полагал, что тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире. Были, впрочем, догадки с правильной формулой (Буллиальд, Рен, Гук), и даже достаточно серьезно обоснованные (с помощью соотнесения формулы центробежной силы Гюйгенса и третьего закона Кеплера для круговых орбит). Но до Ньютона никто не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера).

Важно отметить, что Ньютон опубликовал не просто предполагаемую формулу закона всемирного тяготения, но фактически предложил целостную математическую модель в контексте хорошо разработанного, полного, явно сформулированного и систематически изложенного подхода к механике:

закон тяготения;

закон движения (2-й закон Ньютона);

система методов для математического исследования (математический анализ).

В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики. До Эйнштейна никаких принципиальных поправок к указанной модели не понадобилось, хотя математический аппарат был очень значительно развит.

Ньютоновская теория тяготения вызвала многолетние дебаты и критику концепции дальнодействия.

Первым аргументом в пользу ньютоновской модели послужил строгий вывод на её основе эмпирических законов Кеплера. Следующим шагом стала теория движения комет и Луны, изложенная в «Началах». Позже с помощью ньютоновского тяготения были с высокой точностью объяснены все наблюдаемые движения небесных тел; в этом большая заслуга Клеро и Лапласа.

Первые наблюдаемые поправки к теории Ньютона в астрономии (объяснённые ОТО) были обнаружены лишь более чем через 200 лет (смещение перигелия Меркурия). Впрочем, и они очень малы в пределах Солнечной системы.

Ньютон также открыл причину приливов: притяжение Луны (даже Галилей считал приливы центробежным эффектом). Более того, обработав многолетние данные о высоте приливов, он с хорошей точностью вычислил массу Луны.

Ещё одним следствием тяготения оказалась прецессия земной оси. Ньютон выяснил, что из-за сплюснутости Земли у полюсов земная ось совершает под действием притяжения Луны и Солнца постоянное медленное смещение с периодом 26000 лет. Тем самым древняя проблема «предварения равноденствий» (впервые отмеченная Гиппархом) нашла научное объяснение.

Оптика и теория света

Ньютону принадлежат фундаментальные открытия в оптике. Он построил первый зеркальный телескоп (рефлектор), в котором, в отличие от чисто линзовых телескопов, отсутствовала хроматическая аберрация. Он также открыл дисперсию света, показал, что белый свет раскладывается на цвета радуги вследствие различного преломления лучей разных цветов при прохождении через призму, и заложил основы правильной теории цветов.

В этот период было множество спекулятивных теорий света и цветности; в основном боролись точка зрения Аристотеля («разные цвета есть смешение света и тьмы в разных пропорциях») и Декарта («разные цвета создаются при вращении световых частиц с разной скоростью»). Гук в своей «Микрографии» (1665) предлагал вариант аристотелевских взглядов. Многие полагали, что цвет есть атрибут не света, а освещённого предмета. Всеобщий разлад усугубил каскад открытий XVII века: дифракция (1665, Гримальди), интерференция (1665, Гук), двойное лучепреломление (1670, Эразм Бартолин, изучено Гюйгенсом), оценка скорости света (1675, Рёмер), значительное усовершенствование телескопов. Теории света, совместимой со всеми этими фактами, не существовало.

В своём выступлении перед Королевским обществом Ньютон опроверг как Аристотеля, так и Декарта, и убедительно доказал, что белый свет не первичен, а состоит из цветных компонентов с разными углами преломления. Эти-то составляющие и первичны - никакими ухищрениями Ньютон не смог изменить их цвет. Тем самым субъективное ощущение цвета получало прочную объективную базу - показатель преломления.

Ньютон создал математическую теорию открытых Гуком интерференционных колец, которые с тех пор получили название «Кольца Ньютона».

В 1689 г. Ньютон прекратил исследования в области оптики - по распространённой легенде, поклялся ничего не печатать в этой области при жизни Гука, который постоянно донимал Ньютона болезненно воспринимаемой последним критикой. Во всяком случае, в 1704 году, на следующий год после смерти Гука, выходит в свет монография «Оптика». При жизни автора «Оптика», как и «Начала», выдержала три издания и множество переводов.

Книга первая монографии содержала принципы геометрической оптики, учение о дисперсии света и составе белого цвета с различными приложениями.

Книга вторая: интерференция света в тонких пластинках.

Книга третья: дифракция и поляризация света. Поляризацию при двойном лучепреломлении Ньютон объяснил ближе к истине, чем Гюйгенс (сторонник волновой природы света), хотя объяснение самого явления неудачное, в духе эмиссионной теории света.

Ньютона часто считают сторонником корпускулярной теории света; на самом деле он, по своему обыкновению, «гипотез не измышлял» и охотно допускал, что свет может быть связан и с волнами в эфире. В своей монографии Ньютон детально описывал математическую модель световых явлений, оставляя в стороне вопрос о физическом носителе света.

Другие работы в физике

Ньютону принадлежит первый вывод скорости звука в газе, основанный на законе Бойля-Мариотта.

Он предсказал сплюснутость Земли у полюсов, примерно 1:230. При этом Ньютон использовал для описания Земли модель однородной жидкости, применил закон всемирного тяготения и учёл центробежную силу. Одновременно аналогичные расчёты на сходных основаниях выполнил Гюйгенс,рассматривал тяготение таким, как будто его источник находится в центре планеты, так как, видимо, не верил в универсальный характер силы тяготения, то есть в конечном итоге не учел тяготения деформированного поверхностного слоя планеты. Соответственно Гюйгенс предсказал более чем вдвое меньшее сжатие, чем Ньютон, 1:576. Более того, Кассини и другие картезианцы доказывали, что Земля не сжата, а выпукла у полюсов наподобие лимона. Впоследствии, хотя и не сразу (первые измерения были неточны), прямые измерения (Клеро, 1743) подтвердили правоту Ньютона; реальное сжатие равно 1:298. Причина отличия этого значения от предложенного Ньютоном в сторону Гюйгенсовского состоит в том, что модель однородной жидкости всё же не вполне точна (плотность заметно возрастает с глубиной). Более точная теория, явно учитывающая зависимость плотности от глубины, была разработана только в XIX веке.

Прочие работы

Параллельно с изысканиями, закладывавшими фундамент нынешней научной (физической и математической) традиции, Ньютон много времени отдавал алхимии, а также богословию. Никаких трудов по алхимии он не издавал, и единственным известным результатом этого многолетнего увлечения стало серьёзное отравление Ньютона в 1691 году.

Парадоксально, что Ньютон, много лет трудившийся в Колледже святой Троицы, сам, видимо, в Троицу не верил. Исследователи его богословских работ, такие как Л. Мор, считают, что религиозные взгляды Ньютона были близки к арианству.

Ньютон предложил свой вариант библейской хронологии, оставив после себя значительное количество рукописей по данным вопросам. Кроме того, он написал комментарий на Апокалипсис. Теологические рукописи Ньютона ныне хранятся в Иерусалиме, в Национальной Библиотеке.

Тайные работы Исаака Ньютона

Как известно, незадолго до конца жизни Исаак опроверг все выдвинутые собой теории и сжёг документы, в которых содержалась тайна их опровержения: одни не сомневались, что всё было именно так, другие же полагают, что подобные действия были бы просто абсурдны и утверждают, что архив с документами цел, но только принадлежит избранным...

Сэр Исаак Ньютон (1643-1727). Художник Г. Кнеллер. 1689 г.

Рассказывают, что закон всемирного тяготения Исаак Ньютон открыл у себя в саду. Он наблюдал за падающим яблоком и понял, что Земля притягивает к себе все предметы, и чем предмет тяжелее, тем сильнее он притягивается к Земле. Размышляя над этим, он вывел закон всемирного тяготения: Все тела притягиваются друг к другу с силой, пропорциональной обеим массам и обратно пропорциональной квадрату расстояния между ними». Гениальный английский ученый, экспериментатор, исследователь, он же математик, астроном, изобретатель, совершил массу открытий, которые определили физическую картину окружающего мира.

Исааку было 15 лет, когда он решил измерить силу ветра. .На улицу выходить не разрешили, начиналась буря, но мальчик нарушил запрет взрослых и вышел. Он стал прыгать в длину, стараясь соизмерять силу толчка. Сначала прыгал по направлению ветра, затем против. Измерил два получившихся расстояния, из большей длины вычел меньшую и таким образом высчитал силу ветра.

Мальчику нравились сложные механические игрушки, фонарики. Но он не играл с ними, а пытался разобраться в принципе действия механизма. Его интересовало все, что двигалось, излучало свет — и хранило в себе загадку…

Ньютон родился в деревне Вулстроп возле городка Грантем. Он был хилым, щуплым ребенком, про таких врачи говорили — не жилец. У него рано умер отец, а мать, оставив сына на попечение бабушки, уехала к другому мужу. Но маленький мальчик оказался упорным, он не желал поддаваться болезням и очень рано проявил твердость характера и любознательность. Бабушка отдала его в сельскую школу, где он получил навыки чтения, письма и счета.

Исаак был застенчив, робок. С юности его привлекала к себе аптека. Он часами мог наблюдать, как изготовляются лекарства. Именно лаборатория аптеки привила ему вкус к экспериментам, требовавшим при создании микстур, мазей и порошков точности и аккуратности. К этим усвоенным им в детстве качествам Исаак добавил изобретательность.

Когда бабушка заметила безмерное увлечение внука математикой и физикой, она решила отдать его на обучение в Тринити-колледж Кембриджского университета. Он поступил туда и учился легко. Когда университет из-за чумы закрыли на два года, он самостоятельно обучался дома, где и проводил свои эксперименты. Исаака очень интересовал солнечный свет. Наблюдая за радугой, он предположил, что все эти цвета содержатся в обычном дневном свете, их надо только «разложить по частям». Он изготовил призму, через которую пустил пучок света и получил все семь цветов радуги.

В 1669 году ему, 28-летнему, предложили в Кембридже кафедру математики, и он стал читать лекции по оптике и свету. Теперь он знал его составляющие и демонстрировал студентам разложение света на части, показывал радугу. Свет он понимал как поток частиц- корпускул.

Ньютон не спешил публиковать свои открытия. Его не волновала слава, главное — обосновать собственную теорию света и цвета. С этой целью он своими руками изготовил первый зеркальный телескоп с вогнутыми линзами, который продемонстрировал Лондонскому королевскому обществу (британская Академия наук). Полный успех! Его без уплаты взносов приняли в члены Королевского общества, а с 1703 года он уже в качестве президента возглавил его.

Помимо закона всемирного тяготения, Ньютон открыл три фундаментальных закона механики: о движении, о силе и об инерции. С помощью этих законов Ньютон смог рассчитать орбиты, по которым движутся спутники Юпитера и Сатурна, определил также силу, с которой Земля притягивает Луну. Он одним из первых высказал предположение о приплюснутости Земли у полюсов.

В последние годы Ньютон меньше внимания уделял физике, больше занимался вопросами теологии и хронологии других царств. Он сумел разбогатеть, и жизнь его протекала ровно и относительно спокойно, не считая споров с учеными, в которых он не любил принимать участия. Он ни разу не женился. На восьмидесятом году его здоровье ухудшилось, он страдал почечнокаменной болезнью. После него остались труды: «Математические начала натуральной философии», в котором он обобщил свои исследования в области механики, и «Оптика», где собраны его мысли о составе света. Обе эти книги принесли ему всемирную известность.

Кто-то способен умножать в уме пятизначные числа. Другой с трудом подсчитывает сдачу в магазине, но может из мусора собрать машину Апокалипсиса. Третьему по силам вывести общую формулу всего — если, конечно, с него снимут смирительную рубашку. А иногда рождаются люди, способные за чашкой чая написать теорию оптики, в обед разработать методы интегрального исчисления, а перед сном набросать законы гравитации — и все это в эпоху, когда на площадях еще иногда жгли ведьм, а знаменитые ученые всерьез интересовались оккультизмом…

Трудно знать многое, все знать невозможно. Но делать великие открытия в абсолютно разных областях фундаментальных знаний и определять облик науки на сотни лет вперед — это почти что чудо. На свете было немного людей, чьи портреты одновременно висят в школьных кабинетах математики, физики, астрономии и культурологии. И, пожалуй, главным «мессией от науки» был сэр Исаак Ньютон.

В 2005 году Лондонское королевское общество провело голосование по кандидатуре самого влиятельного физика в истории планеты. Ньютон был сочтен более значимым, чем Эйнштейн.

Неразговорчивый и одинокий

В апреле 1642 года зажиточный, но совершенно безграмотный фермер Исаак Ньютон из маленькой деревеньки Вулсторп женился на хорошо образованной 19-летней Анне Эйскоу из деревни Маркет Овертон. Счастье молодых длилось недолго. В октябре муж умер. А аккурат на Рождество, 25 декабря, Анна родила мальчика. Его назвали в честь отца — Исааком. Эти обстоятельства определили участь научного прогресса, ведь будь Исаак старший жив, он наверняка воспитал бы сына-фермера.


Поместье Ньютонов, Вулсторп.

Малыш родился недоношенным. По воспоминаниям матери, ребенок был так мал, что мог поместиться в чашку на четверть кварты. Все ожидали, что он не проживет и суток. Однако, несмотря на это, Исаак вырос здоровым и дожил до 84 лет.

Через три года Анна вышла замуж за богатого викария Барнаби Смита, которому к тому времени исполнилось 63 года. Она оставила сына своим родителям и переехала к преподобному. Второй брак матери «подарил» Ньютону двух сводных сестер и одного сводного брата (Мэри, Бенджамина и Анну). Надо сказать, что отношения у них были хорошие — добившись успеха, Исаак всегда помогал сводным родственникам.

Некоторые исследователи полагают, что юный Ньютон страдал от аутизма. Он мало говорил (качество, сохранявшееся на протяжении всей его жизни) и так сильно погружался в свои мысли, что забывал принимать пищу. До семи лет его часто «заклинивало» на повторении одних и тех же предложений, что, естественно, не добавляло странному мальчику друзей.

Необычайные таланты Исаака впервые проявились на практической почве. Он мастерил игрушки, миниатюрные ветряные мельницы, воздушных змеев (запускал с ними фонари и распространял по округе слух о комете), сделал каменные солнечные часы для своего дома, а также измерял силу ветра, прыгая по его направлению и против.

В 1652 году Ньютона послали учиться в школу Грэнтхэма. Этот городок был всего в 5 милях от его дома, но Исаак предпочел покинуть родные стены и поселился у грэнтхэмского аптекаря — мистера Кларка.


Школа в Грэнтхэме сохранилась до сих пор.

В 1656 году викарий умирает, и вдова Смит возвращается в родовое имение. Нельзя сказать, что Исаак был рад ей. В возрасте 19 лет он составил перечень своих былых юношеских грехов, где, в частности, указал намерение сжечь дом викария вместе со своей нерадивой матерью. Анна запоздало решила принять участие в воспитании первенца и решила, что сын пойдет по стопам отца. Исаака забрали из школы, и некоторое время он усердно вскапывал поля графства Линкольншир.

Приобщение к земле длилось недолго. Стараниями преподобного Вильяма Эйскоу (брата матери Ньютона и пастора соседней деревни) английское земледелие лишилось очередного плохого работника. Дядя заметил научные успехи юноши и уговорил Анну послать сына в университет.

Одинокий и гениальный

Первое время Ньютон был субсайзером — а проще говоря, оплачивал учебу работой по хозяйству. Весной 1664 года он был зачислен в Тринити-колледж стипендиатом. Это открыло ему доступ к огромной библиотеке Кембриджа. Молодой человек жадно глотал труды Архимеда, Аристотеля, Платона, Коперника, Кеплера, Галилея и Декарта — тех самых гигантов, на плечах которых, по его собственным словам, он стоял в дальнейшем.

Про его отношения с однокурсниками сохранилось мало сведений. Можно предположить, что замкнутый Ньютон, попавший в цитадель столь обожаемой им науки, избегал разгульной студенческой жизни. Известно, что однажды он поменял комнату из-за «буйства» соседа и поселился рядом с тихим Джоном Уилкинсом.


Тринити-колледж.

Увлекшись оптикой, Ньютон посвящал немало времени наблюдению атмосферных явлений — в частности, гало (кольцо вокруг Солнца).

Исааку хватило года, чтобы набраться базовых знаний в математике, физике и оптике. В июле 1665 года Лондон поразила страшная эпидемия чумы. Количество жертв было так велико, что руководство университета распустило студентов по домам (на протяжении двух следующих лет Кембридж закрывался и открывался несколько раз).

Ньютон взял «творческий отпуск» и вернулся в родной Вулсторп. Спокойствие деревенской жизни благоприятно сказывалось на Исааке. Шумные студенты не отвлекали его от книг, поэтому уже в январе 1665 года он защитился на бакалавра, а в 1668 стал магистром.

Это покажется странным, но Ньютон сделал основные открытия, еще будучи учеником Кембриджа. Он не кричал «Эврика!» на каждом углу и не стремился популяризовать свои достижения, так что мировую известность Исаак получил лишь в зрелом возрасте.

К 23 годам молодой человек освоил методы дифференциального и интегрального исчисления, вывел формулу бинома Ньютона, сформулировал основную теорему анализа (позже названную «формулой Ньютона-Лейбница), открыл закон всемирного тяготения и доказал, что белый цвет — смесь цветов.

Столовая Тринити-колледжа. За одним из этих столов обедал Ньютон.

Все это делалось с помощью кратких заметок в дневниках. Судя по ним, мысли Ньютона свободно перескакивали от оптики к математике и наоборот. Деревенская тишина предоставляла ему неограниченное количество времени для размышлений. Сам он объяснял успех тем, что размышлял постоянно.

В 1669 году чума отступила. Кембридж вновь ожил, и Ньютона назначили профессором математики. В то время под математическими науками подразумевались также геометрия, астрономия, география и оптика, однако лекции Ньютона считались скучными и не пользовались спросом у студентов — зачастую ему приходилось выступать перед пустыми скамьями.

Полет яблока

Общепринятая (и наиболее правдоподобная) версия гласит, что летом 1666 года Ньютон, бродивший по саду своего поместья в Вулсторпе в очередном интеллектуальном трансе, увидел, как с дерева падает спелое яблоко. По другой, более анекдотичной легенде яблоко упало ему на голову. Так или иначе, Ньютон задумался: а что если сила тяготения действует не только на объекты близ Земли, но и гораздо дальше нее — например, на Луну и другие небесные тела?

Когда однажды, в думу погружен,
Увидел Ньютон яблока паденье,
Он вывел притяжения закон
Из этого простого наблюденья.
Впервые от Адамовых времен
О яблоке разумное сужденье
С паденьем и с законом тайных сил
Ум смертного логично согласил.

Джордж Гордон Байрон «Дон Жуан»

Каменное яблоко у ног статуи Ньютона (Оксфордский музей естественной истории).

Ранее священнослужители предлагали альтернативную «теорию гравитации» — мол, человека тянут к земле его грехи. Покаявшись, можно попасть на небо, в рай, а грешник, соответственно, проваливается под землю — в ад.

Однако в 17 веке церковь уже отказалась от главных методов конкуренции с наукой — пыток и костров, поэтому ученые смело выдвигали альтернативные версии. Декарт писал, что тяготение — результат вихрей в эфире, а Кеплер полагал, что оно распространяется только в плоскости эклиптики.

Ньютон связал закон тяготения (силы, обратно пропорциональной квадрату расстояния) и объяснил природу движения планет. До появления теории относительности никаких поправок к этой модели не было. Знаменитый мысленный эксперимент Ньютона с пушкой (если поставить ее на высочайшую гору, нацелить горизонтально и выстрелить ядро с определенной скоростью, оно будет вращаться вокруг Земли подобно Луне) фактически заложил первый камень в фундамент космонавтики.

Также ученый объяснил приливы притяжением Луны и, имея данные о высоте прибывающей воды, рассчитал массу спутника нашей планеты.

Свет разума

В декабре 1671 года Ньютон стал кандидатом в члены Королевского научного общества, основанного десятью годами раньше. Это была элитная организация гениев, масонов и алхимиков, интересовавшихся всеми видами знаний, в том числе и оккультными.


Здание Королевского общества.

В январе 1672 Исаак прочитал перед членами общества доклад об оптике и продемонстрировал построенный им зеркальный телескоп. Используемые ранее телескопы-рефракторы давали заметную хроматическую аберрацию. Рефлектор же был лишен этих недостатков (зеркальные телескопы применяются до сих пор).

Чтобы понять важность этого открытия нужно знать, что единой оптической теории в то время еще не было. Кто-то полагал, что цвета получаются из смешения света и тьмы в разных пропорциях, Декарт считал, что цвета создаются разными скоростями вращения световых частиц. С помощью стеклянной призмы Ньютон доказал членам общества, что белый свет не первичен, а состоит из базовых (неразлагаемых на другие компоненты) цветов под разными углами преломления.

Ньютон очень болезненно относился к критике. Его оптические изыскания подвергались нападкам Роберта Гука. По легенде, в 1689 году раздраженный Ньютон поклялся прекратить исследования до тех пор, пока его оппонент не умрет. Это произошло в 1703 году.

Титульный лист первого издания «Оптики» (1704).

Год спустя вышла фундаментальная монография Ньютона «Оптика», в которой, помимо революционных выкладок по дисперсии, интерференции, дифракции и поляризации света, утверждалось, что свет состоит из мельчайших частиц — корпускул. Эта ошибка еще долгое время жила благодаря авторитету Ньютона.

Бремя славы

Как уже отмечалось ранее, Ньютон неохотно публиковал свои работы, предпочитая обсуждать те или иные проблемы в переписке с коллегами. В 1682 году около Земли прошла комета Галлея, что вызвало всплеск интереса к взаимодействию небесных тел.

Сам Галлей долго уговаривал Ньютона обобщить и опубликовать все его исследования по физике в единый труд. Решающим аргументом стали деньги. Ньютон испытывал затруднения с финансами, в связи с чем его даже освободили от членских взносов в Королевское общество. Финансированием издания Magnum Opus Ньютона занялся Галлей.

Работа вышла в 1686 году под названием «Математические начала натуральной философии» (то есть физики). Книга, детально описывающая — не больше, ни меньше — базовые законы природы, была распродана за 4 года и выдержала 3 переиздания еще при жизни автора.

Вся ученая Европа стояла на ушах. Некоторые исследователи буквально поклонялись Ньютону, другие называли его шарлатаном. Невидимое и нематериальное тяготение представлялось чем-то вроде магии, а сам Ньютон не мог объяснить его происхождение (и даже допускал, что гравитация имеет сверхъестественную природу).

Портрет Ньютона работы Келлера.

Ньютон моментально стал национальным героем. Ритм жизни ускорился в несколько раз. В 1689 его избирают членом Парламента, однако все, что осталось от его депутатства — письменные жалобы на сквозняки в зале заседания. Известнейший художник страны — сэр Годфри Келлер — рисует первый портрет Ньютона.

Тогда же Исаак знакомится с 25-летним швейцарским математиком Николасом де Дюлье. Между ними завязываются тесные отношения. Многие отмечали, что, пожалуй, даже слишком тесные. Романтически настроенный Ньютон попытался обеспечить себе и своему другу будущее, добиваясь правительственной должности. Но в «черном» 1691 году его постигла целая череда несчастий.

Умер его старый друг — профессор Барбингтон. Сводная сестра Анна лишилась мужа и осталась без средств к существованию. В доме Исаака произошел пожар, уничтоживший черновые наброски «Математических начал», что лишило Ньютона аргументов в споре о приоритете в открытиях (в то время ученые активно переписывались, делились идеями и многие теории разрабатывались, по сути, коллективно).

Наконец, юный де Дюлье сбегает от Ньютона в Швейцарию (якобы из-за дурного климата Англии). Эти потрясения были так сильны, что у Исаака наступило временное умопомешательство.

В 1695 году канцлер казначейства Чарльз Монтегю, бывший студент Ньютона, пригласил ученого на должность смотрителя монетного двора с годовым жалованьем в 600 фунтов. Ньютон, хандривший из-за отсутствия материального признания его заслуг, согласился переехать в Лондон.

Математик Николас де Дюлье, самый близкий друг Ньютона.

В то время страна была наводнена фальшивыми монетами. Монтегю задумал полную перечеканку всей наличности и рассчитывал на познания Ньютона в металлургии и механике. Исаак показал себя отличным администратором и, невзирая на забастовки и доносы, наладил ускоренный выпуск новых денег. За это его сделали директором монетного двора с годовым окладом около 1500 фунтов.

Дела шли в гору. В 1699 году Ньютона сделали членом Французской академии наук, а в 1703 году он был избран Президентом Лондонской королевской академии (по поводу чего Исаак подарил ученым новый прибор — солнечную печь, плавившую металлы с помощью системы линз). Его переизбирали на эту должность каждый год в течении последующих 25 лет — рекорд общества, продержавшийся три столетия. А в 1705 королева Анна возводит его в рыцарское достоинство.

Наука чудес

Ньютон вошел в историю как физик и математик. Однако эти науки занимали лишь около половины его кругозора. Помимо этого, великий рационалист увлекался... алхимией и теологией. О его мистических взглядах известно немногое. Ньютон никогда не объявлял себя сторонником той или иной веры.

Он верил в бога, но, как следует из его трактата «Историческое прослеживание двух знаменитых искажений Священного Писания», отрицал Троицу — хотя учился в колледже святой Троицы. Можно предположить, что взгляды Ньютона были близки к арианству (древнейшее христианское учение, согласно которому Христа сотворил бог, и, соответственно, они не были равны друг другу).

Столь радикальные взгляды не раз создавали ему проблемы. До 19 века в Кембридж могли поступать только верующие мужчины, «женатые на науке» (дававшие обет безбрачия — последнее отчасти объясняет, почему у Ньютона никогда не было жены и потомков). Но для занятия должности профессора требовалось принять сан. Ньютону было сделано исключение — причем разрешение на занятие должности пришлось выхлопотать у самого короля.

Письмо Ньютона князю Меньшикову (1714) с согласием принять его в члены Королевского общества.

Ньютон написал «Хронологию древних царств» и комментарий на Апокалипсис. В конце 17 века он попытался найти в Библии «тайный код» и извлечь с его помощью научную информацию. Ученый рассчитал, что конец света наступит не ранее 2060 года.

Мистицизм Ньютона помог ему открыть законы тяготения. Он легко принял за основу теорию взаимодействия двух тел в вакууме без всяких посредников, хотя тогда это считалось чем-то вроде магического телекинеза.

Ньютон увлекался алхимией. В Лондоне у него была крупная лаборатория, где производились поиски философского камня. Тогда это запрещалось по двум причинам: во-первых, шарлатаны выманивали на «исследования» много денег у своих покровителей, а во-вторых, власти теоретически допускали возможность получения бесплатного золота и боялись девальвации фунта. К тому же вряд ли кому понравилось бы, что хранитель монетного двора ищет способы превращать медь в золото. Именно поэтому Ньютон «алхимичил» тайком.

В 1936 году на аукционе Сотбис были проданы чудом сохранившиеся алхимические заметки Ньютона. Как и все другие алхимики, Исаак пользовался путаным языком. Исследования карт Таро, иероглифов и растений сопровождались странными стихами.

Также ученый пытался воссоздать план Храма Соломона, считая, что в нем зашифрована вся история иудеев. Занимался он и альтернативной хронологией, меняя даты и очередность исторических событий. Согласно его расчетам, мифический остров Огигия был Атлантидой, так как на нем жила нимфа Калипсо — мать Атланта.

Бюст Ньютона из слоновой кости, сделанный с натуры Ле Маршаном.

Вопреки распространенному (не без помощи «Кода да Винчи») мнению, ни одно обстоятельство жизни Ньютона не говорит о том, что он был масоном или Грандмастером Приората Сиона. Однажды члены Королевского общества прямым текстом обвинили его в принадлежности к розенкрейцерам, однако это осталось недоказанным.

После смерти Ньютона в его библиотеке нашли 169 книг по алхимии (вероятно, крупнейшее алхимическое собрание того времени) и несколько книг о розенкрейцерах, исписанных заметками на полях.

В 1725 году Ньютон простудился и был вынужден поселиться в Кенсингтоне — пригороде Лондона. Последние годы своей жизни он редко выходил на улицу. 28 февраля 1727 года Ньютон отправился в Лондон, чтобы, как обычно, заседать на собрании Королевского общества. 4 марта у него случилось обострение мочекаменной болезни. Ученого доставили домой. 84-летний старик мучился еще две недели. 18 марта у него начался бред. 20 марта в час ночи он умер.

Сэра Исаака Ньютона похоронили в Вестминстерском аббатстве. Вольтер, присутствовавший на погребении, отметил, что так хоронили лишь королей. Доходило до того, что некоторые скорбящие предлагали «обнулить» календарь на 1642 году и сделать поместье Ньютона в Вулсторпе святилищем.

Могила Ньютона в Вестминстерском аббатстве.

В отличие от Эйнштейна, Ньютон не перевернул представление людей о мире, но лишь обобщил его, используя свой острый ум и способность работать над проблемой по 20 часов в сутки. Однако в ту эпоху не было других ученых, способных переработать результаты многолетней научной переписки с коллегами и, руководствуясь гениальной интуицией, привести их к общему знаменателю.

Если бы не Ньютон, научно-техническая революция 19 века и космические полеты 20-го случились бы гораздо позже. Сам же он считал себя мальчиком, стоящим у бескрайнего океана истины и подбиравшим на берегу цветные камушки с ракушками.

В Национальной библиотеке при Еврейском университете Иерусалима продолжается изучение рукописного наследия Исаака Ньютона - того самого Ньютона, который заложил основы современной физики и математики и по праву входит в первую десятку величайших гениев человечества. Рукописи эти, разумеется, давно инвентаризованы и даже отцифрованы, но значительная их часть все еще остается не только не изученной, но и даже внимательно не прочитанной, а потому мы можем только догадываться о тех тайнах и откровениях, которые они скрывают.

Сама история этих манускриптов и их попадания в Национальную библиотеку Израиля достаточно интересна и заслуживает того, чтобы быть рассказанной - хотя бы и вкратце.

Великий ученый, как известно, не имел жены и детей, и после его смерти в 1727 году весь его архив был передан племянникам и сложен у них дома. На протяжении многих десятилетий наследники Ньютона пытались продать этот архив, искренне полагая, что он должен стоить сотни и сотни тысяч фунтов стерлингов - подобно архивам Фарадея, Максвелла и прочих великих. Несколько раз, чтобы взвесить возможность такой покупки, к ним наведывались сотрудники Библиотеки Кембриджа, Британского национального музея и других, не менее уважаемых учреждений, но после беглого знакомства с рукописями, отшатывались от них, как от чумы, и разговор о покупке заканчивался.

Наконец, в 1936 году архив Ньютона был выставлен на аукцион. Здесь часть рукописей, связанных с алхимическими изысканиями Исаака Ньютона приобрел лорд Джон Мейнард Кейнс. Позже, на основе их изучения, он опубликовал скандальную статью “Другой Ньютон”, в которой утверждал, что великий физик считал себя, прежде всего, мистиком и теологом, и при этом верил… в Бога не столько в христианском, сколько в еврейском смысле этого слова.

После этого стало немного понятно, что так пугало историков науки, просматривавших архив сэра Исаака Ньютона - его рукописное наследие никак не вязалось с тем образом материалиста, сторонника “чистой науки”, приверженца проверки теории практикой, который был создан его биографами. Сами эти рукописи взрывали этот образ и касались покушением на святыню.

Между тем, на том же аукционе другая - большая - часть рукописного наследия Исаака Ньютона была куплена неким Авраамом Шаломом Иегудой. Уроженец Иерусалима, он был страстным антисионистом, из-за чего перебрался из подмандатной Палестины в Штаты, где занимался исследованием Библии и, в первую очередь, книги “Невиим” (“Пророки”). Иегуда был знаком с книгой Ньютона “Хронология древних царств”, и потому надеялся найти в работах гения новые идеи для своих исследований.

Иегуда показал свое новое приобретение своему другу Альберту Эйнштейну, и вместе они решили, что подобное сокровище должно храниться не дома, а в публичном месте - и предложили его в дар сначала Гарвардскому, а затем Йельском университету. Но оба этих храма науки категорически отказались эти рукописи даже из рук такого авторитета, как Эйнштейн.

В 1951 году врачи сообщили Аврааму Шалому Иегуде, что он смертельно болен. К этому времени он кардинальным образом поменял свои взгляды, стал убежденным сионистом и потому решил передать архив Исаака Ньютона в дар Национальной библиотеке в Иерусалиме. Библиотека его с благодарностью приняла, но после смерти Иегуды его наследники начали долгий судебный процесс, и в результате рукописи прибыли в Иерусалим лишь в конце 1960-х годов. Настоящее их изучение началось только в 1980-х годах, и с того времени по их следам было опубликовано несколько монографий, посвященных мировоззрению великого физика. И все же, повторим, они все еще скрывают свои главные тайны. Но даже то, что нам уже открыто, не может не вызывать, по меньшей мере, изумления. Но прежде, чем самым поверхностным образом рассказать о содержании этих рукописей, стоит хотя бы пунктиром напомнить основные вехи биографии Исаака Ньютона.

Биография эта, в общем-то, давно и досконально изучена. Будущий гений родился в ночь на рождество 1642 года, и был настолько слаб, что сразу после родов мать бросила умирать дитя на чердаке - чтобы не видеть его агонии. Но младенец так орал на весь дом, что молодая женщина вернулась за ним, поняв, что у него есть шанс выжить. Затем, выйдя второй раз замуж, она спровадила сына к родственникам, вновь овдовев, вернула его в дом, пыталась заставить в 15 лет занять семейной фермой, но юный Исаак был непреклонен - он хотел учиться, а не копаться в навозе. В 19 лет он поступает в Колледж Святой Троицы Кембридж, чтобы учиться на бакалавра теологии и с этого времени на протяжении 35 лет его жизнь будет неразрывно связана с этим университетом.

Ньютон никогда не был одержим жаждой славы, но при этом им, несомненно, двигала неукротимая, сопоставимая разве что с сексуальной, страсть к познанию мира.

Об этом свидетельствует хотя бы тот факт, что значительную часть своих выдающихся открытий в физике и математике Ньютон, очевидно, сделал еще до 25 лет, но поделился с ними только со своим учителем и другом Генри Барроу, но попросил держать их в тайне; час их публикации настанет только спустя десятилетия.

А вот следующая история, имеющая прямое отношение к нашему разговору, свидетельствует о безукоризненной внутренней честности и порядочности Исаака Ньютона, а также о том, что уже в молодости он пришел к неким мировоззренческим прозрениям, от которых был не готов отказаться ни за какую цену.

В 1669 году он, наконец, получает место профессора математики в Колледже Святой Троицы. Это место сулит стабильный доход и возможность спокойно заниматься наукой. Остается только одна мелочь: все преподаватели колледжа должны принести клятву, что они верят в святую троицу и ее единство, то есть в главную доктрину христианской церкви. Но дать такую клятву молодой кандидат в профессоры категорически отказывается. Нет никакой троицы, пытается объяснить он, все это - домыслы, на самом деле Бог един, один и всеобъемлющ.

Многие историки пытались приписать в связи с этим его демаршем приверженность к различным еретическим течениям в христианстве, но, как нетрудно заметить, ближе всего эта его позиция именно к иудаизму, а не к какой-нибудь другой религии или ее ответвлению. И это свое мнение Ньютон высказал публично, в колледже, носящей имя Святой Троицы!

Из-за этой своей принципиальности и неготовности идти на сделки с совестью Ньютон вполне мог распрощаться с местом профессора, но профессор Барроу и другие члены академического братства смогли уговорить короля Карла II подписать указ, отменяющий пункт об обязательности клятвы на верность святой троице.

В 1686 году выходит самый знаменитый труд Ньютона - “Математические принципы натуральной философии” (что упоминаемый просто как “Принципы”), вбирающий в себя наиболее выдающиеся его открытия в области механики, астрономии, строения Земли, акустики, оптики и т.д. Есть в этой книге и те самые памятные нам всем со школы и вносящие вроде бы такую ясность в строение мироздания “законы Ньютона”, о которых С.Я. Маршак остроумно заметил в первой части своей знаменитой эпиграммы:

Был этот мир глубокой тьмой окутан.

Да будет свет! И вот явился Ньютон…

Но сатана не долго ждал реванша:

Пришел Эйнштейн - и стало все, как раньше…

Но и тогда, и уж тем более, сегодня мало кто обращал внимания на то, что за рядами математических формул и точными формулировками фундаментальных законов материального мира кроются и глубочайшие эзотерические идеи. Физика для Ньютона - не более чем один из инструментов познания Творца и его фундаментальных законов. Строку 19-ого псалма Давида “Небеса рассказывают о славе Бога, о делах Его рук повествует небосвод” он трактует однозначно: сама гармоничность устройства нашего мира, единство и взаимосвязанность действующих в нем законов свидетельствуют о его сотворенности и существовании Бога…

Это - мысль, к которой два века спустя долго и мучительно (в силу своего атеистического воспитания) будет приходить Альберт Эйнштейн, но для Ньютона она была естественной и однозначной. Больше того: Ньютон был уверен, что не открывал ничего нового, а просто коснулся лишь самой вершины огромного айсберга глубочайших знаний, которыми некогда обладали древние и которые зашифрованы в священных еврейских книгах. И движимый все той же жаждой познания Ньютон начинает глубоко изучать иврит, чтобы прочесть в оригинале ТАНАХ, а затем и погрузиться в тайны Каббалы - еврейского мистического учения.

Из уже упоминавшейся здесь книги “Хронология древних царств” и уже изученных рукописей Ньютона выстраивается более-менее цельная, хотя все еще полная белых пятен картина его мировоззрения.

Бог, повторял он за Рамбамом, один, и нет подобия его Единственности. Он - Творец мира, Создатель законов природы и человеческого общества, и Он же, присутствуя всюду, незримо направляет всю человеческую историю. Он поведал с сокровенные знания об устройстве мироздания первому человеку Адаму, а затем они передавались избранным людям их поколения в поколение и дошли до выжившего в потопе Ноаха (Ноя), а затем были переданы праотцу еврейского народа Аврааму. Увидев, что другие народы искажают переданное им учение, Всевышний избрал в качестве хранителя и передатчика этих знаний еврейский народ, и этим, с точки зрения Ньютона, определяется роль евреев в мировой истории. Но в своем открытом виде эти тайны во все времена были доступны немногим. Кроме Ноаха, они были открыты разве что пророку Моисею, а затем тщательно зашифрованы в устройстве переносной Скинии Завета, которую воздвиг Моисей в пустыне, а также в построенного Соломоном Иерусалимского Храма.

“Само устройство Первого Храма истинной веры, открытой человечеству призвано указать - через саму символику Храма - человечеству путь к пониманию рамок существования этого мира… Неудивительно, что жрецы Храма возвышались над остальным народом своими знаниями о законах мироздания и внесли их в свои телогические сочинения”, - говорится в одной из рукописей, хранящихся в Иерусалиме.

Иерусалимский Храм был, по Ньютону, моделью нашей Солнечной системы; огонь на жертвеннике символизировал Солнце; расположение каждой из его частей пропорционально точно соответствовало расположению планет в нашей системе, каждый ритуал, совершаемый священниками-коэнами и левитами, порядок жертвоприношений и т.д. были исполнен глубочайшего тайного смысла…

Еще одним источником тайных знаний Ньютон считал Тору. Он не принимал мысль иудаизма о том, что Тора предшествовала сотворению мира и была от слова до слова передана Моисею Богом, но признавал, что в ней должны быть закодированы величайшие тайны, и, возможно, она скрывает в себе еще один текст или даже тексты - если попытаться прочесть ее каким-то другим образом. Пройдет больше двух столетий, понадобится изобретение компьютеров прежде, чем израильский математик Элиягу Рипс создаст специальную программу и откроет, что при чтении через различное количество букв в Торе открываются новые пласты текста - и таким образом подтвердит гениальную догадку Ньютона.

Следующим источником “истинного знания” о мире, о прошлом и будущем человечества были, по Ньютону, другие книги ТАНАХа, в первую очередь, откровения явленные еврейским пророкам, которые тоже следовало расшифровать. Историчность и несомненная истинность всех книг ТАНАХа не вызывала у него никаких сомнений.

Словом, Исаак Ньютон и в самом деле настолько близко подошел к базовым истинам и доктринам иудаизма, что, казалось, ему только и оставалось, что пройти гиюр.

Но, разумеется, он этого не сделал и до конца жизни считал себя истинным христианином, хотя понимание христианства у него было весьма своеобразным. Он отрицал доктрину о Святой Троицы и в сочинении “Историческое прослеживание двух заметных искажений Священного Писания” пытался доказать, что сама эта доктрина родилась вследствие ошибки в понимании и переводе первоначального текста. Не верил он и в Божественное происхождение Иисуса, но в то же время признавал его “божественную миссию”. По его версии, основоположник христианства и его ученики были просто группой евреев, бывших носителями того самого “тайного знания”, о котором шла речь выше и решившие следовать Божественным установкам так, как они их понимали, то есть он ставил Иисуса на уровень пророка, почти соизмеримого с Моисеем (что, разумеется, уже крайне далеко от иудаизма).

Верил Ньютон также и в то, что с помощью духовных инструментов можно влиять на материальный мир. Именно этим объяснялся его интерес к алхимии - он считал, что процесс превращения неблагородных металлов в благородные возможен, но с помощью не материальных, а неких духовных механизмов.

О том, какими методами пользовался сэр Исаак Ньютон для датировки библейских событий и расшифровки сочинений пророков, можно судить хотя бы по опубликованным посмертно “Замечаниях на книгу пророка Даниэля и Апокалипсис Св. Иоаана”.

Понятно, что такой Ньютон казался адептам академической науки сбрендившим с ума стариком, спекулянтом и профанатором, никак не совмещающимся с представлением об авторе основных законов механики, закона всемирного тяготения, преломления света и т.д., на памятнике которого выбито “Разумом он превосходил род человеческий”. И именно поэтому они так отшатывались от его рукописного наследия. Но если он и в самом деле “разумом превосходил род человеческий”, то, может, все же стоит обратить внимание и на эти его сочинения?

Тем более что с помощью совмещения самых различных методов - как чисто научных, так и теологических - Ньютон пытался заглянуть и за завесу будущего и вслед за еврейскими мистиками вычислить дату прихода Мессии и конца человеческой истории как истории войн и бедствий, а также предсказать ряд отдельных грядущих событий.

В частности, на основе этих расчетов он утверждал, что в 1880-х годах евреи начнут возвращаться на землю предков - и это предсказание сбылось “на все 100”. Ньютон провидел, что в 1940-х годах, после какого-то страшного катаклизма, в котором погибнут миллионы людей, на земле Израиля возродится еврейское государство. Еще в начале ХХ века это пророчество показалось бы всем полным бредом, но, как видим, и оно сбылось.

Приход Мессии Ньютон приурочивал к 2060-м годам. Сбудется ли это “бред” великого физика и теолога? Что ж, кто доживет, сможет проверить…

Артем Ефимов

Записки экономического историка

Исаак Ньютон и «Великая перечеканка 1696 года»

Сэр Исаак Ньютон известен в первую очередь как великий математик и великий физик, создатель систем дифференциального и интегрального исчисления и автор основных законов механики, включая закон всемирного тяготения. Мало кто знает, однако, что он еще сыграл значительную роль в развитии британской денежной системы, осуществив «Великую перечеканку» старых серебряных монет ручной работы на новые, машинной выделки. О том, как Англия перешла к новым монетам и какую роль в этом сыграл Ньютон, рассказывает историк Артем Ефимов, ведущий телеграм-канала «Пиастры!» .

Сэр Исаак Ньютон

McGovern, John / Wikimedia commons


Француз из Парижа

Почти на любой современной монете имеется гурт - узор на ребре. Ныне это скорее декоративный элемент, а вот в XVII веке, когда в Англии гуртовка монет стала обязательной, это имело огромный практический смысл.

Дело в том, что фальшивомонетчики часто обрезали монеты по краям, а из обрезков делали новые монеты. Гуртовка решала эту проблему: обрезка повреждала гурт, это было сразу заметно, и такую монету переставали принимать. Для гуртовки требовался очень сложный станок. Есть легенда, что его изобрел сэр Исаак Ньютон, когда возглавлял Тауэрский монетный двор (1696–1727). Деятельность Ньютона на посту хранителя монетного двора - отдельная интересная тема, о ней ниже. Пока ограничимся опровержением: нет, гуртовальный стан изобрел не он.

Его построил в Англии француз Пьер Блондо в 1662 году.

В 1640-е годы Блондо служил на монетном дворе в Париже. В 1649-м, после казни английского короля Карла I и провозглашения Английской республики, его пригласили в Лондон с тем, чтобы перевести на машинное производство Тауэрский монетный двор. Местные денежных дел мастера, отстаивая ручную чеканку (источник своих прибылей), развернули агитационную кампанию против Блондо.

В 1656 году английский флот провернул блестящую операцию по захвату испанского «золотого флота», перевозившего большой груз серебра из Нового света в Кадис. Это серебро передали Блондо, и он при помощи своих машин начеканил из него английских монет превосходного качества.

В 1658 году умер Оливер Кромвель, лорд-протектор Английский республики и покровитель Блондо. Последовал политический кризис, завершившийся в 1660 году реставрацией монархии (престол занял Карл II, сын казненного короля). Блондо бежал во Францию, его машины увезли в Эдинбург. Но уже очень скоро выяснилось, что вернувшиеся деньги ручной чеканки гораздо хуже тех, которые делал Блондо, и француза позвали обратно.


Английский серебряный пенни, отчеканенный в правление Иоанна Безземельного (начало XIII века)

Вот тогда-то, в эпоху Реставрации, Блондо и стал гуртовать монеты: мелкие - просто насечками, крупные - надписью «Decus et tutament» («Украшение и защита»).

Блондо работал за брассаж - долю с чеканки. За производство серебряных монет он получал 3 пенса с фунта, золотых - 12 пенсов с фунта (1 фунт = 240 пенсов).

Ни реформа Блондо, ни Великая перечеканка 1690-х годов под руководством Ньютона не спасли английский серебряный стандарт - в XVIII веке Англия (точнее, уже Великобритания) перешла на золото. Но английские технические достижения в денежном деле произвели большое впечатление на остальной мир - в частности, Петр I, будучи с Великим посольством в Лондоне в 1698 году, трижды посещал Тауэрский монетный двор и, по всей вероятности, беседовал там с Ньютоном. Есть предположения, что английские машины по изготовлению денег пробовали внедрить в Москве еще в 1650-е годы, при Алексее Михайловиче.


Деньги из ничего

Алхимия и финансовая политика имеют глубинную философскую связь. Первые читатели книги Марко Поло о путешествии в Китай (XIII век) не могли не заметить, что описанные им бумажные деньги - это, по сути, воплощение мечты алхимиков: неблагородные материалы обретают силу золота, ценности - кредит - возникают из обязательств и договоренностей, из слов - собственно говоря, из ничего.

В 1661 году шведский король Карл Х по совету некоего рижанина Иоганна Пальмструха стал выпускать первые в Европе бумажные деньги - «кредитные далеры». Их эмиссию контролировал Стокгольмский банк во главе с Пальмструхом. Банк гарантировал обмен «кредитных далеров» на звонкую монету по первому требованию. Предприятие лопнуло уже в 1668 году: банк выпустил бумажных денег на гораздо большую сумму, чем у него было монеты. После этого Риксдаг - шведский парламент - отобрал у короля контроль над денежной эмиссией.

В 1716–1720 годах во Франции существовала так называемая «система Лоу», основанная, в общем, на том же «алхимическом» принципе: создание новых денег представлялось созданием новых ценностей, нового капитала. Когда обнаружилось, что никакими реальными ценностями эти новые деньги не обеспечены, что деньги и капитал - это разные вещи, система лопнула, ввергнув Францию в финансовый кризис. Про это мы еще непременно поговорим более подробно.

По-видимому, сэр Исаак Ньютон с таким энтузиазмом взялся за работу на Королевском монетном дворе в Тауэре именно потому, что считал эту работу продолжением алхимического Великого делания, которому он отдал едва ли не больше своего времени и творческих сил, чем разработке дифференциального и интегрального исчисления, формулировке теории света и открытию законов механики.


Великая перечеканка

Ньютон стал хранителем Тауэрского монетного двора в 1696 году. Ему было за 50, он уже все совершил: с разработки дифференциального и интегрального исчисления прошло тридцать лет, с теории света и цвета - двадцать, с публикации законов механики и закона всемирного тяготения - почти десять. Недавно Ньютон пережил тяжелую нервную болезнь: депрессия, бессонница, расстройство пищеварения, приступы паранойи - вероятно, последствия отравления ртутью при алхимических опытах или самолечении. Друзья подыскивали для него синекуру, чтобы хрупкий гений мог уйти на покой.

Одним из этих друзей был Чарльз Монтегю, первый граф Галифакс, президент научного Королевского общества, однокашник Ньютона по Кембриджу, фактический руководитель английских государственных финансов, основатель Банка Англии - не первого центробанка в мире, но первого по-настоящему эффективного органа монетарной власти.

Финансы Англии пребывали в 1696 году в плачевном состоянии. С тех пор как в 1688 году в результате «Славной революции» престол занял Вильгельм III, штатгальтер (глава правительства) Нидерландов, лидер европейских протестантов и злейший враг Людовика XIV, страна непрестанно воевала. Это было дорого. В обращении оставались старые монеты, отчеканенные до введения машинной чеканки и гуртования в 1662 году. Эти старые монеты были, как правило, обрезаны по краям, а из обрезков умельцы делали новые деньги, тоже неполновесные. Плюс фальшивомонетничество: до 10 процентов монет в обращении были фальшивыми. Серебро в качестве товара было дороже, чем в качестве английских монет: их скупали, плавили, вывозили в Амстердам или Париж и там продавали.

В этот кризис Англия вошла сравнительно отсталой европейской страной: она не обладала военной мощью Франции, колониальным могуществом Испании, экономической мощью Нидерландов; она была политически нестабильна, ее раздирали религиозные конфликты, ее серебряная валюта была слаба. Пару десятилетий спустя страна (уже Великобритания) вышла из кризиса мощнейшей державой со стабильной валютой - первой в новой истории Европы, основанной на золотом стандарте.

Английские монеты достоинством 1, 2, 3 и 4 пенни, 1800 год

CNG Coin: British Royal Mint

Операция, известная как «Великая перечеканка 1696 года», началась с королевской декларации от 10 июня этого года, о выкупе у населения старых (до 1662 года выпуска) монет ручной чеканки по товарной цене - 5 шиллингов 8 пенсов за унцию серебра. Цена была достаточно выгодной, чтобы стимулировать население сдавать старые монеты на королевские монетные дворы (в дополнение к Тауэрскому были созданы дворы в Бристоле, Йорке, Экзетере, Честере и Норвиче), а не перекупщикам, которые вывозили серебро за границу. В течение следующих четырех лет королевские монетные дворы под общим руководством Ньютона выпустили монет больше чем на 5 миллионов фунтов стерлингов - в полтора раза больше, чем за предшествующие 35 лет (с введения машинной чеканки в 1662-м).

Строго говоря, ничего принципиально нового на Монетном дворе Ньютон не изобрел: все принципы уже были выработаны, все машины уже установлены и функционировали. Великий ученый оказался рачительным администратором, рациональным организатором: он сумел поставить дело так, что монетные дворы работали с максимальной скоростью и эффективностью. Уже к 1700 году старых монет в обращении почти не осталось. За это же время Ньютон, облеченный, помимо прочего, полномочиями следователя и прокурора по делам о подделке денег, добился осуждения и казни 28 фальшивомонетчиков, в том числе легендарного Уильяма Чалонера (про их противостояние есть не особенно восхитительная книжка Томаса Левенсона «Ньютон и фальшивомонетчик» 2009 года, недавно переведенная на русский и изданная «Корпусом»).

Впрочем, технический успех «Великой перечеканки» не спас английский серебряный стандарт. Разброс цен на серебро на островах и на континенте оставался слишком значительным. В 1717 году, по рекомендации Ньютона, король Георг I изменил официальный курс золота к серебру: одна золотая гинея теперь оценивалась в 21 серебряный шиллинг. Это было очередное существенное удешевление серебра, и оно с новой силой стало утекать за границу. Великобритания фактически перешла на золотой стандарт.

Для Ньютона, как уже было сказано, экономика и финансы были сродни алхимии - постижению естественного порядка вещей и овладению искусством манипулирования материей. Его натурфилософские, алхимические, богословские, исторические и экономические штудии складывались в систему мира, в которой все развивается из известных первоначал по известным принципам в соответствии с замыслом Творца. Значительную часть алхимических писаний Ньютона приобрел не кто иной, как Джон Мейнард Кейнс - он, великий «алхимик финансов», как мало кто чувствовал эту глубокую системность воззрений Ньютона.