Определить сумму моментов относительно начала координат

Момент силы относительно точки - раздел Философия, ТЕОРЕТИЧЕСКАЯ МЕХАНИКА- краткий курс КОНСПЕКТ ЛЕКЦИЙ ПО ТЕОРЕТИЧЕСКОЙ МЕХАНИКЕ Пусть Дана Сила...

Из определения следует, что момент силы относительно точки направлен перпендикулярно плоскости, содержащей силу и точку, относительно которой вычисляется момент, причем в ту сторону, откуда поворот силы вокруг точки виден против хода часовой стрелки. Модуль момента силы относительно точки равен произведению модуля силы на кратчайшее расстояние от точки до линии действия силы (плечо силы):

Обычно вектор момента изображают в той точке, относительно которой он вычисляется.

Конец работы -

Эта тема принадлежит разделу:

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА- краткий курс КОНСПЕКТ ЛЕКЦИЙ ПО ТЕОРЕТИЧЕСКОЙ МЕХАНИКЕ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования... МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные законы механики
Теоретическая механика относится к числу так называемых аксиоматических наук. В ее основе лежит система исходных положений – аксиом, принимаемых без доказательства, но проверенных не только прямыми

Аксиома 3
Две материальные точки взаимодействуют с силами, равными по модулю и направленными по одной прямой в противоположные стороны (Рис.!.2). Аксиома 4(Принцип

Скорость точки
Быстроту движения точки характеризует ее скорость, к определению которой мы сейчас переходим. Пусть в момент времени

Ускорение точки
Быстроту изменения вектора скорости характеризует ускорение точки. Пусть в момент времени точка нах

Аксиома 3
Система двух сил, приложенная к абсолютно твердому телу, уравновешена (эквивалентна нулю) тогда и только тогда, когда эти силы равны по модулю и действуют по одной прямой в противоположные

Момент силы относительно оси
Моментом силы относительно оси называется проекция на ось момента силы, вычисленного относительно любой точки этой оси:

Пара сил
Парой сил называется система двух сил, равных по модулю и действующих по параллельным прямым в противоположные стороны. Плоскость, в ко

Дифференциальные уравнения движения механической системы
Рассмотрим механическую систему, состоящую из материальных точек. Для каждой точки системы в инерциальной системе о

Основные свойства внутренних сил
Рассмотрим две любые точки механической системы и

Теорема об изменении количества движения механической системы
Сложим почленно все равенства (3.1): Учитывая первое основное св

Теорема об изменении кинетического момента
Умножим каждое из уравнений (3.1) слева векторно на радиус–вектор соответствующей точки и сложим

Условия равновесия
Остановимся на вопросах равновесия материальных тел, которые составляют существенную часть раздела "Статика" курса теоретической механики. Под равновесием в механике традиционно

Равновесие системы сил, линии действия которых лежат в одной плоскости
Во многих практически интересных случаях тело находится в равновесии под действием системы сил, линии действия которых расположены в одной плоскости. Примем эту плоскость за координатную

Расчет ферм
Особое место в ряду статических задач занимает расчет ферм. Фермой называется жесткая конструкция из прямолинейных стержней (Рис.3.3). Если все стержни фермы и вся приложенная к ней

Равновесие тела при наличии трения
Как известно, при скольжении тела по опорной поверхности возникает сопротивление, тормозящее скольжение. Это явление учитывается путем введения в рассмотрение силы трения.

Центр параллельных сил
Это понятие вводится для системы параллельных сил, имеющих равнодействующую, причем точки приложения сил системы – точки

Центр тяжести тела
Рассмотрим материальное тело, расположенное вблизи поверхности Земли (в поле земного притяжения). Допустим сначала, что тело состоит из конечного числа материальных точек, другими словами – частиц,

Центр масс механической системы. Теорема о движении центра масс
Инерционные свойства материального тела определяются не только его массой, но и характером распределения этой массы в теле. Существенную роль в описании такого распределения играет положение центра

ЛЕКЦИЯ 5
5.1. Движение абсолютно твёрдого тела Одной из важнейших задач механики является описание движения абсолютно твердого тела. В общем случае различные точки

Поступательное движение твердого тела
Поступательным называется движение твердого тела, при котором любая прямая, проведенная в теле, остается параллельной своему первоначальному положению во все время движения.

Кинематика вращательного движения твердого тела
При вращательном движении в теле существует единственная прямая, все точки которой

Скоростью тела.
Окончательно получаем: (5.4) Формула (5.4) называется формулой Эйлера. На Рис.5.

Дифференциальное уравнение вращательного движения твердого тела
Вращение твердого тела, как и любое другое движение, происходит в результате воздействия внешних сил. Для описания вращательного движения используем теорему об изменении кинетического момента относ

Кинематика плоскопараллельного движения твердого тела
Движение тела называется плоскопараллельным, если расстояние от любой точки тела до некоторой неподвижной (основной) плоскости остается неизменным во все время движения

Дифференциальные уравнения плоскопараллельного движения твердого тела
При изучении кинематики плоско-параллельного движения твердого тела за полюс можно принимать любую точку тела. При решении задач динамики за полюс всегда принимают центр масс тела, а в качестве под

Система Кенига. Первая теорема Кенига
(Изучить самостоятельно) Пусть система отсчета неподвижная (инерциальная). Система

Работа и мощность силы. Потенциальная энергия
Половина произведения массы точки на квадрат ее скорости называется кинетической энергией материальной точки. Кинетической энергией механической системы назы

Теорема об изменении кинетической энергии механической системы
Теорема об изменении кинетической энергии относится к числу общих теорем динамики наряду с доказанными ранее теоремами об изменении количества движения и изменения момента количеств

Работа внутренних сил геометрически неизменяемой механической системы
Заметим, что в отличие от теоремы об изменении количества движения и теоремы об изменении кинетического момента в теорему об изменении кинетической энергии в общем случае входят внутренние силы.

Вычисление кинетической энергии абсолютно твердого тела
Получим формулы для вычисления кинетической энергии абсолютно твердого тела при некоторых его движениях. 1. При поступательном движении в любой момент времени скорости всех точек тела один

Работа внешних сил, приложенных к абсолютно твердому телу
В разделе "Кинематика" установлено, что скорость любой точки твердого тела геометрически складывается из скорости точки, принятой за полюс, и скорости, полученной точкой при сферическом д

Работа силы тяжести
При вычислении работы силы тяжести будем считать, что мы рассматриваем ограниченную область пространства вблизи поверхности Земли, размеры которой малы по сравнению с размерами Земл

Работа упругой силы
Понятие упругой силы обычно ассоциируется с реакцией линейно–упругой пружины. Направим ось вдоль пр

Работа вращающего момента
Пусть сила приложена в некоторой точке тела, имеющего ось вращения. Тело вращается с угловой скорос

Возможные скорости и возможные перемещения
Понятия возможной скорости и возможного перемещения введем сначала для материальной точки, на которую наложена голономная удерживающая нестационарная связь. Возможной скоростью мат

Идеальные связи
Связи, наложенные на механическую систему, называются идеальными, если сумма работ всех реакций связей на любом возможном перемещении системы равна нулю:

Принцип возможных перемещений
Принцип возможных перемещений устанавливает условия равновесия механических систем. Под равновесием механической системы традиционно понимают состояние ее покоя по отношению к выбранной инерциально

Общее уравнение динамики
Рассмотрим механическую систему, состоящую из материальных точек, на которую наложены идеальные уде

При рассмотрении пространственной системы сил применяется понятие момента силы относительно центра (или точки).

Определение. Моментом силы относительно центра О называется приложенный в центре О вектор

, модуль которого равен произведению модуля F силы на ее плечо h и который направлен перпендикулярно плоскости, проходящей через центр О и силу, в ту сторону, откуда сила видна стремящейся повернуть тело вокруг центра О против хода часовой стрелки (рис. 17). Плечом h силы F относительно центра О называют длину отрезка перпендикуляра, опущенного из точки О на линию действия силы.

Согласно этому определению

Измеряется момент силы в ньютон-метрах (Н·м).

Для нахождения формулы, которая выражает вектор

, рассмотрим векторное произведение

. По определению

Направлен вектор

перпендикулярно плоскости OAB в ту сторону, откуда кратчайшее совмещение

с(если их отложить от одной точки) видно происходящим против хода часовой стрелки, т.е. так же, как вектор

. Следовательно, векторы

ивыражают одну и ту же величину. Отсюда


или

, (12)

где

– радиус-вектор точки А, проведенной из центра О.

Момент силы

имеет следующие свойства:

1) момент силы относительно центра не изменится при переносе точки приложения силы вдоль ее линии действия;

2) момент силы относительно центра О равен нулю или когда сила равна нулю, или когда линия действия силы проходит через центр О (плечо равно нулю).

§7. Алгебраический момент силы относительно центра

При рассмотрении плоской системы сил используется понятие алгебраического момента силы относительно центра. Когда все силы системы лежат в одной плоскости, их моменты относительно любого центра О находящегося в той же плоскости, перпендикулярны этой плоскости, т.е. направлены вдоль одной и той же прямой. Тогда, не прибегая к векторной символике можно направления этих моментов отличить одно от другого знаком и рассматривать момент силы относительно центра О как алгебраическую величину. Условимся такой момент называть алгебраическим и обозначать символом

. Алгебраический момент силыотносительно центра О равенвзятому с соответствующим знаком произведению модуля силы на ее плечо, т.е.


. (13)

При этом момент считается положительным, когда сила стремится повернуть тело вокруг центра О против хода часовой стрелки, и отрицательным – когда по ходу часовой стрелки. Так для сил, изображенных на рис. 18:

,

.


§8. Пара сил. Момент пары

Парой сил называется система двух равных по модулю, параллельных и направленных в противоположные стороны сил, действующих на абсолютно твердое тело (рис. 19, а).


Система сил ,, образующих пару, не находится в равновесии (эти силы не направлены вдоль одной прямой (аксиома 1)). В то же время пара сил не имеет равнодействующей поскольку

. Поэтому свойства пары сил, как нового самостоятельного элемента статики, должны быть рассмотрены отдельно.

Плоскость, проходящая через линии действия сил пары, называется плоскостью пары. Расстояние d между линиями действия сил пары называется плечом пары . Действие пары сил на твердое тело сводится к некоторому вращательному моменту пары .

Определение: моментом пары сил называется вектор , модуль которого равен произведению модуля одной из сил пары на ее плечо и который направлен перпендикулярно плоскости действия пары в ту сторону, откуда пара видна стремящейся повернуть тело против хода часовой стрелки (рис. 19, б), т.е.


.

В отличие от момента силы вектор пары является свободным вектором, т.е. его можно переносить в любую точку тела.

Моменту пары можно дать другое выражение: момент пары равен сумме моментов относительно любого центра О сил, образующих пару, т.е.


. (14)

Для доказательства проведем из произвольной точки О (рис. 20) радиусы векторы

и

. Тогда согласно формуле (12), учтя еще, что

, получим


, и, следовательно

где

.

Так как

, то справедливость равенства (14) доказана. Отсюда, в частности, следует уже отмеченный выше результат


или

, (15)

т.е. момент пары равен моменту одной из ее сил относительно точки приложения другой силы. Отметим еще, что модуль момента пары

Из формулы (14) следует, что две пары сил, имеющие одинаковые моменты, эквивалентны.

Из формулы (14) следует еще, что если на тело действует несколько пар с моментами

,

, …,

то сумма моментов всех сил, образующих эти пары, относительно любого центра будет равна

, а следовательно, вся совокупность этих пар эквивалентна одной паре с моментом


. (17)

Этот результат выражает теорему о сложении пар.

Сила может не только перемещать тело поступательно, но и оказывать на него вращательное действие, которое зависит не только от величины силы, но и от расстояния до центра поворота.

Например, для того, чтобы повернуть тело с помощью рычага (рис.1.19), наименьшую по модулю силу нужно приложить к концу рычага, чем ближе к центру, тем величина силы должна быть больше, если же сила будет проходить через точку О, то повернуть тело будет невозможно, какой большой бы она не была.

Для характеристики вращательного действия силы вводится понятие момента силы относительно точки.

Моментом силы относительно точки называется алгебраическая величина, равная произведению модуля силы на кратчайшее расстояние между точкой и линией действия силы (плечо):


(1.5)

Знак момента определяется следующим образом: если сила стремится повернуть тело вокруг данной точки против часовой стрелки, то он считается положительным (рис.1.20), в противном случае - отрицательным.

Момент силы относительно точки равен нулю только в том случае, если линия действия силы проходит через данную точку. Единицы измерения момента и в соответствующих кратных единицах.

Момент силы относительно оси характеризует вращательное действие силы относительно оси. Если силу разложить на составляющиеи, одна из которых параллельна, а другая перпендикулярна оси Z (рис.1.21), то увидим, что силане способна повернуть тело вокруг оси, а вращательное действие силыопределится ее моментом относительно точки О.

Следовательно, для определения момента силы относительно оси нужно силу спроектировать на плоскость, перпендикулярную оси и найти момент проекции относительно точки пересечения оси с этой плоскостью:


(1.6)

Знак момента определяется следующим образом: момент считается положительным, если, глядя с положительного конца оси поворот тела будет виден против часовой стрелки. Момент силы относительно оси равен нулю, если сила параллельна оси или пересекает ее.

При определении момента силы относительно точки часто бывает затруднительно определить плечо силы. В этом случае можно воспользоваться теоремой Вариньона: момент равнодействующей плоской системы сил относительно точки равен алгебраической сумме моментов составляющих сил относительно той же точки.


(1.7)

Аналогичная теорема применима и для определения момента силы относительно оси.

1.8. Пара сил и ее свойства

Плоскость, в которой лежат силы пары называется плоскостью действия пары, а кратчайшее расстояние между силами пары называется плечом пары. Сумма сил пары равна нулю, поэтому пара сил не имеет равнодействующей, однако она оказывает на тело вращательное действие, характеризуемое ее моментом.

Моментом пары называется алгебраическая величина, модуль которой равен произведению одной из сил на плечо пары:

m = F 1 d = F 2 d (1.8)

Момент пары считается положительным, если пара стремится повернуть тело против часовой стрелки и отрицательный, если пара стремится повернуть тело по часовой стрелке.

Эффект действия пары на твердое тело не зависит от ее положения в плоскости, поэтому ее можно переносить в плоскости действия в любое положение. Кроме того, не изменяя действия пары на тело, ее можно заменить другой парой с равным моментом. Поэтому часто пары изображают в виде круговой стрелки и называют пару сосредоточенным моментом (рис.1.24).


Поскольку действие пары определяется ее моментом, то если на

тело действует несколько пар, лежащих в одной плоскости, то их можно заменить одной парой с моментом, равным сумме моментов слагаемых пар: М=M k . Отсюда следует условие равновесия системы пар, лежащих в одной плоскости: для равновесия системы пар необходимо и достаточно, чтобы алгебраическая сумма их моментов была равна нулю.

Знать обозначение, модуль и определение моментов пары сил и силы относительно точки, условия равновесия системы пар сил.

Уметь определять моменты пар сил и момент силы относительно точки, определять момент результирующей пары сил.

Две равные и параллельные силы, направленные в противоположные стороны и не лежащие на одной прямой, называются парой сил . Примером такой системы сил могут служить силы, передаваемы руками шофера на рулевой колесо автомобиля.

Действие пары сил на твердое тело, как показывает опыт, состоит в том, что она стремиться вращать это тело. Рассмотрим гайку, которую затягивают гаечным ключом определенной длины, прикладывая к концу ключа мускульное усилие. Если взять гаечный ключ длиннее, то, прилагая то же усилие, гайку можно затянуть значительно сильнее. Из этого следует, что одна и та же сила может оказывать различное вращательное действие. Вращательное движение характеризуется моментом силы.

Действие пары на твердое тело характеризуется вращательным эффектом, зависящим от:

1) модуля сил пары F и длины ее плеча h ;

2) направление вращения пары в плоскости ее действия (это плоскость, на которой лежат линии действия сил, составляющих пару).

Моментом силы относительно точки называется произведение модуля силы на кротчайшее расстояние (взятое по перпендикуляру к силам), называемым плечом силы .

Силы, входящие в пару, не уравновешиваются, т.к. они приложены к двум точкам (рис.1.20). Их действие на тело не может быть заменено одной силой (равнодействующей).

Кратчайшее расстояние между линиями действия сил называется плечом пары .


рис.1.20

Момент силы пары сил считается положительным, если пара стремиться повернуть тело по направлению хода часовой стрелки (рис. 1.20 а), и отрицательным, если пара сил стремиться вращать тело против часовой стрелки (рис. 1.20 б).

Единица момента силы: [M] = [F]*[h] =ньютон * метр = Н*м

Момент силы относительно точки равен нулю, если линия действия проходит через точку, т.к. в этом случае расстояние до силы равно нулю.

Между моментом пары и моментом силы есть одно существенное различие. Численной значение и направление момента пары сил не зависят от положения этой пары в плоскости. Значение и направление (знак) момент силы зависит от положения точки, относительно которой определяется момент.

Конец работы -

Эта тема принадлежит разделу:

Теоретическая механика

Теоретическая механика... Введение... Любое явление в ок ружающем нас макромире связано с движением следовательно не может не иметь того или иного...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Аксиомы статики
Условия, при которых тело может находиться в равновесии, выводиться из нескольких основных положений, применяемых без доказательств, но подтвержденных опытом и называемых аксиомами статики.

Связи и реакции связей
Все законы и теоремы статики справедливы для свободного твердого тела. Все тела делятся на свободные и связанные. Свободным называется тело, которое не испыты

Определение равнодействующей геометрическим способом
Знать геометрический способ определения равнодействующей системы сил, условия равновесия плоской системы сходящихся сил.

Равнодействующая сходящихся сил
Равнодействующую двух пересекающихся сил можно опреде­лить с помощью параллелограмма или треугольника сил (4-я ак­сиома) (рис. 1.13).

Проекция силы на ось
Проекция силы на ось определяется отрезком оси, отсекаемым перпендикулярами, опущенными на ось из начала и конца вектора (рис. 1.15).

Определение равнодействующей системы сил аналитическим способом
Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определяем равнодействующую геоме­трическим способом. Выберем систему координат, определим про­екции всех зада

Условия равновесия плоской системы сходящихся сил в аналитической форме
Исходя из того, что равнодействующая равна нулю, получим: FΣ

Методика решения задач
Решение каждой задачи можно условно разделить на три этапа. Первый этап: Отбрасываем внешние связи системы тел, равновесие которой рассматривается, и заменяем их действие реакциями. Необхо

Эквивалентность пар
Две пары сил считаются эквивалентными в том случае, если после замены одной пары другой парой механическое состояние тела не изменяется, т. е. не изменяется движение тела или не нару­шается его

Опоры и опорные реакции балок
Правило для определения направления реакций связей (рис.1.22). Шарнирно-подвижная опора допускает поворот вокруг оси шарнира и линейное перемещение параллельно опорной плос­кости.

Приведение силы к точке.
Произвольная плоская система сил представляет собой систему сил, линии действия которых расположены в плоскости каким угодно образом (рис. 1.23). Возьмем силу

Приведение плоской системы сил к данной точке
Метод приведения одной силы к данной точке можно применить к какому угодно числу сил. Допустим, ч

Влияние точки приведения
Точка приведения выбрана произвольно. Произвольная плоская система сил представляет собой систему сил, линия действия которых расположены в плоскости каким угодно образом. При изменении по

Теорема о моменте равнодействующей (теорема Вариньона)
В общем случае произвольная плоская система сил приводится к главному вектору F"гл и к главному моменту Мгл относительно выбранного центра приведения, причем гла

Условие равновесия произвольно плоской системы сил
1)При равновесии главный вектор системы равен нулю (=0).

Балочные системы. Определение реакций опор и моментов защемления
Иметь представление о видах опор и возникающих реакциях в опорах. Знать три формы уравнений равновесия и уметь их использовать для определения реакций в опорах балочных систем.

Виды нагрузок
По способу приложения нагрузки делятся на сосредоточенные и распределенные. Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосре­доточенной

Момент силы относительно точки
Момент силы относительно оси характеризуется вра­щательным эффектом, создаваемым силой, стремящейся повернуть тело вокруг данной оси. Пусть к телу в про­извольной точке К приложена сила

Вектор в пространстве
В пространстве вектор силы проецируется на три взаимно пер­пендикулярные оси координат. Проекции вектора образуют ребра прямоугольного параллелепипеда, век­тор силы совпадает с диагональю (рис. 1.3

Приведение произвольной пространственной системы сил к центру О
Дана пространственная система сил (рис. 7.5а). Приведем ее к центру О. Силы необходимо параллельно перемещать, при этом образует­ся система пар сил. Момент каждой из этих пар равен

Некоторые определения теории механизмов и машин
При дальнейшем изучении предмета теоретической ме­ханики, в особенности при решении задач, мы столкнемся с но­выми понятиями, относящимися к науке, которая называется теорией механизмов и машин.

Ускорение точки
Векторная величина, характеризующая быстроту изменения скорости по величине и направлени

Ускорение точки при криволинейном движении
При движении точки по криволинейном траектории скорость меняет свое направление. Представим себе точку М, которая за время Δt, двигаясь по криволинейной траектории, переместилас

Равномерное движение
Равномерное движение - это движение с постоянной скоро­стью: v = const. Для прямолинейного равномерного движения (рис. 2.9, а)

Неравномерное движение
При неравномерном движении численные значения скорости и ускорения меняются. Уравнение неравномерного движения в общем виде представля­ет собой уравнение третьей S = f

Тема 2.2 Простейшие движения твердого тела
Иметь представление о поступательном движении, его особенности и параметрах, о вращательном движении тела и его параметрах. Знать формулы для определения параметров поступательно

Вращательное движение
Движение, при котором по крайнем мере точки твердого тела или неизменяемой системы остаются неподвижными, называемыми вращательным; прямая линия, соединяющая эти две точки,

Частные случаи вращательного движения
Равномерное вращение (угловая скорость постоянна): ω = const. Уравнение (закон) равномерного вращения в данном случае име­ет вид: `

Скорости и ускорения точек вращающегося тела
Тело вращается вокруг точки О. Определим параметры дви­жения точки Л, расположенной на расстоянии г а от оси вращения (рис. 11.6, 11.7).

Преобразование вращательного движения
Преобразование вращательного движения осуществля­ется разнообразными механизмами, которые называются пере­дачами. Наиболее распространенными являются зубчатые и фрикционные передачи, а также

Основные определения
Сложным движением считают движение, которое можно разло­жить на несколько простых. Простыми движениями считают посту­пательное и вращательное. Для рассмотрения сложного движения точ

Плоскопараллельное движение твердого тела
Плоскопараллельным, или плоским, называется такое движение твердого тела, при котором все точки тела перемещаются парал­лельно некоторой неподвижной в рассматриваемой системе отсчета

Метод определения мгновенного центра скоростей
Скорость любой точки тела можно определять с помощью мгновенного центра скоростей. При этом сложное движение пред­ставляют в виде цепи вращений вокруг разных центров. Задача

Тема 3.2 Понятие трения
Абсолютно гладких и абсолютно твердых тел в природе не существует, и поэтому при перемещении одного тела по по­верхности другого возникает сопротивление, которое называется трением.

Трение скольжения
Трением скольжения называется трение движения, при котором скорости тел в точке касания различны по значению и (или) направлению. Трение скольжения, как и трение покоя, обуслов

Свободная и несвободная точки
Материальная точка, движение которой в пространстве не огра­ничено какими-нибудь связями, называется свободной. Задачи реша­ются с помощью основного закона динамики. Материальные то

Принцип кинетостатики (принцип Даламбера)
Принцип кинетостатики используют для упрощения решения ряда технических задач. Реально силы инерции приложены к телам, связанным с разго­няющимся телом (к связям). Даламбер предло

Работа постоянной силы на прямолинейном пути
Работа силы в общем случае численно равна произведению мо­дуля силы на длину пройденного мм пути и на косинус угла между направлением силы и направлением перемещения (рис. 3.8): W

Работа постоянной силы на криволинейном пути
Пусть точка М движется по дуге окружности и сила F соста­вляет некоторый угол а

Мощность
Для характеристики работоспособности и быстроты соверше­ния работы введено понятие мощности.

Коэффициент полезного действия
Способность тела при переходе из одного состояния в другое совершать работу называется энергией. Энергия есть общая мера различных форм движения и взаимодействия матери

Закон изменения количества движения
Количеством движения материальной точки называется вектор­ная величина, равная произведению массы точки на ее скорость

Потенциальная и кинитецеская энергия
Существуют две основные формы механической энергии: потен­циальная энергия, или энергия положения, и кинетическая энергия, или энергия движения. Чаще всего приходится им

Закон изменения кинетической энергии
Пусть на материальную точку массой m действует постоянная сила. В этом случае точк

Основы динамики системы материальных точек
Совокупность материальных точек, связанных между собой силами взаимодействия, называется механической системой. Любое материальное тело в механике рассматривается как меха­ническая

Основное уравнение динамики вращающегося тела
Пусть твердое тело под действием внешних сил вращается во­круг оси Oz с угловой скоростью

Моменты инерции некоторых тел
Момент инерции сплошного цилиндра (рис. 3.19) Момент инерции полого тонкостен­ного цили

Сопротивление материалов
Иметь представление о видах расчетов в сопротивлении материалов, о классификации нагрузок, о внутренних силовых факторах и возникающих деформациях, о механических напряжениях. Зн

Тема 4.1 Основные положения. Гипотезы и допущения
Практика показывает, что все части конструкций под действием нагрузок деформируются, т. е. изменяет свою форму и размеры, а в некоторых случаях происходит разрушение конструкции.

Внешние силы
Всопротивлении материалов под внешними воздейст­виями подразумевается не только силовое взаимодейст­вие, но и тепловое, возникающее из-за неравномерного изменения температурного ре

Деформации линейные и угловые. Упругость материалов
В отличие от теоретической механики, где изучалось взаимодействие абсолютно жестких (недеформируемых) тел, в сопротивлении материалов исследуется поведение конструкций, материал которых способен де

Допущения и ограничения, принятые в сопротивлении материалов
Реальные строительные материалы, из которых воз­водятся различные здания и сооружения, представляют собой довольно сложные и неоднородные твердые тела, обладающие различными свойствами. Учесть это

Виды нагрузок и основных деформаций
В процессе работы машин и сооружений их узлы и детали воспринимают и передают друг другу различные нагрузки, т. е. силовые воздействия, вызывающие изменение внутренних сил и

Формы элементов конструкции
Все многообразие форм сводится к трем видам по одному при­знаку. 1. Брус - любое тело, у которого длина значительно больше других размеров. В зависимости от форм продольной

Метод сечений. Напряжение
Знать метод сечений, внутренние силовые факторы, составляющие напряжений. Уметь определять виды нагружений и внутренние силовые факторы в поперечных сечениях. Для ра

Растяжение и сжатие
Растяжением или сжатием называют вид нагружения, при ко­тором в поперечном сечении бруса возникает только один внутрен­ний силовой фактор - продольная сила. Продольные силы м

Центральное растяжение прямого бруса. Напряжения
Центральным растяжением или сжатием называется такой вид деформации, при котором в любом поперечном сечения бруса возникает только продольная (нормаль­ная) сила N, а все остальные внутренние

Напряжения при растяжении и сжатии
При растяжении и сжатии в сечении действует только нормаль­ное напряжение. Напряжения в поперечных сечениях могут рассматриваться как силы, приходящиеся на единицу площади. Таким

Продольные и поперечные деформации. Закон Гука
Иметь представление о продольных и поперечных деформациях и их связи. Знать закон Гука, зависимости и формулы для расчета на­пряжений и перемещений. Уметь проводи

Закон Гука при растяжении и сжатии
Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука (1635 - 1703).

Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии.
Используем известные формулы. Закон Гука σ=Еε. Откуда.

Механические испытания. Статические испытания на растяжение и сжатие
Это стандартные испыта­ния: оборудование - стандарт­ная разрывная машина, стан- дартный образец (круглый или плоский), стандартная методика расчета. На рис. 4.15 представлена схема

Механические характеристики
Механические характеристики материалов, т. е. величины, характеризующие их прочность, пластичность, упругость, твер­дость, а также упругие постоянные Е и υ, необходимые конструктору для