Как доказать теорему. Построение проекта выхода из затруднения

По способу связи аргументов от условия к заключению доказательства подразделяются на прямые и косвенные .

Прямое доказательство основано на каком-нибудь несомненном начале, из которого непосредственно устанавливается истинность теоремы.

Методы прямого доказательства:

– синтетический,

– аналитический,

– метод математической индукции.

Синтетический метод : при построении цепочки силлогизмов мысль движется от условия теоремы к ее заключению.

В учебниках приводятся преимущественно синтетические доказательства. Их преимущества – полнота, сжатость, краткость. Недостатки – отсутствие мотивации шагов, обоснования дополнительных построений; они носят значительно более формальный характер, чем аналитические доказательства.

Пример

Теорема. Если две хорды окружности пересекаются, то произведения отрезков одной хорды равно произведению отрезков другой хорды.


Дано: АВ и СД – хорды окружности, Е – точка их пересечения.

Доказать: АЕ×ВЕ = СЕ×ДЕ. (1)

Доказательство (синтетическое)

Рассмотрим треугольники АДЕ и СВЕ. В этих треугольниках углы 1 и 2 равны, так как они вписанные и опираются на одну и ту же дугу ВМД, а углы 3 и 4 равны как вертикальные. По первому признаку подобия треугольников DАДЕ ~ DСВЕ. Отсюда следует, что , или АЕ×ВЕ = СЕ×ДЕ. Теорема доказана .

Аналитический метод : при поиске доказательства мысль движется от заключения теоремы к ее условию. Преимущества этого метода – есть отправное звено доказательства, дополнительные построения мотивированы, увеличивается творческая активность учащихся. Недостатки – большие потери времени, искусственные дополнительные построения трудно обосновать.

Пример . Теорема о хордах окружности.

Доказательство (аналитическое)

Чтобы доказать равенство (1), достаточно показать, что (2).

Для того, чтобы найти пропорцию (2), достаточно доказать подобие треугольников, стороны которых являются членами этой пропорции. Для получения таких треугольников соединяем точки С и В, А и Д.

Чтобы обосновать верность пропорции (2), достаточно доказать, что DАДЕ ~ DСВЕ. Эти треугольники подобны по первому признаку подобия треугольников: Ð1 = Ð2 как вписанные углы, опирающиеся на одну и ту же дугу ВМД, а Ð3 = Ð4 как вертикальные. Следовательно, теорема верна .

Любое аналитическое доказательство обратимо в синтетическое и наоборот. Это широко используется в учебном процессе. Технологии могут быть таковы:

1) синтетическое доказательство предваряется аналитическими поисками его плана;

2) синтетическое доказательство заменяется аналитическим, в качестве домашнего задания – изучение синтетического доказательства по учебнику;

3) при использовании лекционного метода (преимущественно за пределами курса основной школы) часто используется чисто синтетический метод доказательства.

Метод математической индукции не имеет распространения в геометрии, так как основан на свойствах множества натуральных чисел, выходит за рамки основной школы, поэтому мы не будет подвергать его специальному изучению.

Косвенное доказательство : истинность теоремы устанавливается посредством опровержения некоторых суждений, содержащихся в теореме.

Наиболее распространенный и единственно применимый в курсе планиметрии метод косвенного доказательства – доказательство от противного .

Логико-математическая сущность метода от противного: вместо прямой (р Þ q) доказывается обратная противоположной теорема ().

Поэтому доказательство методом от противного строится по следующей схеме:

1) пусть неверно q, то есть истинно ;

2) докажем, что ложно р, то есть истинно ;

3) убедились, что из ;

4) следовательно, р Þ q (в силу равносильности импликаций р Þ q и ), что и требовалось доказать.

Курс геометрии основной школы широко применяет доказательства от противного, начиная буквально с первых уроков в седьмом классе. При этом необходимо использовать алгоритмический подход.

Алгоритм доказательства от противного .

1. Допускаем, что заключение теоремы ложно. Тогда будет верно противоречащее ему утверждение.

2. Вычленяем возможные случаи.

3. Убеждаемся, что в каждом случае приходим к следствию, которое противоречит:

– условию теоремы,

– ранее установленным математическим фактам.

4. Наличие противоречия заставляет отказаться от принятого заключения.

5. Признаем справедливость заключения доказываемой теоремы.

Мы охарактеризовали основные логические методы доказательства теорем: прямые и косвенные, которые в свою очередь могут быть аналитическими и синтетическими, доказательствами от противного.

Можно говорить об основных математических методах доказательства теорем. В геометрии к ним можно отнести следующие базовые методы:

1) метод геометрических преобразований : эффективен, соответствует современной концепции обучения геометрии в школе, но требует развитого абстрактного и пространственного мышления; методика его использования в школе недостаточно отработана;

2) метод равенства и подобия треугольников – соответствует классической концепции обучения геометрии в школе, известен со времен Евклида, поэтому методика его хорошо разработана; навыки его применения формируются постепенно, в процессе решения задач и доказательства теорем.

Кроме указанных базовых математических методов доказательства теорем планиметрии можно говорить о более частных методах: метод симметрии, метод поворота, векторный метод, алгебраический метод, метод подобия, координатный метод и др.

Методы доказательства, используемые в курсе геометрии основной школы, можно обобщить в виде схемы I.

Не только каждый школьник, но и каждый уважающий себя образованный человек должен знать, что такое теорема и доказательство теорем. Может, такие понятия и не встретятся в реальной жизни, но структурировать многие знания, а также делать умозаключения они точно помогут. Именно поэтому мы и рассмотрим в этой статье способы доказательства теорем, а также ознакомимся со столь знаменитой теоремой Пифагора.

Что же такое теорема

Если рассматривать школьный курс математики, то очень часто в нем встречаются такие научные термины, как теорема, аксиома, определение и доказательство. Для того чтобы ориентироваться в программе, нужно ознакомиться с каждым из этих определений. Сейчас же мы рассмотрим, что такое теорема и доказательство теорем.

Итак, теорема - это некое утверждение, которое требует доказательства. Рассматривать данное понятие нужно параллельно с аксиомой, так как последняя доказательства не требует. Ее определение уже является истинным, поэтому воспринимается как должное.

Сфера применения теорем

Ошибочно думать, что теоремы применяются только в математике. На самом деле это далеко не так. Например, существует просто невероятное количество теорем в физике, позволяющих подробно и со всех сторон рассмотреть некоторые явления и понятия. Сюда можно отнести теоремы Ампера, Штейнера и многие другие. Доказательства таких теорем позволяют неплохо разобраться в моментах инерции, статике, динамике, и во многих других понятиях физики.

Использование теорем в математике

Тяжело представить себе такую науку, как математика, без теорем и доказательств. Например, доказательства теорем треугольника позволяют подробно изучить все свойства фигуры. Ведь очень важно разобраться в свойствах равнобедренного треугольника и во многих других вещах.

Доказательство теоремы площади позволяет понять, как проще всего вычислять площадь фигуры, опираясь на некоторые данные. Ведь, как известно, существует большое количество формул, описывающих, как можно найти площадь треугольника. Но перед тем как их использовать, очень важно доказать, что это возможно и рационально в конкретном случае.

Как доказывать теоремы

Каждый школьник должен знать, что такое теорема, и доказательство теорем. На самом деле доказать какое-либо утверждение не так-то просто. Для этого нужно оперировать многими данными и уметь делать логические выводы. Конечно, если вы неплохо владеете информацией по определенной научной дисциплине, то доказать теорему для вас не составит особого труда. Главное - выполнять процедуру доказательства в определенной логической последовательности.

Для того чтобы научиться доказывать теоремы по таким научным дисциплинам, как геометрия и алгебра, нужно иметь неплохой багаж знаний, а также знать сам алгоритм доказательства. Если вы освоите такую процедуру, то решать математические задачи впоследствии для вас не составит особого труда.

Что нужно знать о доказательстве теорем

Что такое теорема и доказательства теорем? Это вопрос, который волнует многих людей в современном обществе. Очень важно научиться доказывать математические теоремы, это поможет вам в будущем строить логические цепочки и приходить к определенному выводу.

Итак, для того чтобы доказывать теорему правильно, очень важно сделать правильный рисунок. На нем отобразите все данные, которые были указаны в условии. Также очень важно записать всю информацию, которая предоставлялась в задаче. Это поможет вам правильно проанализировать задание и понять, какие именно величины в нем даны. И только после проведения таких процедур можно приступать к самому доказательству. Для этого вам нужно логически выстроить цепочку мыслей, используя другие теоремы, аксиомы или определения. Итогом доказательства должен быть результат, истинность которого не подлежит сомнению.

Основные способы доказательства теорем

В школьном курсе математики существует два способа, как доказать теорему. Чаще всего в задачах используют прямой метод, а также метод доказательства от противного. В первом случае просто анализируют имеющиеся данные и, опираясь на них, делают соответственные выводы. Также очень часто используется и метод от противного. В этом случае мы предполагаем противоположное утверждение и доказываем, что оно неверно. На основе этого мы получаем противоположный результат и говорим о том, что наше суждение было неверным, а значит, указанная в условии информация является правильной.

На самом деле многие математические задачи могут иметь несколько способов решения. Например, теорема Ферма доказательств имеет несколько. Конечно, некоторые рассматриваются только одним способом, но, например, в теореме Пифагора можно рассмотреть сразу несколько из них.

Что представляет собой теорема Пифагора

Конечно, каждый школьник знает о том, что теорема Пифагора касается именно прямоугольного треугольника. И звучит она так: «Квадрат гипотенузы равен сумме квадратов катетов». Несмотря на название данной теоремы, открыта она была не самим Пифагором, а еще задолго до него. Существует несколько способов доказательства данного утверждения, и мы рассмотрим некоторые из них.

Согласно научным данным, в самом начале рассматривался равносторонний прямоугольный треугольник. Затем строились квадраты на всех его сторонах. Квадрат, построенный на гипотенузе, будет состоять из четырех равных между собой треугольников. В то время как фигуры, построенные на катетах, будут состоять только из двух таких же треугольников. Такое доказательство теоремы Пифагора является самым простым.

Рассмотрим еще одно доказательство данной теоремы. В нем нужно использовать знания не только из геометрии, но также и из алгебры. Для того чтобы доказать данную теорему этим способом, нам нужно построить четыре аналогичных прямоугольных треугольника, и подписать их стороны как а, в и с.

Построить эти треугольники нужно таким образом, чтобы в результате у нас получилось два квадрата. Внешний из них будет иметь стороны (а+в), а вот внутренний - с. Для того чтобы найти площадь внутреннего квадрата, нам нужно найти произведение с*с. А вот для того чтобы найти площадь большого квадрата, нужно сложить площади маленьких квадратов и добавить площади полученных прямоугольных треугольников. Теперь, произведя некоторые алгебраические операции, можно получить такую формулу:

а 2 +в 2 =с 2

На самом деле существует огромное количество методов доказательства теорем. Перпендикуляр, треугольник, квадрат или любые другие фигуры и их свойства можно рассмотреть с помощью применения различных теорем и доказательств. Теорема Пифагора только является тому подтверждением.

Вместо заключения

Очень важно уметь формулировать теоремы, а также правильно их доказывать. Конечно, такая процедура является достаточно сложной, так как для ее осуществления необходимо не только уметь оперировать большим количеством информации, но также и выстраивать логические цепочки. Математика - это очень интересная наука, которая не имеет ни конца, ни края.

Начните ее изучать, и вы не только повысите уровень своего интеллекта, но и получите огромное количество интересной информации. Займитесь своим образованием уже сегодня. Поняв основные принципы доказательств теорем, вы сможете проводить свое время с большой пользой.

Е.В. Петрова,учитель математики СОШ №25 г. Владимира

Доказательство - это рассуждение, которое убеждает. (Ю.А. Шиханович)

Изучение и доказательство теорем.

Реализация современной роли математики предполагает улучшение математической подготовки учащихся, важное место в котором отводится умению открывать закономерности, обосновывать их и применять на практике. Формирование алгоритмического, эвристического, абстрактного мышления учащихся осуществляется также главным образом в процессе доказательства. Обучение математике предполагает обучение способам деятельности по приобретению знаний, что требует выявления и освоения в процессе обучения математике различных схем используемых в математике рассуждений. В опытных науках мы постоянно обращаемся к наблюдениям и экспериментам, чтобы проверить те или иные утверждения. Совершенно иначе дело обстоит в математике. Теорема считается доказанной только в том случае, если она логически выведена из других предложений. Поэтому проблема обучения учащихся доказательству всегда являлась одной из центральных в методике преподавания математики.

В настоящее время, идущий процесс гуманизации образования предполагает направленность обучения на развитие личности, на формирование нравственности, чему способствует обучение доказательству, где важная роль отводится обучению поиска способов доказательства, их сравнения, выбора наиболее простого из них.

Что значит доказать теорему, что такое доказательство?

Когда вы убеждаете своего товарища в чем-либо или отстаиваете в споре с ним свое мнение, свою точку зрения, то вы по существу производите доказательство (умело или неумело - это уже другой вопрос).

Математическое доказательство должно представлять собой цепочку логических следствий из исходных аксиом, определений, условий теоремы и ранее доказанных теорем до требуемого заключения. Основную нагрузку по формированию у учащихся умения доказывать несёт курс геометрии. Д. Пойа указывал на важную роль, которую играют доказательства при построении геометрической системы: «Геометрическая система цементирована доказательствами. Каждая теорема связана с предшествующими аксиомами, определениями и теоремами каким-нибудь доказательством. Без понимания таких доказательств нельзя понять самую сущность системы». Исторически сложилось так, что геометрия как учебный предмет имеет большое значение для изучения окружающего мира и создаёт благоприятные условия для приобщения учащихся к творческой исследовательской деятельности. Изучение геометрии способствует развитию умения доказывать, т.е. умения логически мыслить и рассуждать. Развитие логического мышления происходит в ходе изучения приводимых в учебниках и учителем доказательств теорем, при решении задач. Что значит доказать теорему, что такое доказательство? Доказательство в широком смысле - это логическое рассуждение, в процессе которого истинность какой-либо мысли обосновывается с помощью других положений. В математике недопустимо ссылаться, например, на очевидные отношения, иллюстрируемые чертежом. Математическое доказательство должно представлять собой цепочку логических следствий из исходных аксиом, определений, условий теоремы и ранее доказанных теорем до требуемого заключения.

Таким образом, при доказательстве теоремы мы сводим ее к ранее доказанным теоремам, а те в свою очередь еще к другим и т.д. Очевидно, что этот процесс сведения должен быть конечным, и поэтому всякое доказательство в конце концов сводит доказываемою теорему к исходным определениям и принятым без доказательства аксиомам.

Процесс доказательства – сложный процесс мышления, и он формируется лишь постепенно, от простых к более сложным структурам. Следовательно, обучение доказательству представляет собой сложную систему, структура которой обусловлена многочисленными связями между различными ее составляющими.

К 13 – 14 годам мозг школьника становится способным овладеть абстрактным, обоснованным, рассуждающим мышлением. Развитие доказательного мышления, отмечает П. П. Блонский, проходит две стадии. В подростковом возрасте школьник скорее усваивает доказательства, чем самостоятельно пользуется ими, и еще меньше он создает их: в этом возрасте доказывание скорее дело памяти. В юношеском же возрасте уже заметно выступают критическое мышление к даваемым доказательствам и стремление к своим доказательствам. Все вышесказанное приводит к выводу о необходимости исследования индивидуальных познавательных стратегий школьников при изучении и доказательстве теорем.

Над этой проблемой я работаю первый год. Сначала я определила цель, задачи и гипотезу исследования.

Цель: выявить и развить индивидуальные стратегии изучения и доказательства теоремы в 8 классе.

Задачи:

1. Выявить индивидуальные стратегии изучения и доказательства теорем на основе вопросника (с элементами листа анализа).

2. Развить индивидуальные стратегии учащихся через обсуждение полученных результатов, создание банка успешных действий при выполнении изучения и доказательства теорем.

3. Разработать советы по успешному изучению теорем по геометрии.

4. Проанализировать результаты освоения учащимися теорем до и после применения технологии ЦРПС, разработать и апробировать памятку успешной деятельности учеников.

Гипотеза: осмысление учащимися собственных действий при изучении теорем позволит развить навыки доказательстваирешения задач по геометрии, достичь более высоких результатов обучения.

Школьные учебники геометрии показывают готовое доказательство теорем, но не обучают самому процессу доказательства. Учащиеся нередко испытывают трудности в усвоении теорем и воспроизведении их доказательств . Хорошо известен страх многих учащихся перед словом «теорема». Преодолеть его помогает целенаправленная работа в соответствии с теорией поэтапного формирования умственных действий П.Я. Гальперина. Чтобы обеспечить усвоение теорем, их доказательств и научить самостоятельно решать задачи по геометрии, в соответствии с этой теорией необходимо организовать самостоятельную деятельность учащихся. Необходимо научить учащихся доказывать теорему самостоятельно.

Под обучением доказательству надо понимать обучение учащихся анализу готовых доказательств, их воспроизведению, самостоятельному открытию фактов, поиску других путей доказательств, а также опровержению выдвинутых предложений.

Свой эксперимент я начала с вопроса, на который получила неожиданный ответ.

На первом этапе учащимся было предложено описать действия, которые они совершают при знакомстве и доказательстве теоремы. В результате были получены следующие варианты:

***

    Читаю по учебнику теорему.

    Учу.

    В классе доказываю теорему.

***

Учу, как стихотворение. Когда рассказываю, то боюсь сбиться.

. ***

1.Учу по учебнику теорему.

2. Кратко записываю для себя доказательство.

3. Доказываю теорему, используя записи.

4. Рассказываю доказательство маме.

5. В классе доказываю теорему учителю.

После анализа индивидуальных стратегий я поняла, почему ребятам сложно доказать теорему. Это происходит потому, что они в принципе не понимают, что значит « выучить теорему». Далее, я выявила причины затруднений. Это и плохое качество знаний, неумение их применять, неосознанность умственных операций, неумение устанавливать связи между логическими шагами, слабая мотивация и т.д. Реализация требования «доказать теорему» предполагает ряд действий. Без овладения этими действиями в мышлении ученика не возникнет ассоциаций, которые позволили бы ему продвигаться в доказательстве теорем. К числу таких мыслительных операций относятся: выделить условие и заключение теоремы, зафиксировать их словесно и графически, разбить доказательство на части, каждую из которых проанализировать, сделать выводы и двигаться дальше. Следовательно, необходимо сформировать у учащихся в мышлении нужные для осуществления доказательства действия.

При изучении теоремы« Первый признак подобия треугольников», я составила для учащихся вопросник. Эти вопросы заставили задуматься над содержанием теоремы, над этапами доказательства, вызвав при этом в мышлении учащихся нужные ассоциации.

Вопросник.

    С какого действия начали знакомство с теоремой?

    Как вы понимаете, что это теорема?

    Что мотивирует вас на изучение доказательства теоремы?

    Сколько раз прочитали теорему?

    Что дано?

    Что надо доказать?

    Поможет ли чертеж при доказательстве теоремы?

    С чего вы начали изучать доказательство теоремы?

    Можно ли доказательство теоремы разбить на части?

    Знание каких фактов,теорем, определений вам пригодилось?

    Что вам мешало при доказательстве теоремы?

    А что помогало доказать теорему?

    Как вы поняли, что теорема доказана?

    Какое открытие вы для себя сделали?

    Вы довольны? Что вы при этом испытываете?

    Какие советы вы могли бы дать тем,кому предстоит изучать теорему ?

Вот некоторые из ответов на данные вопросы.

Юля:

    Открыла учебник, нашла теорему, познакомилась зрительно.

    Прочитала.

    Стала изучать, т. К. мне интересно.

    2 раза прочла теорему.

    Дан первый признак подобия треугольников.

    Что, если 2 угла одного треугольника равны 2 соответственным углам другого треугольника, то такие треугольники подобны.

    Да.

    С текста.

    Да.

    Да.

    Несосредоточенность, много новых слов.

    Чертеж.

    Когда поняла о чем теорема, посмотрела доказательство.

    -----------

Антон:

    С открытия учебника.

    Там написано, что это теорема.

    Знание теоремы и оценка.

    2 раза.

    Два треугольника.

    Подобие треугольников.

    Да.

    С прочтения.

    Да.

    Теорема об отношении площадей подобных треугольников.

    Незнание некоторых нужных фактов.

    Помогла память.

    В учебнике написано, что теорема доказана.

    Я узнал новую теорему.

    Да, я доволен.

    Быть внимательным.

Алина:

    Я ищу нужную мне теорему в учебнике, читаю ее, пытаюсь вникнуть в текст.

    Я понимаю, что это теорема, т. к. к правилу дано доказательство этого факта.

    Умение и понимание решения задач.

    Я перечитываю теорему, пока не запомню ее, раза 4 -6.

    Даны 2 треугольника, обозначены равные углы.

    Подобие этих двух треугольников.

    Чертеж поможет мне лучше понять, что нужно доказать и разобраться с условием.

    Сначала я прочитаю все доказательство, потом сделаю чертеж и, внимательно вчитываясь, начну разбирать доказательство.

    Что дано – подход к решению проблемы – доказательство – вывод.

    Мне помогла с доказательством теорема о сумме углов треугольника, определение подобных треугольников, теорема об отношении площадей подобных треугольников.

    Ничего не мешало.

    Знание определения о подобных треугольниках, знание других теорем и фактов.

    Дан вывод, и когда мы получили то, что нужно было доказать, заканчиваю словами «теорема доказана».

    Я открыла для себя новый признак подобия треугольников и впервые сама смогла разобрать доказательство новой теоремы.

    Учите теорему в тишине, вникая в текст. Сначала выучите формулировку теоремы, вспомните материал, который может помочь при доказательстве.

Виктория:

    Открыла учебник, нашла нужную мне теорему, прочитала ее, стараясь запомнить ее.

    Это предложение, которое надо доказать.

    Меня мотивирует: а) получение хорошей оценки, т. к. это очень важно моим родителям и моему будущему; б) Изучение теорем развивает логическое мышление, а логика нужна при решении задач по геометрии. Значит, изучая теоремы, я учусь решать задачи.

    Дано: 2 треугольника, равные углы в них.

    Надо доказать, что два треугольника подобны.

    Да. Чертеж мне очень помогает при доказательстве теорем и решении задач. Иногда чертеж подсказывает решение задачи.

    Я прочитала несколько раз доказательство теоремы по учебнику, кратко записала его в тетрадь, а затем попыталась устно повторить теорему и доказательство.

    Можно, на 2 части.

    Мне пригодились знания, которые были получены мною ранее, даже из 7 класса.

    Мне ничего не мешало. Главное знать, зачем все это надо.

    В доказательстве теоремы мне помог учебник и огромное желание знать то, что еще мне не ведомо.

    Логически определила, что доказывать больше нечего.

    Сама теорема для меня уже открытие, я же не знала этого свойства раньше.

    Довольна, что смогла доказать теорему, чувство удовлетворения, чувство гордости, что я все поняла.

    Внимательно прочитай теорему и доказательство, попытайся понять их, прочитай несколько раз, докажи теорему кому-нибудь или зеркалу, я бы посоветовала иметь этот вопросник перед собой – помогает.

Используя этот вопросник ребята сами доказывали теорему. Для учеников данная работа была необычной, интересной и трудной. Мы рассмотрели и обобщили все ответы, отметив их разнообразие, выявили наиболее рациональные действия при выполнении данной работы. На следующий урок все опрошенные учащиеся смогли доказать теорему на положительные отметки.

Далее мы с учениками обсудили стратегии изучения и доказательства теоремы, выявили общие и различные закономерности их действий, создали банк успешных действий, назвав итоговую работу «Мои шаги».

Второй признак подобия треугольников ребята доказали сами, используя перечень «Мои шаги». А вот при изучении третьего признакаподобия (этот урок записан на видео, а конспект урока приведен ниже),мы смогли составить памятку доказательства теоремы, которую успешно применяли при доказательстве других теорем как в этом классе так и в другом классе данной параллели.

Памятка.

При изучении и доказательстве теорем надо:

    Заменить термины в теореме определениями понятий, которые они обозначают или их признаками.

    Развести элементы условия и заключения словами «дано» и «доказать».

    Записать все известные величины в графу «Дано».

    В графу «Доказательство» записать, что необходимо доказать.

    Сделать четкий и аккуратный чертеж. Отметить на нем латинскими буквами то, что изначально известно.

    Разбить теорему на части.

    Доказать каждую часть по отдельности.

    Закончить доказательство выводом «следовательно, первоначальное утверждение верно, теорема доказана».

    Закрой учебник, докажи кому-нибудь теорему, попробуй.

Положив памятку перед собой, теперь любой ребенок может самостоятельно разобраться с теоремой и доказать ее. Эта памятка помогает извлекать информацию из условия теоремы, вычленять отдельные элементы, комбинировать их, делать самостоятельные выводы, формировать требования каждого этапа доказательства, в процессе работы оценивать свои знания, ликвидировать «пробелы». Не меньший интерес наша работа вызвала у моих коллег – математиков.

Использование технологии ЦРПС позволило добиться положительной динамики в изучении и доказательстве теорем в геометрии. Теперь все ученики 8 класса понимают, что означают слова учителя «выучить теорему». Ребят стала привлекать самостоятельная познавательная деятельность, у них изменилась мотивация, появилась уверенность в себе и собственных силах, возникло ответственное отношение к собственной деятельности. Вот одна из стратегий успешного изучения и доказательства теоремы после знакомства с основными принципами ЦРПС:

Саша:

    Внимательно читаю теорему по учебнику.

    Вчитываюсь в каждое слово, отмечая новые термины, словосочетания.

    Читаю доказательство.

    Определяюсь, понятно ли мне все.

    Если что-то непонятно, вновь читаю, обращая внимание на каждое слово.

    Если все понятно, то выясняю и записываю, что дано и что надо доказать.

    Делаю чертеж, соответствующий условию теоремы с указанием всех данных.

    Перечитываю вновь внимательно доказательство.

    Стараюсь поделить доказательство на логические части.

    Доказываю теорему по частям, делая необходимые выводы.

    Еще раз читаю теорему.

    Закрыв учебник, используя чертеж, доказываю теорему.

    Все, теорему выучил и доказал!

    Теперь постараюсь применить знания, полученные в ходе изучения теоремы.

Проведенные наблюдения, анализ стратегий, беседы с учащимися позволили определить и перспективы работы – необходимость исследования стратегии эвристического доказательства теорем, доказательства методом «от противного».

Разработка урока

Предмет: геометрия.

Учитель: Петрова Елена Владимировна

Класс: 8 «г»

Тема урока: третий признак подобия треугольников.

Цель урока: составить памятку по изучению и доказательству теорем, апробировать ее при изучении третьего признака подобия треугольников.

Задачи урока, сформулированные на деятельностной основе:

- воспитательная: развитие мотивации для изучения геометрии; формирование уважительного отношения к иному мнению, к иной точке зрения; развитие самостоятельности в решении личностных проблем.

-учебная : Составить памятку, способствующую успешному изучению и доказательству теорем, применить ее для самостоятельного изучения

третьего признака подобия треугольников.

- развивающая: формировать умение анализировать, выделять главное, сравнивать, обобщать, систематизировать, объяснять понятия и доказывать их.

Этап

Название этапа

Задачи

Деятельность учителя (методы и приёмы обучения)

Деятельность ученика (формы организации УПД)

Ожидаемый результат (знания, умения, способы деятельности)

Мотивирование к учебной деятельности

Создать условия для возникновения внутренней потребности включения в учебную деятельность

У меня есть два треугольника. Стороны одного из них 3 см, 5см и 4 см, а другого 12 см, 20 см и 16 см. Как выяснить, подобны ли эти треугольники?

Проанализировать ситуацию, потытаться решить проблему.

Ученики задумаются над решением этой задачи, но решить не смогут.

Выявление места и причины затруднения.

Выяснить причины: почему мы не можем ответить на поставленный вопрос?

Организовать деятельность учеников так, чтобы подвести их к причине затруднения.

В процессе обсуждения ученики выясняют, что им мешает решить эту задачу, а что могло бы помочь выйти из затруднительного положения.

Ученики осознают, что для решения проблемы, у них недостаточно знаний

Построение проекта выхода из затруднения.

Помочь ученикам найти выход из ситуации

Учитель помогает в постановке цели с помощью подводящего диалога, побуждения к действию.

Учащиеся ставят цели и выбирают способ для достижения цели – изучить еще один признак подобия треугольников.

Проанализировав ситуацию, приходим к выводу о необходимости создания памятки по изучению и доказательству теорем.

Реализация намеченного плана

Создать универсальную памятку.

Учитель руководит процессом

Учащиеся составляют индивидуально свою памятку на основе «мои шаги», выявленных на предыдущих уроках, чтоб успешно изучить теорему; а затем в процессе обсуждения создаем универсальную памятку.

Создание памятки для успешного доказательства лябой теоремы по учебнику.

Реализация построенного проекта.

Разобрать по учебнику третий признак подобия треугольников.

Учитель руководит процессом

Ученики по учебнику разбирают новую для нх теорему и с помощью памятки описывают ее доказательство в тетрадь.

Теорема разобрана и ее доказательство записано в тетрадь.

Первичное закрепление с программированием во внешней речи

Выяснить все непонятные моменты в теореме

Учитель помогает учащимся, фиксируя преодоление возникших затруднений.

Соотносят записи в тетради с планом доказательства, выясняют возникшие вопросы и делают выводы.

.Проанализировать проделанную работу и устно разобрать доказательство

Включение в систему знаний и повторение.

Доказать третий признак подобия треугольников.

Учитель предлагает, используя составленную памятку, доказать теорему у доски.

Ученики по своему желанию доказывают теорему у доски.

Кто-то из ребят сможет ответить у доски.

Рефлексия учебной деятельности на уроке.

Фиксирует степень достижения цели.

Ученики понимают, что теперь и эта задача решаема, т.е. поднимается самооценка ученика.

Ученикам понравится такой вид деятельности и они поймут, что именно такой подход к изучению и доказательству теоремы наиболее эффективен.

Аксиома есть очевидная истина, не требующая доказательства .

Теорема или предложение есть истина, требующая доказательства .

Доказательство есть совокупность рассуждений, делающих данное предложение очевидным .

Доказательство достигает своей цели, когда при помощи его обнаруживается, что данное предложение есть необходимое следствие аксиом или какого-нибудь другого предложения, уже доказанного.

Всякое доказательство основано на том начале, что при правильном умозаключении из истинного предложения нельзя вывести ложного заключения.

Состав теоремы . Всякая теорема состоит из двух частей, a) условия и b) заключения или следствия .

Условие иногда называют предположением. Оно дано и поэтому иногда получает название данного.

Обратная теорема . Предложение, у которого заключение данной теоремы делается условием, а условие заключением, называется теоремой обратной данной .

В таком случае данная теорема называется прямой.

Две теоремы в совокупности, прямая и обратная, называются взаимно-обратными теоремами.

Они находятся в таком взаимном отношении, что, выбрав любую из них за прямую, можно другую принять за обратную.

В двух взаимно-обратных предложениях одно из них вытекает как необходимое следствие другого.

Если в теореме мы обозначим условие буквой, стоящей на первом месте, а заключение буквой, стоящей на втором месте, то прямую теорему можно схематически представить выражением (Aa), а обратную выражением (aA).

Выражение (Aa) схематически представляет предложение: если имеет место A, то имеет место a.

Если для данного предложения (Aa) имеет место и теорема (aA), то обе теоремы (Aa) и (aA) называются взаимно-обратными теоремами.

Примером двух таких взаимно-обратных теорем могут послужить теоремы:

Первая теорема . В треугольнике против равных сторон лежат равные углы .

Вторая теорема . В треугольнике против равных углов лежат равные стороны .

В первой теореме данным условием будет равенство сторон треугольника, а заключением равенство противолежащих углов, а во второй наоборот.

Не всякая теорема имеет свою обратную.

Примером арифметического предложения, не имеющего своего обратного, может послужить следующая теорема . Если в двух произведениях множители равны, то и произведения равны .

Обратное предположение несправедливо. Действительно, из того, что произведения равны, не следует, что множители равны.

Примером геометрического предложения, для которого обратное предложение не имеет места, может послужить теорема : во всяком квадрате диагонали равны .

Предложение обратное этому будет: если диагонали четырехугольника равны, то он будет квадратом.

Это предположение неверно, ибо диагонали бывают равными не в одном квадрате.

Так как обратное предположение не всегда справедливо, то каждый раз обратное предложение требует особого доказательства.

В теории геометрических доказательств весьма важно иногда знать, когда данное предложение допускает свое обратное.

Для этой цели может послужить следующее правило обратимости . Когда в предположении всем возможным и различным условиям соответствуют все возможные и различные заключения, обратное предложение имеет место.

Рассмотрим для примера.

Прямое предложение . Если два треугольника имеют по две равные стороны, то третья сторона будет больше, равна или меньше третьей стороны другого треугольника, смотря по тому, будет ли угол между равными сторонами больше, равен или меньше соответствующего угла другого треугольника.

В этом предложении трем различным и возможным предположениям об угле соответствуют три различных и возможных заключения о противолежащей стороне, поэтому, согласно с правилом обратимости, данная теорема допускает обратное предположение :

Когда два треугольника имеют по две равных стороны, угол между ними будет больше, равен или меньше соответствующего угла другого треугольника, смотря по тому, будет ли третья сторона больше, равна или меньше третьей стороны данного треугольника.

Кроме обратной прямая теорема может иметь свою противоположную.

Противоположная теорема есть такая, в которой из отрицания условия вытекает отрицание заключения .

Противоположная теорема может иметь свою обратную.

Чтобы обобщить все эти теоремы, мы их представим схематически в следующей общей форме:

    Прямая или основная теорема. Если имеет место условие или свойство A, то имеет место заключение или свойство B.

    Обратная . Если имеет место B, то имеет место A.

    Противоположная . Если не имеет места A, то не имеет места B.

    Обратная противоположной . Если не имеет места B, то не имеет места A.

Следующие примеры поясняют на частных случаях взаимное отношение этих теорем:

    Прямая теорема . Если при пересечении двух данных прямых третьей соответственные углы равны, то данные прямые параллельны.

    Обратная теорема . Если две прямые параллельны, то при пересечении их третье, соответственные углы равны.

    Противоположная . Если при пересечении двух прямых третьей соответственные углы не равны, прямые не параллельны.

    Обратная противоположной . Если прямые не параллельны, соответственные углы не равны.

При геометрическом изложении теорем достаточно доказать только две из этих трех теорем, тогда остальные две теоремы справедливы без доказательства.

На этой связи теорем основан прием, по которому для доказательства обратной теоремы ограничиваются часто только доказательством теоремы противоположной.

Способы геометрических доказательств

Для доказательства геометрических теорем существует два основных способа: синтетический и аналитический .

Эти методы называют иногда сокращенно синтезом и анализом .

Синтез есть такой метод доказательства, в котором данное предложение является необходимым следствием другого, уже доказанного .

В синтезе цепь доказательств начинается с какого-нибудь известного предложения и оканчивается данным предложением. При доказательстве исходное предложение сопоставляется с аксиомой или с другим уже известным предложением. Синтетический способ удобен для вывода таких новых предложений, которые заранее не обозначены. Для доказательства же данного предложения он представляет много неудобств. В нем не видно: a) какую из известных теорем нужно выбрать для того, чтобы доказываемое предложение вытекало как ее необходимое следствие, и b) какое из следствий выбранного предложения приводит к доказываемому предложению.

Синтез называют поэтому не методом открытия новых истин, а методом их изложения.

Впрочем и при самом изложении теорем методом синтетическим является неудобство в том отношении, что не видно, почему за исходную истину в цепи доказательств выбрано то, а не другое предложение, то, а не другое его следствие.

Примером синтетического способа доказательства может послужить следующая теорема.

Теорема . Сумма углов треугольника равна двум прямым .

Дан треугольник ABC (черт. 224).

Требуется доказать, что A + B + C = 2d.

Доказательство . Проведем прямую DE параллельную AC.

Сумма углов, лежащих по одну сторону прямой, равна двум прямым, следовательно,

α + B + γ = 2d

то, заменяя в предыдущем равенстве углы α и γ равными им углами, имеем:

A + B + C = 2d (ЧТД).

Здесь исходным предложением в цепи доказательств выбрана теорема о сумме углов, лежащих по одну сторону прямой.

Она поставлена в связь с теоремами о равенстве углов накрест-лежащих при пересечении двух параллельных третьею косвенною.

Доказываемая теорема есть необходимое следствие всех предложенных теорем и является в цепи доказательств последним заключением.

Анализ есть способ обратный синтезу. В анализе цепь рассуждений начинается доказываемой теоремой и оканчивается какой-нибудь другой уже известной истиной .

Анализ является в двух видах. От доказываемого предложения мы можем перейти к предложению, служащему его ближайшим основанием или его ближайшим следствием.

Переходя от данного предложения к предложению, служащему его ближайшим основанием, мы смотрим на данное предложение как на необходимое следствие.

Переходя от данного предложения к его ближайшему следствию, мы смотрим на данное предложение как на основание для цепи умозаключений.

Первый способ анализа . Совершая анализ переходом к основанию, отыскивают то первое ближайшее предложение, из которого данное вытекает как необходимое следствие. Если это предложение было прежде доказано, то доказано и данное предложение, если же нет, то отыскивают второе предложение, служащее основанием для первого.

Такой переход к основанию следует продолжать до тех пор, пока не дойдем до предложения вполне доказанного. Данное предложение явится как необходимое следствие последнего доказанного предложения.

Обозначая каждое предложение буквой и ставя ее впереди или позади другой, смотря по тому, будет ли оно служить основанием или следствием другого предложения, мы схематически можем этот прием анализа выразить в виде

где M есть данное предложение, L его ближайшее основание, а H предложение, вполне доказанное. Если верно предложение H, то верно предложение K; если верно K, то верно L; если верно L, то верно и M.

Второй способ анализа состоит в переходе от данного предложения к его следствию. Этот прием применяют чаще, потому что легче находить необходимое следствие, нежели отыскивать основание какой-нибудь истины. По этому способу выводят из данного предложения ту теорему, которая служит его ближайшим следствием. Если это следствие есть предложение прежде доказанное, то на нем и останавливаются; если же нет, переходят к следующему ближайшему следствию и вообще продолжают такой последовательный вывод следствий до тех пор, пока не дойдут до предложения, вполне доказанного.

Если последнее предложение не верно, то и данное не верно, ибо неверное следствие нельзя получить из верного предложения.

Если же последнее предложение верно, то для убеждения в верности данного предложения требуется, чтобы были соблюдены некоторые условия.

Схематически этот прием анализа можно представить в виде

M - N - O - P - Q - R - S

где M данное предложение, N предложение, служащее его ближайшим следствием, а S то последнее предложение, в справедливости которого мы вполне убеждены.

Из двух предложений R и S, стоящих в такой связи, что если справедливо R, то справедливо и предложение S, мы, как известно, не всегда можем обратно заключать, что если справедливо S, то справедливо и предложение R.

Чтобы последнее заключение имело место, требуется, чтобы теоремы R и S были взаимно-обратными предложениями.

Итак, для того, чтобы убедиться, что теоремы R и S стоят в такой связи, что она удовлетворяет схеме R - S и схеме S - R, требуется доказать, что предложения R и S взаимно-обратны.

Таким образом, чтобы можно было по верности последнего предложения S заключить о верности данного предложения M, требуется доказать, что каждые два рядом стоящие предложения R и S, P и R, O и P, N и O, M и N удовлетворяют закону обратимости.

Если это доказано, то цепь предложений можно обратить, и рядом со схемой M - N - O - P - Q - R - S справедлива и схема

S - R - Q - P - O - N - M

по которой мы имеем право заключить, что если справедливо предложение S, то справедливо и предложение M.

Так как затруднительно всякий раз доказывать обратимость двух предложений, то этого избегают, соединяя способ аналитический с синтетическим. После того, как из предложения M выведено предложение S как его следствие, смотрят, нельзя ли обратно вывести предложение M как необходимое следствие предложения S.

Если синтез есть способ, называемый дедукцией или выводом , то анализ можно назвать редукцией (приведение, наводка).

Примером аналитического способа доказательства может послужить следующая теорема.

Теорема . Диагонали параллелограмма пересекаются пополам.

Доказательство . Если диагонали пересекаются пополам, то треугольники AOB и DOC равны (черт. 225). Равенство же треугольников AOB и DOC вытекает из того, что AB = CD как противоположные стороны параллелограмма и ∠α = ∠γ, ∠β = ∠δ как накрест-лежащие углы.

Таким образом мы видим, что последовательно данное предложение заменяется другим и такое замещение совершается до тех пор, пока не дойдем до предложения уже доказанного.

Сравнение синтеза с анализом . Способ аналитический вернее ведет к доказательству данной теоремы, ибо от данной теоремы легче переходить к его ближайшему основанию или следствию.

Хотя анализ лучше синтеза объясняет, почему выбран тот или другой путь для доказательства теоремы, однако неопределенность при доказательствах не устраняется вполне в том смысле, что при последовательных заменах одного предложения другим, мы не всегда можем дойти до предложения нам известного, ибо иногда не видно, какое из следствий или какое из оснований данного предложения нужно выбрать для того, чтобы его доказать. Затруднения увеличиваются еще больше, когда приходится для доказательства проводить новые вспомогательные прямые. Иногда трудно дать верные указания, какие из них облегчают доказательство данной теоремы.

Анализ, как и все логические приемы, только облегчает и помогает находить доказательство данного предложения, но не всегда необходимо ведет к самому доказательству.

Кроме этих прямых существует непрямой способ доказательства, известный под именем доказательства от противного или способа приведения к нелепости.

Способ доказательства от противного состоит в том, что для доказательства данного предложения убеждают в невозможности предположения противоположного .

На этом основании это доказательство называется доказательством от противного. Оно достигает своей цели всякий раз, когда из двух предложений, данного и противоположного, одно непременно имеет место.

В этом случае для доказательства данного, допустив противоположное предложение, выводят из него такие следствия, которые противоречат аксиомам или теоремам, уже доказанным. Если одно из следствий этого предложения ложно, то и противоположное предложение ложно, а следовательно данное предложение справедливо.

Этот прием часто применяют для доказательства теорем обратных или противоположных данным.

Не трудно заметить, что этот способ есть второй способ анализа, в котором от данного предложения последовательно переходят к его следствиям.

Примером применения такого способа может послужить приведенное выше доказательство теоремы: против равных углов в треугольнике лежат равные стороны (теорема 26).

В геометрии также применяют способы, зависящие от самого содержания геометрических истин. Геометрические истины относятся к геометрическим протяжениям. Эти протяжения обладают определенными свойствами, подлежащим внешним чувствам. Геометрическое протяжение может рассматриваться как целое, доступное наблюдению внешними чувствами. Убедительности доказательства содействует и самое чувственное созерцание. Обойтись без него в геометрии невозможно.

К числу приемов, имеющих место в геометрии, принадлежат: способ наложения, способ пропорциональности и способ пределов .

Способ наложения состоит в том, что одну геометрическую величину накладывают на другую . Этим способом убеждаются в равенстве или неравенстве геометрических протяжений, смотря по тому, совмещаются или не совмещаются ни при наложении.

Способ пропорциональности состоит в применении к геометрическим протяжениям свойств пропорций . Этот способ применяется при доказательстве теорем, относящихся к подобным фигурам и к пропорциональным отрезкам.

Способ пределов состоит в том, что вместо данных протяжений рассматривают свойства протяжений близких по своим свойствам к данному, и выводы, получаемые из рассмотрения одних, применяют к другим сходным протяжениям.

Способы решения геометрических задач

При решении геометрических задач синтез и анализ применяют точно так же как и при доказательстве теорем.

Решая задачу синтетически, берут такую другую задачу, которую умеют решить, потом из ее решения выводят решение следующей задачи, как ее необходимое следствие, и поступают так до тех пор, пока не доходят до решения данной задачи.

Синтетический метод решения задачи обладает всеми теми же недостатками, какими обладает и синтетический метод доказательства.

Поэтому чаще и успешнее для решения задач применяют анализ.

При решении задачи анализом заменяют данную задачу новой. Эту новую задачу будем называть заменяющей .

Если две задачи находятся в таком отношении, что условия второй есть необходимые следствия условий первой, то первую задачу будем называть начальной , а вторую - производной .

При анализе существуют два способа.

Первый способ . Заменяющую задачу выбирают так, чтобы условия данной задачи вытекали как необходимое следствие условий новой заменяющей задачи, т. е. по нашей терминологии от данной задачи переходят к первой начальной задаче. Если решение этой задачи известно, то решение данной является как необходимое следствие решения начальной задачи. Если же ее решение неизвестно, то от нее переходят ко второй, третьей начальной задаче и продолжают так поступать до тех пор, пока не получат задачу, решение которой известно.

Решив эту последнюю задачу, вместе с этим последовательно доходят и до решения данной задачи.

Второй способ . Можно переходить от данной задачи к такой другой, условия которой являются следствием условий данной, т. е. от данной задачи переходят к ее производной.

Заменяя таким образом последовательно одну задачу другой ее производной, мы можем дойти до задачи, решение которой уже известно. Решение этой задачи дает иногда возможность решить и данную задачу.

Такой переход от данной задачи к ее производной применяют чаще, ибо переходить к следствию легче, нежели подыскивать основание для какой-нибудь истины.

В этом частном случае анализа обыкновенно полагают, что задача решена, и из этого предположения выводят соотношения, дающие возможность решить данную задачу.

При переходе от данной задачи к ее заменяющей весьма важно обращать внимание на то, будут ли две задачи обладать свойством взаимной обратимости. Эта взаимность в условиях двух задач является тогда, когда одна задача, будучи начальной для другой, может быть в то же время и ее производной; иначе когда две задачи находятся в таком отношении, что условия одной могут быть и необходимыми следствиями другой и наоборот.

Если две задачи, данная и новая, обладают такими свойствами, то новая задача вполне заменяет данную. В этом случае все решения одной будут и решениями другой.

Если же условия двух задач не обладают свойствами взаимной обратимости, то, заменяя данную задачу новой, мы можем найти или лишние решения или иметь некоторые из решений потерянными.

Если заменяющая задача будет производной для данной, то мы можем найти некоторые лишние решения; если же она будет начальной для данной, то мы можем найти некоторые решения потерянными.

Так как чаще от данной задачи переходят к задаче производной, то чаще приходится получать решения лишние.

Чтобы отделить лишние решения и отыскать потерянные, поверяют все найденные решения.

Поверка есть способ отделения посторонних (лишних) решений . Она дополняет анализ.

Аналитическое решение задачи указывает на то построение, которое нужно сделать для решения задачи. Совершая это построение, поступают при решении задачи способом обратным анализу, т. е. прибегают к синтетическому способу. Этот синтетический способ часто может заменить и самую поверку найденных решений.

Совместное применение синтеза и анализа дает средство избегнуть тех ошибок, которые могут получиться при применении только одного из этих методов решения.

Решим одну и ту же задачу синтетически и аналитически. Для примера может послужить следующая задача.

Задача . Разделить данный отрезок AB в крайнем и среднем отношении.

Решение . Восставим из конца отрезка AB перпендикуляр BO равный половине AB (черт. 226). Из центра O опишем окружность радиусом BO, соединим центр O с точкой A и отложим на отрезке AB отрезок AC равный AD, тогда отрезок AC или AD будет искомый.

Доказательство . Прямая AB - касательная к окружности, следовательно

откуда имеем:

(AE - AB)/AB = (AB - AD)/AD

Так как DE = AB и AD = AC, то в предыдущей пропорции имеем:

AE - AB = AE - DE = AD = AC
AB - AD = AB - AC = BC

откуда имеем пропорцию

Это решение синтетическое. В нем мы отправляемся от известной теоремы о свойствах касательной и решение данной задачи вытекало как необходимое следствие этой теоремы.

Решение аналитическое . Допустим, что задача решена, а следовательно и отрезок AC найден, тогда

AB/AC = AC/CB (1)

(AB + AC)/AB = (AC + CB)/AC

(AB + AC)/AB = AB/AC (2).

Из последней пропорции видно, что AB есть касательная, AB + AC пересекающаяся, AC ее внешний и AB внутренний отрезок.

Отсюда вытекает и само построение . Нужно из конца B восставить перпендикуляр равный ½AB, провести окружность, соединить O с A и отложить на отрезке AB часть AC = AD.

В этом аналитическом решении мы данную задачу, удовлетворяющую условию (1), заменяем задачей, удовлетворяющей условию (2).

Условие (2) указывает и путь для решения самой задачи построением.

Обыкновенно, найдя решение задачи способом аналитическим, совершают построение, в котором, применяя способ рассуждений синтетический, доказывают, что это построение действительно разрешает задачу и этим доказательством заменяют поверку, имеющую в виду устранить посторонние решения.

В данном примере между задачами, удовлетворяющим условиям (1) и (2), существует полная обратимость, ибо из условий (1) вытекают условия (2) как необходимое следствие и наоборот, поэтому здесь нет ни потерянных, ни посторонних решений.

Исследование второстепенных и вспомогательных приемов решения задач еще не достигло в своей обработке полной и совершенной законченности. Мы пока устраняемся от их подробного рассмотрения.

Как мы уже говорили, цель нашей книги - подробное изложение математических основ системы шифрования RSA. Разработка ее математического хребта была завершена к концу девятнадцатого века усилиями древнегреческих математиков, Ферма, Эйлера и Гаусса. Однако еще 20 лет назад большинство приложений оставалось неизвестными, а некоторые теоремы, которые мы будем упоминать, появились лишь в последние годы.

Многие из приводимых здесь результатов не будут для Вас новыми. К их числу относятся, например, способ вычисления наибольшего общего делителя, основанный на последовательных делениях, а также простейшие процедуры разложения на простые множители. Новизна может заключаться, однако, в самом подходе, поскольку мы доказываем каждое утверждение, включая и корректность вычислительных процедур, исходя из первичных принципов.

Математика древнего Египта и Месопотамии представляла собой набор правил для решения практических задач. Только ее объединение с греческой философией превратило ее в современную теоретическую науку. Первые греческие математики - Фалес (Thales) и Пифагор (Pythagoras) - были также знаменитыми философами. Представление о том, что математический факт можно доказывать, произросло из взаимодействия с философией. Помимо всего прочего, доказательство - это просто рассуждение, которое выводит некоторое утверждение из других, уже известных. А рассуждать греческие философы любили!

Около 400 года до н. э. греческие математики почувствовали необходимость в более или менее точной формулировке

предположений, лежащих в основе их работы. Поэтому и Эвклид открывает свои «Начала» со строгих определений и аксиом, на которых базируются его доказательства. Например, в начале первой книги он определяет точку, прямую, плоскость, поверхность и т.д. Затем он формулирует аксиомы, истинность которых он считает самоочевидной. Аксиомы объясняют связи между ранее введенными объектами. Затем он показывает, каким образом гораздо более сложные факты об изучаемых объектах сводятся, путем логических рассуждений, к аксиомам. Главное достоинство его подхода состоит в придании основательности всему зданию. Если фундамент достаточно прочный, то и все здание может возноситься высоко без опасения, что оно рухнет под собственным весом.

Математический факт обычно называется теоремой. Это греческое слово исходно означало «наблюдение, теория». Его современное значение «доказываемое утверждение» восходит по меньшей мере к эвклидовым «Началам». Утверждение теоремы часто принимает вид условного утверждения:

если выполняется некоторое предположение, то справедливо некоторое заключение.

Доказательство такой теоремы представляет собой логическое рассуждение, которое показывает, как заключение вытекает из предположения. Приведем пример:

Теорема 1. Если а - четное целое число, то число тоже четное.

Предположение данной теоремы состоит в том, что - четное число, а заключение - в том, что тоже четное. Разумеется, чтобы показать, что заключение вытекает из предположения, мы должны пользоваться базисными свойствами целых чисел. Для придания доказательствам незыблемости, все эти свойства следовало бы подробно перечислить. Нет необходимости говорить, что в элементарной книге, подобной нашей, это невозможно. Вместо этого мы просто делаем вид,

что «базисные свойства» действительно элементарны и Вы их хорошо знаете. Сюда входят, например, правила сложения и умножения целых чисел, а также утверждение о том, что между любыми двумя целыми числами есть лишь конечное множество целых чисел. Воспользуемся этими свойствами для доказательства приведенной выше теоремы.

Доказательство теоремы 1. Предположение теоремы о четности а означает, что а делится на 2, см. § 3.1. Поэтому должно существовать такое число что Возводя в квадрат последнее равенство, получаем

Поэтому число также делится на 2. Другими словами, число четное, что и является заключением теоремы.

Теорема 1 показывает, что из факта четности числа о вытекает, факт четности его квадрата. Обратным к условному утверждению «из А следует В» является условное утверждение «из В следует А». Значит утверждение, обратное к теореме 1, звучит так: если целое число четное, то и а - четное целое число. Заметим, что если само утверждение истинно, то это ничего не говорит нам об истинности обратного утверждения. Например, для истинного утверждения если целое число делится на 4, то оно четное, обратное утверждение ложно: число 6 четное, однако на 4 оно не делится. Если оба утверждения «из А следует В» и «из В следует А» истинны, то мы говорим, что эквивалентны. Эквивалентность обычно записывается в виде: «А выполняется, если и только если выполняется В». Таким образом, мы приходим к следующей теореме.

Теорема 2. Целое число а четное, если и только если тоже четное.

Мы уже доказали, что если о четное, то и тоже четное. Теперь мы должны доказать обратное утверждение. Прежде

Перейти к доказательству, обсудим еще один логический момент. Обозначим отрицание утверждения через не Например, отрицание не утверждения Р: «число а четное» имеет вид «число нечетное». Пусть теперь два утверждения. Утверждение: «из не следует не называется противоположным к утверждению из следует Любое утверждение истинно, если и только если его противоположное тоже истинно. Подобное высказывание выглядит сомнительно только потому, что оно выражено на непривычном языке. Но представим себе следующую историю. Друг, приглашенный Вами на вечеринку, говорит: «Моя машина сломана, однако если ее вовремя починят, то я приеду». Если теперь Ваш друг не приезжает на вечеринку, то Вы заключаете, что его машину вовремя не починили, а это и есть противоположное к утверждению Вашего друга.

Вернемся к доказательству теоремы 2.

Доказательство теоремы 2. Мы уже видели, что если число о четное, то и число четное. Осталось доказать, что если четное, то и о будет четным. Вместо последнего утверждения мы будем доказывать противоположное ему, т.е. утверждение «если число о нечетное, то и нечетное». Однако целое число, не являющееся четным, нечетно. Более того, всякое нечетное целое число представимо в виде «четное . Поэтому для нечетного о существует целое число при котором Возводя в квадрат обе части последней формулы, мы получаем

т.е. тоже нечетное число. Таким образом, утверждение, противоположное к исходному, истинно, а значит, истинно и исходное утверждение, и мы доказали, что если четно, то и о четно.

Теорема 1 была сформулирована в виде «если о четно, то и четно». Это означает, на самом деле, что квадрат любого четного числа четен. Другими словами, мы доказываем

справедливость утверждения для всех четных чисел. Рассмотрим теперь утверждение «всякое четное число делится на 4». Мы снова указываем на общее свойство всех четных чисел, однако на сей раз утверждение оказывается ложным. Почему? Например, потому, что число 6 четное, однако на 4 оно не делится. Таким образом, утверждение о том, что какое-то свойство присуще всем элементам некоторого множества, можно опровергнуть, предъявив элемент, для которого оно не выполняется. Такой элемент называется контрпримером к утверждению.

Не всегда утверждение теоремы записывается в приведенном выше условном виде. Иногда, например, утверждается, что объект с заданными свойствами существует. Так, для любого вещественного числа х существует такое целое число что Самый естественный способ доказательства подобных теорем состоит в предъявлении явного метода для нахождения такого объекта. Если в приведенном выше примере обозначить целую часть числа х через то является целым числом, большим х, и мы можем положить Предположив теперь, что десятичное представление числа х известно, мы легко найдем с помощью описанного метода. Однако подобные утверждения можно доказывать и не указывая способа построения объекта. Такое доказательство называется неконструктивным доказательством существования. Оно не настолько таинственно, как может показаться. Мы знаем, например, что в любой компании из 400 человек есть двое с совпадающим днем рождения, поскольку Хотя такое рассуждение и верно, оно не дает нам способа найти таких двух человек; значит это неконструктивное доказательство существования.

Большинство книг по теории чисел широко используют неконструктивные доказательства даже при наличии

конструктивных. Это не просто вопрос вкуса: часто конструктивные доказательства выглядят гораздо более неуклюже, чем аналогичные доказательства чистого существования, а для математиков элегантность значит не меньше, чем для художников. В этой книге мы будем, однако, по мере сил избегать неконструктивных доказательств. Такой подход объясняется, в первую очередь, тем, что нас интересуют приложения в криптографии. Поэтому не достаточно просто знать, что у составного числа есть нетривиальный множитель, нужно уметь его отыскивать.

Эти краткие заметки должны позволить Вам приступить к чтению. Методы доказательств будут подробнее разобраны ниже, прежде всего в § 3.7 и § 6.2. Однако необходимо с самого начала понять, что искусство доказательства теорем следует заботливо взращивать, и лучший способ выращивания - частое упражнение. Когда Птолемей, царь египетский, спросил Эвклида, нет ли более простого способа изучения геометрии, чем штудирование «Начал», ответ математика гласил: «В геометрии нет царской дороги». Истинное во времена Эвклида, это утверждение сохраняет свою справедливость и по сей день.