Для обеззараживания больших количеств воды используют. Реферат: Современные методы обеззараживания питьевой воды

Наиболее распространенными процессами водоочистки являются осветление и обеззараживание.

Помимо этого существуют специальные способы улучшения качества воды:
- умягчение воды (устранение катионов жесткости воды);
- обессоливание воды (снижение общей минерализации воды);
- обезжелезивание воды (снижение концентрации солей железа в воде);
- дегазация воды (удаление растворенных в воде газов);
- обезвреживание воды (удаление ядовитых веществ из воды);
- дезактивация воды (водоочистка от радиоактивных загрязнений).

Обеззараживание - завершающий этап процесса водоочистки. Цель - подавление жизнедеятельности содержащихся в воде болезнетворных микробов.

По способу воздействия на микроорганизмы методы обеззараживания воды подразделяются на химические, или реагентные; физические, или безреагентные, и комбинированные. В первом случае должный эффект достигается внесением в воду биологически активных химических соединений; безреагентные методы обеззараживания подразумевают обработку воды физическими воздействиями, а в комбинированных используются одновременно химическое и физическое воздействия.

К химическим способам обеззараживания питьевой воды относят ее обработку окислителями: хлором, озоном и т. п., а также ионами тяжелых металлов. К физическим - обеззараживание ультрафиолетовыми лучами, ультразвуком и т. д.

Наиболее распространенным химическим методом обеззараживания воды является хлорирование. Это объясняется высокой эффективностью, простотой используемого технологического оборудования, дешевизной применяемого реагента и относительной простотой обслуживания.

При хлорировании используют хлорную известь, хлор и его производные, под действием которых бактерии и вирусы, находящиеся в воде, погибают в результате окисления веществ.

Кроме главной функции - дезинфекции, благодаря окислительным свойствам и консервирующему эффекту последействия, хлор служит и другим целям - контролю за вкусовыми качествами и запахом, предотвращению роста водорослей, поддержанию в чистоте фильтров, удалению железа и марганца, разрушению сероводорода, обесцвечиванию и т.п.

По мнению экспертов, применение газообразного хлора приводит к потенциальному риску здоровью человека. Это связанно прежде всего с возможностью образования тригалометанов: хлороформа, дихлорбромметана, дибромхлорметана и бромоформа. Образование тригалометанов обусловлено взаимодействием соединений активного хлора с органическими веществами природного происхождения. Эти производные метана обладают выраженным канцерогенным эффектом, что способствуют образованию раковых клеток. При кипячении хлорированной воды в ней образуется сильнейший яд - диоксин.

Исследования подтверждают взаимосвязь хлора и его побочных продуктов с возникновением таких болезней, как рак органов пищеварительного тракта, печени, сердечные расстройства, атеросклероз, гипертония, различные виды аллергии. Хлор воздействует на кожу и волосы, а также разрушает белок в организме.

Одним из наиболее перспективных способов обеззараживания природной воды является использование гипохлорита натрия (NaClO), получаемого на месте потребления путем электролиза 2-4%-ных растворов хлорида натрия (поваренной соли) или природных минерализованных вод, содержащих не менее 50 мг/л хлорид-ионов.

Окислительное и бактерицидное действие гипохлорита натрия идентично растворенному хлору , кроме того, он обладает пролонгированным бактерицидным действием.

Основными достоинствами технологии обеззараживания воды гипохлоритом натрия является безопасность ее применения и значительное уменьшение воздействия на окружающую среду по сравнению с жидким хлором.

Наряду с достоинствами у обеззараживания воды гипохлоритом натрия, производимым на месте потребления, имеется и ряд недостатков, прежде всего - повышенный расход поваренной соли, обусловленный низкой степенью ее конверсии (до 10-20%). При этом остальные 80-90% соли в виде балласта вводятся с раствором гипохлорита в обрабатываемую воду, повышая ее солесодержание. Снижение же концентрации соли в растворе, предпринимаемое ради экономии, увеличивает затраты электроэнергии и расход анодных материалов.
Некоторые эксперты считают, что замена газообразного хлора гипохлоритом натрия или кальция для дезинфекции воды вместо молекулярного хлора не снижает, а значительно увеличивает вероятность образования тригалометанов. Ухудшение качества воды при применении гипохлорита, по их мнению, связано с тем, что процесс образования тригалометанов растянут во времени до нескольких часов, а их количество при прочих равных условиях тем больше, чем больше pH (величина, характеризующая концентрацию ионов водорода). Поэтому наиболее рациональным методом уменьшения побочных продуктов хлорирования является снижение концентрации органических веществ на стадиях очистки воды до хлорирования.

Альтернативные методы обеззараживания воды, связанные с использованием серебра, являются слишком дорогостоящими. Был предложен альтернативный хлорированию метод обеззараживания воды с помощью озона, но оказалось, что озон тоже вступает в реакцию со многими веществами в воде - с фенолом, и образовавшиеся в результате продукты еще токсичнее хлорфенольных. Кроме того, озон очень нестоек и быстро разрушается, поэтому его бактерицидное действие непродолжительно.

Из физических способов обеззараживания питьевой воды наибольшее распространение получило обеззараживание вод ы ультрафиолетовыми лучами, бактерицидные свойства которых обусловлены действием на клеточный обмен и, особенно, на ферментные системы бактериальной клетки. Ультрафиолетовые лучи уничтожают не только вегетативные, но и споровые формы бактерий, и не изменяют органолептических свойств воды. Основным недостатком метода является полное отсутствие последействия. Кроме того, этот метод требует больших капитальных вложений, чем хлорирование.

Материал подготовлен на основе информации открытых источников

Вода – это фактор, который напрямую влияет на качество жизни человека. От ее цвета и запаха зависит настроение человека утром после умывания, а от состава – самочувствие и здоровье организма.

Вода, являясь основой жизни, легко распространяет инфекционные заболевания. Чтобы предотвратить передачу болезнетворных микроорганизмов через питьевую воду, применяют обеззараживание и дезинфекцию жидкости. Эти процессы позволяют уничтожить грибки, бактерии, неприятный привкус и цвет, что обеспечивает безопасность питьевой воды.

Очистка и обеззараживание питьевой воды для подачи в жилые дома проводится на станциях водоподготовки централизованного водоснабжения. Также существуют методы и установки для локального использования – в виде небольших систем очистки воды из скважины или способов, позволяющих очищать воду, набранную в бутылку.

Классификация методов обеззараживания воды

Чтобы правильно выбрать способ обеззараживания, проводят анализ загрязненной воды. Исследуется количество и вид микроорганизмов, степень побочной загрязненности. Также определяется объем воды, которая будет проходить очистку, и экономический фактор.

Вода, прошедшая очистку, прозрачна и бесцветна, не пахнет и не имеет вкуса и привкуса. Чтобы добиться такого эффекта, применяют следующие группы методов:

  • физические;
  • химические;
  • комбинированные.

Каждой группе присущи свои отличительные признаки, но все методы так или иначе позволяют удалить патогенные микроорганизмы из воды. Получить подробную информацию по оборудованию для очистки и обеззараживания воды можно в компании «КВАНТА+» в г. Тюмень.

Химический метод – это работа с реагентами, добавляемыми в воду. Физическое обеззараживание выполняется за счет температуры или различных излучений. Комбинированные методы сочетают работу этих двух групп.

Наиболее эффективные способы

Инфекционная безопасность воды – это важная и актуальная проблема, из-за чего изобретено множество методик для избавления воды от микроорганизмов. Способы дезинфекции не прекращают улучшаться. Они становятся более результативными и доступными. В наше время самыми лучшими считаются следующие методы:

  • термообработка с помощью высоких температур;
  • ультразвуковая обработка;
  • реагентные методы;
  • ультрафиолетовое облучение жидкости;
  • высокомощные электрических разрядов.

Физические методы обеззараживания воды

Перед ними вода обязательно должна проходить очистку от взвесей и примесей. Для этого применяется коагуляция, сорбция, флотация и фильтрация.

К данному виду методов относится применение:

  • ультразвука;
  • ультрафиолета;
  • высоких температур;
  • электричества.

Обеззараживание ультрафиолетом

Дезинфицирующее действие ультрафиолетового излучения известно очень давно. Его работа сходна с солнечным светом, успешно уничтожающим неприспособленные микроорганизмы за пределами озонового слоя Земли. Ультрафиолет воздействует на клетки, создавая поперечные сшивки в ДНК, вследствие чего клетка теряет возможность делиться и погибает (Рис. 2).


Установка состоит из ламп, помещенных в кварцевые чехлы. Лампы производят изучение, мгновенно уничтожающее микроорганизмы, а чехлы не позволяют лампам остывать. Качество обеззараживания при использовании этого метода зависит от прозрачности воды: чем чище поступающая жидкость, тем дальше распространяется свет и тем меньше загрязняется лампа. Для этого перед обеззараживанием вода проходит другие стадии очистки, в том числе механические фильтры.Резервуар, через который протекает вода, обычно оборудован мешалкой. Перемешивание слоев жидкости позволяет процессу дезинфекции проходить более равномерно.


Конструкция установки УФ-обеззараживания

Важно знать, что лампы и чехлы требуют регулярного ухода: конструкцию необходимо разбирать и очищать не менее одного раза в квартал.

Тогда результативность процесса не будет ухудшаться из-за появления накипи и других загрязнений. Сами лампы подлежат замене раз в год.

Установки ультразвукового обеззараживания

Работа таких установок основана на кавитации. Из-за интенсивных колебаний, которым подвергается вода благодаря высокочастотному звуку, в жидкости образуются многочисленные пустоты, она будто «вскипает». Мгновенный перепад давлений приводит к разрыву клеточных оболочек и гибели микроорганизмов.

Оборудование для ультразвуковой обработки воды эффективно, но требует больших затрат и грамотной эксплуатации. Важно, чтобы персонал умел обращаться с устройством – от качества настройки оборудования зависит его результативность.

Термическое обеззараживание

Этот метод крайне распространен среди населения и активно применяется в быту. С помощью высокой температуры, то есть кипячения, вода очищается практически от всех возможных патогенных организмов. В дополнение к этому снижается жесткость воды и уменьшается содержание растворенных газов. Вкусовые качества воды остаются прежними. Однако, у кипячения есть один недостаток: вода считается безопасной около суток, после чего бактерии и вирусы вновь могут в ней обосноваться.


Кипячение воды – надежный и простой метод обеззараживания

Электроимпульсное обеззараживание

Методика заключается в следующем: электрические разряды, поступающие в воду, создают ударную волну, микроорганизмы попадают под гидравлический удар и погибают. Этот способ не требует предварительной очистки и эффективен даже при повышенной мутности. Гибнут не только вегетативные, но и спорообразующие бактерии. Преимуществом является длительное сохранение эффекта (вплоть до 4-х месяцев), а недостатком – немалая стоимость и большое энергопотребление.

Химические методы обеззараживания воды

Они основаны на химических реакциях, которые происходят между загрязнением или микроорганизмом и добавляемым в жидкость реагентом.

При химическом обеззараживании важно контролировать дозу реагента.

Она должна быть точной. Недостаток вещества не сможет исполнить свою цель. К тому же, небольшое количество реагента приведет к повышенной активности вирусов и бактерий.

Чтобы улучшить работу химиката, его добавляют с избытком. В таком случае вредоносные микроорганизмы погибают, а эффект сохраняется продолжительное время. Избыток рассчитывается отдельно: если добавить слишком много, реагент дойдет до потребителя, и он отравится.

Хлорирование

Хлор широко распространен и применяется в водоочистке многих стран мира. Он успешно справляется с любыми объемами микробиологических загрязнений. Хлорирование приводит к гибели большей части патогенных организмов и отличается дешевизной и доступностью. К тому же, использование хлора и его соединений позволяет извлекать из воды металлы и сероводород. Хлорирование применяется в городских системах подачи питьевой воды. Оно также используется в бассейнах, где скапливается большое число людей.


Однако, у этого способа есть ряд недостатков. Хлор крайне опасен, вызывает рак и клеточные мутации, токсичен. Если избыток хлора не исчезнет в трубопроводе, а дойдет до населения, это может привести к серьезным проблемам со здоровьем. Особенно сильна опасность в переходные периоды (осень и весну), когда из-за увеличения загрязненности поверхностных вод повышают дозу реагента при водоподготовке. Кипячение такой воды не поможет избежать негативных последствий, а наоборот – хлор превратится в диоксин, являющийся сильнейшим ядом. Для того, чтобы дать излишку хлора испариться, воду из-под крана набирают в большие емкости и оставляют на сутки в хорошо проветриваемом помещении.

Озонирование

Озон обладает сильным окисляющим воздействием. Он проникает внутрь клетки и разрушает ее стенки, приводя к гибели бактерии. Это вещество не только является сильным антисептиком, но также обесцвечивает и дезодорирует воду, окисляет металлы. Озон работает быстро и избавляется практически от всех микроорганизмов, находящихся в воде, обгоняя по этой характеристике хлор.

Озонирование считается наиболее безопасным и эффективным методом, но и оно имеет несколько минусов. Избыток озона приводит к коррозии металлических частей оборудования и трубопроводов, аппараты изнашиваются и разрушаются быстрее обычного. Кроме того, новейшие исследования отмечают, что озонирование вызывает «пробуждение» микроорганизмов, находившихся в условной спячке.


Схема процесса озонирования

Способ отличается дороговизной установки и большим энергопотреблением. Для работы с озонирующим оборудованием требуется персонал высокой квалификации, ведь газ токсичен и взрывоопасен. Чтобы пустить воду населению, необходимо переждать период распада озона, иначе могут пострадать люди.

Обеззараживание полимерными соединениями

Отсутствие вреда здоровью, уничтожение запахов, вкусов и цветности, большая длительность действия – перечисленные достоинства относятся к обеззараживанию с помощью полимерных реагентов. Такой вид веществ также называют полимерными антисептиками. Они не вызывают коррозию и не портят ткань, не вызывают аллергии и отличаются результативностью.


Олигодинамия

Она основана на способности благородных металлов (таких как золото, серебро и медь) обеззараживать воду.

То, что эти металлы имеют антисептический эффект, известно давно. Медь и её сплавы часто применяют в полевых условиях, когда нужно в индивидуальном порядке обеззаразить небольшой объем жидкости.

Для более обширного воздействия металлов на микроорганизмы используются ионаторы. Это проточные аппараты, работающие на основе гальванической пары и электрофореза.

Обеззараживание серебром

Этот металл принято считать одним из самых древних способов обеззараживания воды. В древности было распространено мнение, что серебро лечит от любых болезней. Сейчас известно, что оно негативно влияет на множество микроорганизмов, однако неизвестно, уничтожает ли серебро простейшие бактерии.

Данное средство дает видимый эффект при очистке воды. Однако оно негативно влияет на организм человека при накоплении в нем. Не зря серебро имеет высокий класс опасности. Обеззараживание воды ионами серебра не считается безопасным методом, а потому практически не используется в промышленности. Серебряные ионаторы используются в единичных случаях в быту для обработки небольших объемов воды.


Компактный бытовой ионатор (осеребритель) воды

Иодирование и бромирование

Йод широко известен и используется в медицине с давних времен. Ученые многократно пытались использовать его обеззараживающее воздействие в водоочистке, однако его применение приводит к возникновению неприятного запаха. Бром отлично справляется практически со всеми известными патогенными микроорганизмами. Но имеет существенный недостаток – высокую стоимость. Из-за своих минусов эти два вещества для обработки сточных и питьевых вод не используются.

Комбинированные методы обеззараживания воды

Комплексные методы основываются на сочетании физических и химических методов для улучшения результативности. Примером является комбинация из ультрафиолетового излучения и хлорирования (иногда хлорирование заменяется на озонирование). УФ-лампы уничтожают микроорганизмы, а хлор или озон предотвращают их повторное возникновение. Кроме того, хорошо сочетаются окисление и обработка тяжелыми металлами. Реагент-окислитель дезинфицирует, а металлы продлевают бактерицидное действие.


Сочетание УФ-обеззараживания и действия ультразвука

Как обеззаразить воду в быту

Существует пять способов быстро продезинфицировать небольшой объем воды:

  • кипячение;
  • добавление перманганата калия;
  • использование обеззараживающих таблеток;
  • использование трав и цветов;
  • настаивание с кремнием.

Перманганат калия прибавляется воду в количестве 1-2 г. на одно ведро воды, после чего загрязнения выпадают в осадок.

Специальные таблетки для уничтожения микроорганизмов применяются при обезвреживании воды из скважины, колодца или родника. Они являются наиболее современным способом, доступным, недорогим и результативным. Многие таблетки, например, марки «Акватабс», могут использоваться для очистки больших объемов жидкости.

Если воду необходимо обеззаразить в походе, можно воспользоваться специальными травами: зверобоем, брусникой, ромашкой или чистотелом.

Также можно использовать кремний: его помещают в воду и оставляют на сутки.

Нормативная документация в области безопасности питьевой воды

Со стороны государства качество воды строго контролируется с помощью нормативных документов, правил и ограничений. Основой законодательных актов в области охраны водных ресурсов и контроля качества используемой воды являются два документа: Федеральный закон «О санитарно-эпидемиологическом благополучии населения» и Водный кодекс.

Первый закон содержит требования к качеству источников водоснабжения, из которых вода поступает в жилые дома и на нужды сельского хозяйства. Второй документ описывает нормы использования водных источников и указания по обеспечению их безопасности, а также определяет меры наказания.

ГОСТы

ГОСТы описывают правила, по которым должен проходить контроль качества сточных и питьевых вод. В них содержатся методики проведения анализов в полевых условиях, а также позволяют разделить воды на группы. Самые важные из ГОСТов представлены в таблице.

СНиПы

Строительные нормы и правила определяют требования к возведению сооружений очистки вод, к монтажу различных видов трубопроводов и систем водоснабжения. Информация содержится в СНиПах под следующими номерами: СНиП 2.04.01-85, СНиП 3.05.01-85, СНиП 3.05.04-85.

СанПиНы

Санитарно-эпидемиологические правила и нормы содержат гигиенические требования к качеству различных групп вод, к составу, к водозаборным сооружениям и месторасположению водозаборов: СанПиН 2.1.4.559-96, СанПиН 4630-88, СанПиН 2.1.4.544-96, СанПиН 2.2.1/2.1.1.984-00.

Таким образом, эффективность обеззараживания водопроводной воды контролируется с установленной регулярностью и в соответствии со множеством правил и нормативов. А большое число различных методов дезинфекции свежей воды позволяют для любых условий подобрать оптимальный вариант. Что делает грамотно очищенную и обработанную воду безопасной для употребления людьми.

Обеззараживание питьевой воды служит для создания надежного барьера на пути передачи водным путем возбудителей инфекционных болезней. Методы обеззараживания воды направлены на уничтожение патогенных и условно-патогенных микроорганизмов, чем обеспечивается эпидемическая безопасность воды.

Воду обеззараживают на конечном этапе очистки после осветления и обесцвечивания перед поступлением в резервуары чистой воды, которые одновременно выполняют функции контактных камер. Для обеззараживания воды применяют реагентные (химические) и безреагентные (физические) методы. Реагентные методы основаны на введении в воду сильных окислителей (хлорирование, озонирование, манганирование, обработка воды йодом), ионов тяжелых металлов и ионов серебра. К безреагентным относятся термическая обработка, ультрафиолетовое облучение, обработка ультразвуком, у-облучение, обработка током сверхвысокой частоты. Метод выбирают в зависимости от количества и качества исходной воды, методов ее предварительной очистки, требований к надежности обеззараживания, с учетом технико-экономических показателей, условий поставки реагентов, наличия транспорта, возможности автоматизации процесса.

Обеззараживание воды хлором и его соединениями. На сегодняшний день наиболее распространенным методом обеззараживания воды на водопроводных станциях остается хлорирование. Среди хлорсодержащих соединений, учитывая определенные гигиенические и технические преимущества, чаще всего используют жидкий хлор. Возможно также применение хлорной извести, кальция и натрия гипохлорита, хлора диоксида, хлораминов и др.

*Для использования в практике хозяйственно-питьевого водоснабжения допускаются лишь фторсодержащие соединения, прошедшие гигиеническую апробацию и включенные в "Перечень материалов и реагентов, разрешенных Главным санитарно-эпидемиологическим управлением Министерства здравоохранения СССР для применения в практике хозяйственно-питьевого водоснабжения (№ 3235-85)".*

Впервые в практике водоподготовки хлор был применен задолго до открытия Л. Пастером микробов, доказательства Р. Кохом этиологического значения патогенных микроорганизмов в развитии инфекционных болезней, окончательного осознания Т. Эшерихом микробиологической сущности водных эпидемий и бактерицидных свойств хлора. Применяли его с целью дезодорации воды, которая имела неприятный "септический"запах. Хлор оказался очень эффективным дезодорантом и, кроме того, после обработки воды хлором у людей значительно реже диагностировали кишечные инфекции. С началом хлорирования воды во многих странах Европы прекратились эпидемии брюшного тифа и холеры. Было высказано предположение, что причиной болезней были плохой запах и вкус воды, которые эффективно устранял хлор. Лишь со временем доказали микробную этиологию водных эпидемий кишечных инфекций и признали роль хлора в качестве обеззараживающего агента.

Для хлорирования воды применяют жидкий хлор, который хранится под давлением в специальной таре (баллонах), или вещества, содержащие активный хлор.

Хлорирование воды жидким хлором. Хлор (С12) при нормальном атмосферном давлении является газом зеленовато-желтого цвета, который в 1,5-

2,5 раза тяжелее воздуха, с резким и неприятным запахом, хорошо растворяется в воде, при повышении давления легко сжижается. Атомный вес хлора - 35,453, молекулярная масса - 70,906 г/моль. Хлор может находиться в трех агрегатных состояниях: твердом, жидком и газообразном.

Хлор на водопроводные станции для обеззараживания воды доставляют жидким в баллонах под давлением. Хлорирование осуществляют при помощи хлораторов. В них готовят раствор хлора, который вводят непосредственно в трубопровод, по которому вода поступает в РЧВ. Используют хлораторы Л.А. Кульского (рис. 20), вакуумные хлораторы ЛОНИИ-100, Ж-10, ЛК-12, ХВ-11. Принципиальная схема хлоратора ЛОНИИ-100 изображена на рис. 21.

При подключении баллона к хлоратору жидкий хлор испаряется. Газообразный хлор очищается в баллоне и на фильтре, и после снижения его давления с помощью редуктора до 0,001- 0,02 МПа его смешивают в смесителе с водой. Из смесителя концентрирован-

Рис. 21. Технологическая схема типичной хлораторной на 3 кг/ч: 1 - весы платформные; 2 - стояки с баллонами; 3 - улавливатель загрязнений; 4 - хлораторы ЛОНИИ-100; 5 - эжекторы

Ный раствор всасывается эжектором и подается в трубопровод. Хлораторы типа ЛК, конструкция которых проще, а точность ниже используют для станций больших мощностей. Эти хлораторы не требуют предварительной очистки хлора, не так точны в дозировании, но могут подавать хлорную воду на высоту 20- 30 м. После же эжектора от ЛОНИИ-100 напор составляет лишь 1-2 м. Во время растворения хлора в воде происходит его гидролиз с образованием хлоридной (соляной) и гипохлоритной (или хлорноватистой) кислот:

С12+ Н20 ^ HCl + НС10.

Хлорноватистая кислота НС10 является слабой одноосновной нестойкой кислотой, которая легко диссоциирует, образуя гипохлорит-ион (СЮ~):

НСЮ ^ Н+ + СЮ".

Степень диссоциации хлорноватистой кислоты зависит от pH воды. При pH
Кроме того, хлорноватистая кислота распадается с образованием атомарного кислорода, который также является сильным окислителем:

НСЮ It HCl + О".

*Активным хлором называется такой, который способен при pH 4 выделять эквивалентное количество йода из водных растворов калия йодида. Различают свободный (молекулярный хлор, хлорноватистая кислота, гипохлорит-ион) и связанный (хлор, входящий в состав органических и неорганических моно- и дихлораминов) активный хлор.*

Раньше считали, что именно этот атомарный кислород оказывает бактерицидное действие. Сегодня доказано, что обеззараживающий эффект жидкого хлора, а также хлорной извести, кальция и натрия гипохлоритов, двухтретиос-новной соли кальция гипохлорита обусловлен окислителями, которые образуются в воде при растворении хлорсодержащих соединений, причем прежде всего - действием гипохлоритной кислоты, а затем - гипохлоритного аниона и наконец атомарного кислорода.

Хлорирование воды гипохлоритами (солями хлорноватистой кислоты) проводят на водопроводных станциях низкой мощности. Гипохлориты также используют для длительного обеззараживания воды в шахтных колодцах при помощи керамических патронов, для обеззараживания воды в полевых условиях, в том числе с использованием тканево-угольных фильтров и др.

Для дезинфекции питьевой воды используют кальция гипохлорит Са(ОС1)2. В процессе его растворения в воде происходит гидролиз с образованием хлорноватистой кислоты и дальнейшей ее диссоциацией:

Са(ОС1)2 + 2Н20 = Са(ОН)2 + 2НСЮ,

Нею -?. н+ + cicr.

В зависимости от способа производства кальция гипохлорит может содержать от 57-60% до 75-85% активного хлора. Вместе с чистым гипохлоритом для обеззараживания воды используют смесь кальция гипохлорита с другими солями (NaCl, СаС12). Такие смеси содержат до 60-75% чистого гипохлорита.

На станциях с расходом активного хлора до 50 кг/сут можно использовать для обеззараживания воды натрия гипохлорит (NaCIO 5Н20). Этот кристаллогидрат получают из раствора натрия хлорида (NaCl) электролитическим способом.

Натрия хлорид в воде диссоциирует с образованием катиона натрия и аниона хлора:

NaCl ^ Na+ + СГ

Во время электролиза на аноде происходит разряжение ионов хлора и образуется молекулярный хлор:

2СГ -» С12 + 2е.

Образовавшийся хлор растворяется в электролите:

С12+Н2О^НС1 + НСЮ,

С12+ОН-^СІ+НСЮ.

На катоде происходит разряд молекул воды:

Н20 + е -> ОН- + Н+.

Атомы водорода после рекомбинации в молекулярный водород выделяются из раствора в виде газа. Гидроксильные анионы ОН", оставшиеся в воде, реагируют с катионами натрия Na+, вследствие чего образуется NaOH. Натрия гидроксид взаимодействует с хлорноватистой кислотой с образованием натрия гипохлорита:

NaOH + НС10 -> NaOCI + Н20.

Рис. 22. Технологическая схема электролитического получения натрия гипохлорита: 1 - растворный бак; 2 - насос; 3 - распределительный тройник; 4 - рабочий бак; 5 - дозатор; 6 - электролизер с графитовыми электродами; 7 - бак-накопитель натрия гипохлорита; 8 - зонт вытяжной вентиляции

Натрия гипохлорит в значительной мере диссоциирует с образованием СЮ", который обладает высокой антимикробной активностью:

NaCIO ^ Na+ + СЮ",

Сю- + н+;^нсю.

Электролизерные установки разделяют на проточные и порционные. В их состав входят электролизеры, разнотипные баки. Принципиальная схема порционной установки изображена на рис. 22. Раствор натрия хлорида 10% концентрации подают в бак постоянного уровня, откуда он вытекает с постоянным расходом. После заполнения бачка-дозатора срабатывает сифон и сливает определенный объем раствора в электролизер. Под воздействием электрического тока в электролизере образуется натрия гипохлорит. Новые порции раствора соли выталкивают натрия гипохлорит в расходный бак, из которого он дозируется насосом-дозатором. Бак-накопитель должен вмещать объем натрия гипохлорита не менее чем на 12 ч.

Преимуществом получения натрия гипохлорита электролитическим методом в месте употребления является то, что отпадает необходимость в транспортировке и хранении токсического сжиженного хлора. Среди недостатков можно назвать значительные энергозатраты.

Обеззараживание воды прямым электролизом. Метод состоит в прямом электролизе пресной воды, в которой природное содержание хлоридов не ниже 20 мг/л, а жесткость - не выше 7 мг-экв/л. Применяют на водопроводных станциях мощностью до 5000 м3/сут. Вследствие прямого электролиза на аноде происходит разряжение находящихся в воде хлорид-ионов и образуется молекулярный хлор, который гидролизуется с образованием хлорноватистой кислоты:

2СГ ^ С12 + 2е, С12 + Н2О^НС1 + НСЮ.

Во время обработки электролизом воды с pH в пределах 6-9 главными дезинфекционными агентами являются хлорноватистая (гипохлоритная) кислота НСЮ, гипохлорит-анион С10~ и монохлорамины NH2C1, которые образуются вследствие реакции между НСЮ и аммонийными солями, содержащимися в природной воде. Одновременно во время обработки воды электролитическим методом на микроорганизмы действует электрическое поле, в котором они находятся, что усиливает бактерицидный эффект.

Обеззараживание воды хлорной известью применяют на малых водопроводных станциях (производительностью до 3000 м3/сут), предварительно приготовив раствор. Хлорной известью также заполняют керамические патроны для обеззараживания воды в шахтных колодцах или на локальных водопроводах.

Хлорная известь - белый порошок с резким запахом хлора и сильными окисляющими свойствами. Это смесь кальция гипохлорита и кальция хлорида. Получают хлорную известь из известняков. Кальция карбонат при температуре 700 °С распадается с образованием негашеной извести (кальция оксид), которая после взаимодействия с водой превращается в гашеную известь (кальция гидроксид). При взаимодействии хлора с гашеной известью образуется хлорная известь:

СаСОз ^ СаО + С02,

СаО + Н20 = Са(ОН)2,

2Са(ОН)2 + 2С12 = Са(ОС1)2 + СаС12+ 2Н20 или

2Са(ОН)2 + 2С12= 2СаОС12 + 2Н20.

Основную составную часть хлорной извести выражают формулой:

Технический продукт содержит не более 35% активного хлора. В процессе хранении хлорная известь частично разлагается. То же происходит с кальция гипохлоритом. Свет, влажность и высокая температура ускоряют потерю активного хлора. Хлорная известь теряет приблизительно 3-4% активного хлора в месяц вследствие реакций гидролиза и разложения на свету. Во влажном помещении хлорная известь разлагается, образуя хлорноватистую кислоту:

2СаОС12 + С02 + Н20 = СаС03 + СаС12 + 2НСЮ.

Поэтому перед использованием хлорной извести и кальция гипохлорита проверяют их активность - выраженное в процентах содержание активного хлора в хлорсодержащем препарате.

Бактерицидным действием хлорная известь, так же, как и гипохлориты, обязана группе (ОСГ), которая в водной среде образует хлорноватистую кислоту:

2СаОС12 + 2Н20 -> СаС12 + Са(ОН)2 + 2НС10.

Хлора диоксид (ClOJ - газ желто-зеленого цвета, легко растворяется в воде (при температуре 4 °С в 1 объеме воды растворяется 20 объемов газообразного СЮ2). Не гидролизует. Его целесообразно применять в случае, если особенности природной воды являются неблагоприятными для эффективного обеззараживания хлором, например, при высоких значениях pH или в присутствии аммиака. Однако получение хлора диоксида является сложным процессом, который требует специального оборудования, квалифицированного персонала, дополнительных финансовых затрат. Кроме того, хлора диоксид взрывоопасен, что требует строгого соблюдения требований техники безопасности. Указанное ограничивает использование хлора диоксида для обеззараживания воды на хозяйственно-питьевых водопроводах.

К хлорсодержащим препаратам относятся и хлорамины (неорганические и органические), которые в практике водоподготовки используют ограничено, но применяют как обеззараживающие агенты во время проведения мероприятий по дезинфекции, в частности в лечебно-профилактических учреждениях. Неорганические хлорамины (монохлорамины NH2C1 и дихлорамины NHC12) образуются при взаимодействии хлора с аммиаком или аммонийными солями:

NH3 + CI2 = NH2CI + HCI,

NH2CI + CI2 = NHCI2 + HCl.

Вместе с неорганическими соединениями хлора для обеззараживания используют и органические хлорамины (RNHC1, RNC12). Их получают в процессе взаимодействия хлорной извести с аминами или их солями. При этом один или два атома водорода аминной группы замещаются хлором. Разные хлорамины содержат 25-30% активного хлора.

Процесс обеззараживания воды хлорсодержащими препаратами происходит в несколько стадий:

1. Гидролиз хлора и хлорсодержащих препаратов:

С12 + Н20 = HCl + НС10;

Са(ОС1)2 +2Н20 = Са(ОН)2+ 2НС10;

2СаОС12 + 2Н20 = Са(ОН)2 + СаС12 + 2НС10.

2. Диссоциация хлорноватистой кислоты.

При pH ~ 7,0 НС10 диссоциирует: НС10
3. Диффузия в бактериальную клетку молекулы НС10 и иона СЮ".

4. Взаимодействие обеззараживающего агента с энзимами микроорганизмов, которые окисляются хлорноватистой кислотой и гипохлорит-ионом.

Активный хлор (НСЮ и СЮ") сначала диффундирует внутрь бактериальной клетки, а затем вступает в реакцию с ферментами. Наибольшее бактерицидное и вирулицидное действие оказывает недиссоциированная хлорноватистая кислота (НСЮ). Скорость процесса обеззараживания воды определяется кинетикой диффузии хлора внутрь бактериальной клетки и кинетикой отмирания клеток в результате нарушения метаболизма. С повышением концентрации хлора в воде, ее температуры и с переходом хлора в недиссоциированную форму легко диффундируемой хлорноватистой кислоты общая скорость процесса дезинфекции повышается.

Механизм бактерицидного действия хлора состоит в окислении органических соединений бактериальной клетки: коагуляции и повреждении ее оболочки, угнетении и денатурации ферментов, обеспечивающих обмен веществ и энергии. Наиболее всего повреждаются тиоловые ферменты, содержащие SH-группы, которые окисляются хлорноватистой кислотой и ионом гипохло-рита. Среди тиоловых ферментов активнее всего угнетается группа дегидроге-наз, которые обеспечивают дыхание и энергетический обмен бактериальной клетки1. Под влиянием хлорноватистой кислоты и гипохлорит-иона угнетаются дегидрогеназы глюкозы, этилового спирта, глицерина, янтарной, глютами-новой, молочной, пировиноградной кислот, формальдегида и др. Угнетение де-гидрогеназ приводит к торможению процессов окисления на начальных этапах. Последствием этого является как торможение процессов размножения бактерий (бактериостатическое действие), так и их гибель (бактерицидное действие).

Механизм действия активного хлора на вирусы состоит из двух фаз. Сначала происходят адсорбция хлорноватистой кислоты и гипохлорит-иона на оболочке вируса и проникновение через нее, а затем - инактивация ими РНК или ДНК вируса.

С повышением значения pH бактерицидность хлора в воде снижается. Например, для уменьшения количества бактерий в воде на 99% при дозе свободного хлора 0,1 мг/л продолжительность контакта увеличивается с 6 до 180 мин при повышении pH соответственно с 6 до 11. Следовательно воду целесообразно обеззараживать хлором при низких значениях pH, то есть до введения щелочных реагентов.

Наличие в воде органических соединений, способных к окислению, неорганических восстановителей, а также коллоидных и взвешенных веществ, обволакивающих микроорганизмы, приводит к замедлению процесса обеззараживания воды.

Взаимодействие хлора с компонентами воды - сложный и многостадийный процесс. Небольшие дозы хлора полностью связываются органическими веществами, неорганическими восстановителями, взвешенными частицами, гуминовыми веществами и микроорганизмами воды. Для надежного обеззараживающего эффекта воды после ее хлорирования необходимо определять остаточные концентрации свободного или связанного активного хлора.

*Энергетический метаболизм у бактерий происходит в мезосомах - аналогах митохондрий.*

Рис. 23. График зависимости величины и вида остаточного хлора от введенной дозы хлора

На рис. 23 приведена зависимость между дозой введенного хлора и остаточным хлором при наличии в воде аммиака или аммонийных солей. При хлорировании воды, не содержащей аммиака или других азотсодержащих соединений", с увеличением количества внесенного в воду хлора возрастает содержание в ней остаточного свободного хлора. Но картина меняется при наличии в воде аммиака, аммонийных солей и других азотсодержащих соединений, которые являются составной частью природной воды или искусственно вносятся в нее. При этом хлор и хлорные агенты взаимодействуют с присутствующим в воде аммиаком, аммонийными и органическими солями, содержащими аминогруппы. Это приводит к образованию моно- и дихлораминов, а также чрезвычайно нестойких трихлораминов:

NH3 + Н20 = NH4OH;

С12 + Н20 = НС10 + HCl;

НСЮ + NH4OH = NH2C1 + Н20;

НСЮ + NH2C1 = NHC12+ H20;

НСЮ + NHC12 = NC13 + Н20.

Хлорамины представляют собой связанный активный хлор, обладающий бактерицидным действием, которое в 25-100 раз меньше, чем у свободного хлора. Кроме того, в зависимости от pH воды изменяется соотношение между моно- и дихлораминами (рис. 24). При низких значениях pH (5-6,5) преимущественно образуются дихлорамины, а при больших значениях pH (больше 7,5) - монохлорамины, бактерицидное действие которых в 3-5 раз слабее, чем дихлораминов. Бактерицидность неорганических хлораминов в 8-10 раз выше, чем хлорпроизводных органических аминов и иминов. При добавлении к воде невысоких доз хлора при молярном соотношении С12: NH*
*Безаммиачной воды в природе нет. Ее можно приготовить лишь в лабораторных условиях из дистиллированной воды.*

накапливается остаточный связанный с аминами хлор. При увеличении дозы хлора образуется больше хлораминов и концентрация остаточного связанного хлора повышается до максимума (точка А).

При дальнейшем увеличении дозы хлора молярное соотношение введенного хлора и иона NH *, содержащего в воде, становится больше единицы. При этом моно-, ди- и, особенно, трихлорамины окисляются избыточным хлором в соответствии с приведенными реакциями:

NHC12 + NH2C1 + НСЮ -> N20 + 4НС1;

NHC12 + Н20 -> NH(OH)Cl + HCl;

NH(OH)Cl + 2HC10 -> HN03 + ЗНС1;

NHC12 + HCIO -> NC13 + H20;

4NH2C1 + 3C12 + H20 = N2 + N20 + 10HC1;

IONCI3 + CI2 + 16H20= N2 + 8N02 + 32HCI.

При молярном соотношения Cl2: NH \ до 2 (10 мг Cl2 на 1 мг N2 в виде NH \) вследствие окисления хлораминов избыточным хлором количество остаточного связанного хлора в воде резко снижается (отрезок III) до минимальной точки (точки В), которая называется точкой перелома. Графически она имеет вид глубокого провала на кривой остаточного хлора (см. рис. 23).

При дальнейшем увеличении дозы хлора после точки перелома концентрация остаточного хлора в воде вновь начинает постепенно возрастать (отрезок IV на кривой). Этот хлор не связан с хлораминами, носит название свободного остаточного (активного) хлора и имеет наивысшую бактерицидную активность. Действует на бактерии и вирусы подобно активному хлору при отсутствии в воде аммиака и аммонийных соединений.

Как свидетельствуют данные исследований, воду можно обеззараживать двумя дозами хлора: до- и послепереломной. Однако при хлорировании допереломной дозой вода обеззараживается за счет действия хлораминов, а при хлорировании послепереломной - свободного хлора.

Во время обеззараживания воды добавляемый хлор расходуется как на взаимодействие с микробными клетками и вирусами, так и на окисление органических и минеральных соединений (мочевины, мочевой кислоты, креатини-на, аммиака, гуминовых веществ, солей двухвалентного железа, аммонийных солей, карбаматов и др.), которые содержатся в воде во взвешенном и растворенном состоянии. Количество хлора, поглощенное примесями воды (органическими веществами, неорганическими восстановителями, взвешенными частицами, гуминовыми веществами и микроорганизмами), называется хлорпог-лощаемостью воды (отрезок I на кривой). Поскольку природные воды имеют различный состав, то и величина хлорпоглощаемости у них неодинакова. Таким образом, хлорпоглощаемость - это количество активного хлора, которое поглощается взвешенными частицами и расходуется на окисление бактерий, органических и неорганических соединений, содержащихся в 1 л воды.

Рассчитывать на успешное обеззараживание воды можно лишь при наличии некоторого избытка хлора по отношению к количеству, которое поглощается бактериями и различными соединениями, содержащимися в воде. Эффективной является доза активного хлора, равная суммарному количеству поглощенного и остаточного хлора. С присутствием в воде остаточного хлора (или, как его еще называют, избыточного) связано представление об эффективности обеззараживания воды.

При хлорировании воды жидким хлором, кальция и натрия гипохлоритами, хлорной известью 30-минутный контакт обеспечивает надежный обеззараживающий эффект при концентрации остаточного хлора не меньше 0,3 мг/л. Но при хлорировании с преаммонизацией контакт должен быть на протяжении 1-2 ч, а эффективность обеззараживания будет гарантированной при наличии остаточного связанного хлора в концентрации не менее 0,8 мг/л.

Хлор и хлорсодержащие соединения в значительной мере влияют на органолептические свойства питьевой воды (запах, привкус), а в определенных концентрациях раздражают слизистые оболочки ротовой полости и желудка. Предельная концентрация остаточного хлора, при которой питьевая вода не приобретает хлорного запаха и привкуса, установлена для свободного хлора на уровне 0,5 мг/л, а для связанного - 1,2 мг/л. По токсикологическим признакам предельной концентрацией активного хлора в питьевой воде является 2,5 мг/л".

Следовательно, для обеззараживания воды необходимо добавить такое количество хлорсодержащего препарата, чтобы после обработки вода содержала 0,3-0,5 мг/л остаточного свободного или 0,8-1,2 мг/л остаточного связанного хлора. Такой избыток активного хлора не ухудшает вкуса воды, не вредит здоровью, но гарантирует ее надежное обеззараживание.

Таким образом, для эффективного обеззараживания к воде добавляют дозу активного хлора, равную сумме хлорпоглощаемости и остаточного активного хлора. Эта доза называется хлорпотребностью воды.

Хлорпотребностъ воды - это количество активного хлора (в миллиграммах), необходимое для эффективного обеззараживания 1 л воды и обеспечивающее содержание остаточного свободного хлора в пределах 0,3-0,5 мг/л после 30-минутного контакта с водой, или количество остаточного связанного хлора в пределах 0,8-1,2 мг после 60-минутного контакта. Содержание остаточного

*Предельная концентрация хлора диоксида в питьевой воде - не выше 0,5 мг/л, лимитирующий показатель водного действия - органолептический.*

Активного хлора контролируют после резервуаров чистой воды перед подачей в водопроводную сеть. Поскольку хлорпоглощаемость воды зависит от ее состава и является неодинаковой для воды из разных источников, то в каждом случае хлорпотребность определяют экспериментально путем пробного хлорирования. Ориентировочно хлорпотребность осветленной и обесцвеченной коагуляцией, отстаиванием и фильтрацией речной воды колеблется в пределах 2-3 мг/л (иногда - до 5 мг/л), воды подземных межпластовых вод - в пределах 0,7-1 мг/л.

Факторы, влияющие на процесс хлорирования воды, связаны с: 1) биологическими особенностями микроорганизмов; 2) бактерицидными свойствами хлорсодержащих препаратов; 3) состоянием водной среды; 4) с условиями, в которых осуществляется обеззараживание.

Известно, что споровые культуры во много раз более устойчивы, чем вегетативные формы к действию дезинфицирующих средств. Энтеровирусы более стойкие, чем кишечные бактерии. Сапрофитные микроорганизмы более резистентны, чем патогенные. При этом среди патогенных микроорганизмов наиболее чувствительными к хлору являются возбудители брюшного тифа, дизентерии, холеры. Возбудитель паратифа В более стойкий к действию хлора. Кроме того, чем выше инициальная контаминация воды микроорганизмами, тем ниже при одинаковых условиях эффективность обеззараживания.

Бактерицидная активность хлора и его соединений связана с величиной его окислительно-восстановительного потенциала. Окислительно-восстановительный потенциал возрастает при одинаковых концентрациях в ряду: хлорамин -> хлорная известь -> хлор -» хлора диоксид.

Эффективность хлорирования зависит от свойств и состава водной среды, а именно: от содержания взвешенных веществ и коллоидных соединений, концентрации растворенных органических соединений и неорганических восстановителей, pH воды, ее температуры.

Взвешенные вещества и коллоиды препятствуют воздействию дезинфицирующего агента на микроорганизмы, находящиеся в толще частицы, поглощают активный хлор вследствие адсорбции и химического связывания. Влияние на эффективность хлорирования органических соединений, растворенных в воде, зависит как от их состава, так и от свойств хлорсодержащих препаратов. Так, азотсодержащие соединения животного происхождения (белки, аминокислоты, амины, мочевина) активно связывают хлор. Соединения, не содержащие азота (жиры, углеводы), слабее реагируют с хлором. Поскольку наличие в воде взвешенных веществ, гуминовых и других органических соединений снижает эффект хлорирования, для надежного обеззараживания мутные и повышенной цветности воды предварительно осветляют и обесцвечивают.

При снижении температуры воды до 0-4 °С уменьшается бактерицидный эффект хлора. Эта зависимость особенно заметна в опытах с высокой инициальной контаминацией воды и в случае хлорирования ее невысокоми дозами хлора. В практике работы водопроводных станций, если загрязнение воды источника отвечает требованиям Госстандарта 2761-84 "Источники централизованного хозяйственно-питьевого водоснабжения. Гигиенические, технические требования и контроль за качеством", снижение температуры заметно не влияет на эффективность обеззараживания.

Механизм влияния pH воды на ее обеззараживание хлором связан с особенностями диссоциации хлорноватистой кислоты: в кислой среде равновесие смещается в сторону молекулярной формы, в щелочной - ионной. Хлорноватистая кислота в недиссоциированной молекулярной форме лучше проникает через оболочки в середину бактериальной клетки, чем гидратированные ионы гипохлорита. Поэтому в кислой среде процесс обеззараживания воды ускоряется.

На бактерицидный эффект хлорирования значительно воздействуют доза реагента и продолжительность контакта: бактерицидный эффект возрастает при повышении дозы и увеличении продолжительности действия активного хлора.

Способы хлорирования воды. Существует несколько способов хлориро-. вания воды с учетом характера остаточного хлора, выбор которых определяется особенностями состава обрабатываемой воды. Среди них: 1) хлорирование послепереломными дозами; 2) обычное хлорирование или хлорирование по хлорпотребности; 3) суперхлорирование; 4) хлорирование с преаммонизацией. В первых трех вариантах воду обеззараживают свободным активным хлором. При хлорировании с преаммонизацией бактерицидный эффект обусловлен действием хлораминов, т. е. связанного активного хлора. Кроме того, применяются комбинированные способы хлорирования.

Хлорирование послепереломными дозами предусматривает, что после 30 мин контакта в воде будет присутствовать свободный активный хлор. Дозу хлора подбирают таким образом, чтобы она была несколько выше той дозы, при которой образуется перелом на кривой остаточного хлора, т. е. в диапазоне IV (см. рис. 23). Подобранная таким способом доза обусловливает появление в воде остаточного свободного хлора в наименьшем количестве. Этот метод отличается тщательным подбором дозы. Он дает стойкий и надежный бактерицидный эффект, препятствует появлению запахов в воде.

Обычное хлорирование (хлорирование по хлорпотребности) является наиболее распространенным способом обеззараживания питьевой воды при централизованном хозяйственно-питьевом водоснабжении. Хлорирование по хлорпотребности проводится такой послепереломной дозой, которая через 30 мин контакта обеспечивает присутствие в воде остаточного свободного хлора в пределах 0,3-0,5 мг/л.

Поскольку природные воды существенно отличаются по составу и поэтому имеют различную хлорпоглощаемость, хлорпотребность определяют экспериментально путем опытного хлорирования воды, подлежащей обеззараживанию. Помимо правильного выбора дозы хлора, обязательным условием эффективного обеззараживания воды является тщательное смешивание и время экспозиции, т. е. время контакта хлора с водой (не менее 30 мин).

Как правило, на водопроводных станциях хлорирование по хлорпотребности проводят после осветления и обесцвечивания воды. Хлорпотребность такой воды колеблется в пределах 1-5 мг/л. Оптимальную дозу хлора вводят в воду сразу после фильтрации перед РЧВ.

Исходя из хлорпотребности, можно проводить и двойное хлорирование, при котором первый раз хлор подают в смеситель перед камерой реакции, а второй - после фильтров. При этом экспериментально определенную оптимальную дозу хлора не изменяют. Хлор при введении в смеситель перед камерой реакции улучшает коагуляцию и обесцвечивание воды, чем дает возможность снизить дозу коагулянта. Кроме того, он угнетает рост микрофлоры, которая загрязняет песок на фильтрах. Общие расходы хлора при двойном хлорировании практически не увеличиваются и остаются почти такими же, как и при одноразовом.

Двойное хлорирование заслуживает широкого применения. К нему следует обращаться в тех случаях, когда загрязнение речной воды сравнительно высокое или подвержено частым колебаниям. Двойное хлорирование повышает санитарную надежность обеззараживания воды.

Суперхлорирование (перехлорирование) является способом обеззараживания воды, при котором используются повышенные дозы активного хлора (5-20 мг/л). Эти дозы фактически являются послепереломными. К тому же они значительно превышают хлорпотребность природной воды и обусловливают наличие в ней высоких (свыше 0,5 мг/л) концентраций остаточного свободного хлора. Поэтому метод суперхлорирования не требует предварительного определения хлорпотребности воды и тщательного подбора дозы активного хлора, однако после обеззараживания необходимо удалить избыточный свободный хлор.

Суперхлорирование используют при особой эпидемиологической обстановке, при невозможности определить хлорпотребность воды и обеспечить достаточное время контакта хлора с водой, а также с целью предупреждения появления запахов воды и борьбы с ними. Этот метод удобен в военно-полевых условиях, при чрезвычайных ситуациях.

Суперхлорирование эффективно обеспечивает надежное обеззараживание даже мутной воды. От высоких доз активного хлора гибнут устойчивые к действию дезинфектантов возбудители, такие, как риккетсии Бернетта, цисты дизентерийной амебы, микобактерии туберкулеза и вирусы. Но даже такие дозы хлора не могут надежно обеззаразить воду от спор сибирской язвы и яиц гельминтов.

При суперхлорировании остаточный свободный хлор в обеззараженной воде значительно превышает 0,5 мг/л, что делает воду непригодной для употребления вследствие ухудшения ее органолептических свойств (резкий запах хлора). Поэтому возникает необходимость в освобождении ее от избытка хлора. Такой процесс называется дехлорированием. Если избыток остаточного хлора невелик, его можно удалить путем аэрации. В остальных случаях воду очищают, фильтруя через слой активированного угля или с помощью химических методов, таких, как обработка натрия гипосульфитом (тиосульфатом), натрия бисульфитом, сернистым ангидридом (серы диоксидом), железа сульфатом. На практике применяют преимущественно натрия гипосульфит (тиосульфат) - Na2S203 5Н20. Количество его рассчитывают в зависимости от количества избыточного хлора, исходя из следующей реакции:

Na2S203 + С12+ Н20 = Na2S04 + 2HCI + si.

Согласно приведенной реакции связывания между активным хлором и натрия гипосульфитом при мольном соотношении 1:1, на 0,001 г хлора используется 0,0035 г кристаллогидрата натрия гипосульфита, или на 1 мг хлора - 3,5MrNa2S203-5H20.

Хлорирование с преаммонизацией. Метод хлорирования в преаммонизацией используется:

1) с целью предотвращения появления неприятных специфических запахов, которые возникают после хлорирования воды, содержащей фенол, бензол и этилбензол;

2) для предотвращения образования канцерогенных веществ (хлороформ и др.) при хлорировании питьевой воды, содержащей гуминовые кислоты, углеводороды метанового ряда;

3) для снижения интенсивности запаха и привкуса хлора, особенно ощутимого в летнее время;

4) для экономии хлора при высокой хлорпоглощаемости воды и отсутствии запахов, привкусов и высокого бактериального загрязнения.

Если природная вода содержит фенолы (например, вследствие загрязнения водоемов сточными водами промышленных предприятий) даже в незначительных количествах1, то при обеззараживании хлорсодержащими соединениями, которые гидролизуются с образованием хлорноватистой кислоты, свободный активный хлор сразу же взаимодействует с фенолом, образуя хлорфенолы, которые даже в небольших концентрациях придают воде птечный привкус и запах. В то же время связанный активный хлор - хлораминный, имея более низкий окислительно-восстановительный потенциал, не взаимодействует с фенолом с образованием хлорфе-нолов, и поэтому во время обеззараживания не ухудшаются органолептические свойства воды. Аналогично свободный активный хлор способен взаимодействовать с углеводородами метанового ряда с образованием тригалометанов (хлороформа, дибромхлорметана, дихлорбромметана), являющихся канцерогенами. Предотвратить их образование можно, обеззараживая воду связанным активным хлором.

При хлорировании с преаммонизацией в воду, которую обеззараживают, сначала добавляют раствор аммиака2 или его солей, а через 1-2 мин вводят хлор. Вследствие этого в воде образуются хлорамины (монохлорамины NH2C1 и дихлорамины NHC12), которые обладают бактерицидным действием. Химические реакции образования хлораминов приведены на с. 170.

Соотношение образующихся веществ зависит от pH, температуры и количества реагирующих соединений. Эффективность хлорирования с преаммонизацией зависит от соотношения NH3 и С12, причем используют дозы этих реагентов в пропорциях 1:2, 1:4, 1:6, 1:8. Для воды каждого источника водоснабжения необходимо подбирать наиболее эффективное соотношения. Скорость обеззараживания воды хлораминами ниже, чем скорость дезинфекции свободным хлором, поэтому продолжительность дезинфекции воды в случае хлорирования с преаммонизацией должна быть не меньше 2 ч. Особенности бактерицидного действия хлораминов, а также их способность не образовывать хлорпроизводных, имеющих специфические запахи, объясняется их значитель-

*ПДК фенола в воде 0,001 мг/л, лимитирующий показатель - органолептический (запах), 4-й класс опасности.*

*Для введения аммиака в воду удобнее всего использовать вакуумные хлораторы.*

Но меньшей окислительной активностью, поскольку окислительно-восстановительный потенциал хлораминов значительно ниже, чем у хлора.

Кроме преаммонизации (введение аммиака за 1-2 мин до введения хлора), иногда применяют постаммонизацию, когда аммиак вводят после хлора непосредственно в резервуары с чистой водой. Благодаря этому хлор фиксируется дольше, чем достигается увеличение продолжительности его действия.

Комбинированные способы хлорирования воды. Кроме рассмотренных методов хлорирования воды, предложен ряд комбинированных, когда вместе с хлорсодержащими соединениями используют еще один химический или физический дезинфицирующий агент, что повышает эффект обеззараживания. Хлорирование можно комбинировать с обработкой воды солями серебра (хлор-серебряный метод), калия перманганатом (хлорирование с манганированием), озоном или ультрафиолетом, ультразвуком и т. п.

Хлорирование с манганированием (с добавлением раствора КМп04) используют при необходимости усиления окислительного и бактерицидного действия хлора, так как калия перманганат более сильный окислитель. Способ следует применять при наличии в воде запахов и привкусов, которые обусловлены органическими веществами, водорослями. При этом калия перманганат вводят до хлорирования. Добавлять КМп04 следует перед отстойниками в дозах 1-5 мг/л или перед фильтрами в дозе 0,08 мг/л. Восстанавливаясь до нерастворимого в воде Мп02, он полностью задерживается в отстойниках и на фильтрах.

Хлорсеребряный метод используют на судах речного флота (на установках КВУ-2 и УКВ-0,5). Он обеспечивает усиленное обеззараживание воды и ее консервацию на длительный срок (до 6 мес) при добавлении ионов серебра в количестве 0,05-0,1 мг/л.

Кроме того, хлорсеребряный метод используют для обеззараживания воды в плавательных бассейнах, где необходимо по мере возможности снизить дозу хлора. Это возможно потому, что бактерицидное действие обеспечивается в пределах суммарного эффекта доз хлора и серебра.

Бактерицидное, вирулицидное и окислительное действие хлора может быть усилено за счет одновременного воздействия ультразвуком, ультрафиолетовым излучением, постоянным электрическим током.

Пробы воды отбирают после резервуаров чистой воды перед подачей в водопроводную сеть. Контроль эффективности хлорирования по остаточному активному хлору осуществляют ежечасно, то есть 24 раза в сутки. Хлорирование считается эффективным, если содержание остаточного свободного хлора находится в пределах 0,3-0,5 мг/л через 30 мин контакта, или содержание остаточного связанного хлора составляет 0,8-1,2 мг/л через 60 мин контакта.

По микробиологическим показателям эпидемической безопасности воду после РЧВ исследуют дважды в сутки, то есть 1 раз в 12 ч. В воде после обеззараживания определяют общее микробное число и индекс БГКП (коли-индекс). Обеззараживание воды считается эффективным, если коли-индекс не превышает 3, а общее микробное число - не более 100.

Отрицательные последствия хлорирования воды для здоровья населения. В результате реакции хлора с гуминовыми соединениями, продуктами жизнедеятельности гидробионтов и некоторыми веществами промышленного происхождения образуются десятки новых чрезвычайно опасных галоформ-ных соединений, в том числе канцерогены, мутагены и высокотоксичные вещества с ПДК на уровне сотых и тысячных миллиграмма на 1 л. В табл. 3 и 5 (см. с. 66, 67, 101) приведены некоторые галогенсодержащие соединения, особенности их действия на организм человека, гигиенические нормативы в питьевой воде. Индикаторами этой группы являются тригалометаны: хлоро- и бро-моформ, дибромхлорметан, бромдихлорметан. В обеззараженной питьевой воде и воде горячего водоснабжения чаще всего и в более высоких концентрациях выявляют хлороформ - канцероген группы 2Б, по классификации МАИР.

Галоформные соединения поступают в организм с водой не только энте-рально. Некоторые вещества проникают через неповрежденную кожу во время контакта с водой, в частности при плавании в бассейне. Во время приема ванны или душа галоформные соединения попадают в воздух. Аналогичный процесс происходит в процессе кипячения воды, белья, приготовления пищи.

С учетом чрезвычайной опасности для здоровья человека галоформных соединений разработан комплекс мероприятий по снижению их уровней в воде. Он предусматривает:

Охрану источника водоснабжения от загрязнения сточными водами, которые содержат предшественники галоформных соединений;

Снижение эвтрификации поверхностных водоемов;

Отказ от перехлорирования (первичного хлорирования) или его замену ультрафиолетовым облучением или добавление меди сульфата;

Оптимизацию коагуляции для снижения цветности воды, то есть удаление гуминовых веществ (предшественников галоформных соединений);

Использование дезинфектантов, имеющих меньшую способность к образованию галоформных соединений, в частности хлора диоксида, хлораминов;

Использование хлорирования с преаммонизацией;

Аэрацию воды или использование гранулированного активированного угля в качестве наиболее эффективного способа удаления галоформных соединений из воды.

Кардинальным решением проблемы является замена хлорирования озонированием и обеззараживанием воды УФ-лучами.

Озонирование воды и его преимущества перед хлорированием. Озонирование является одним из перспективных методов обработки воды с целью ее обеззараживания и улучшения органолептических свойств. Сегодня почти 1000 водопроводных станций в Европе, преимущественно во Франции, Германии и Швейцарии, используют озонирование в технологической схеме обработки воды. В последнее время озонирование начали широко внедрять в США и Японии. В Украине озонирование используют на Днепровской водопроводной

Рис. 25. Технологическая схема озонаторной установки:

1 - воздухоприемник; 2 - воздушный фильтр; 3 - предупредительный клапан; 4 - пять приточных вентиляторов; 5 - воздушный вантуз; 6 - два охлаждаемых сушителя; 7 - четыре адсорбционные сушки; 8 - активированный глинозем; 9 - охлаждение нагревателей вентилятора; 10 - пятьдесят генераторов озона (изображено 2); 11 - сухой воздух; 12 - впуск охлаждающей воды; 13 - выпуск охлаждающей воды; 14 - озонированный воздух; 15 - три резервуара для диффузии озона; 16 - уровень воды

Станции Киева, в странах СНГ - на водопроводных станциях Москвы (Российская Федерация) и Минска (Беларусь).

Озон (Os) - газ бледно-фиолетового цвета, обладающий специфическим запахом, сильный окислитель. Молекула его весьма неустойчива, легко распадается (диссоциирует) на атом и молекулу кислорода. В промышленных условиях озоно-воздушную смесь получают в озонаторе с помощью "медленного" электрического разряда при напряжении 8000-10 000 В.

Принципиальная схема озонаторной установки приведена на рис. 25. Компрессор забирает воздух, очищает от пыли, охлаждает, сушит на адсорберах с силикагелем или активным алюминия оксидом (которые регенерируют продуванием горячим воздухом). Далее воздух проходит через озонатор, где образуется озон, который через распределительную систему подается в воду контактного резервуара. Доза озона, необходимая для обеззараживания, для большинства типов воды составляет 0,5-6,0 мг/л. Чаще всего для подземных водоисточников дозу озона принимают в пределах 0,75-1,0 мг/л, для поверхностных вод - 1-3 мг/л. Иногда для обесцвечивания и улучшения органо-лептических свойств воды необходимы высокие дозы. Продолжительность контакта озона с водой должна быть не менее 4 мин1. Косвенным показателем

*В соответствии с ГОСТом 2874-82 продолжительность обеззараживания воды с помощью озона составляла не менее 12 мин. Такая же продолжительность регламентируется и утвержденным МЗ России СанПиНом 2.1.4.559-96 "Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества". В соответствии с СанПиН "Вода питьевая. Гигиенические требования к качеству воды централизованного хозяйственно-питьевого водоснабжения", утвержденным МЗ Украины, продолжительность обработки озоном должна быть не менее 4 мин.*

Эффективности озонирования является наличие остаточных количеств озона на уровне 0,1-0,3 мг/л после камеры смешения.

Озон в воде распадается, образуя атомарный кислород: 03 -> 02 + О". Доказано, что механизм распада озона в воде сложен. При этом происходит ряд промежуточных реакций с образованием свободных радикалов (например, НО*), которые также являются окислителями. Более сильное окислительное и бактерицидное действие озона по сравнению с хлором объясняется тем, что его окислительный потенциал больше, чем у хлора.

С гигиенической точки зрения, озонирование является одним из наилучших методов обеззараживания воды. Вследствие озонирования достигается надежный обеззараживающий эффект, разрушаются органические примеси, а органолептические свойства воды не только не ухудшаются, как при хлорировании или кипячении, но и улучшаются: уменьшается цветность, исчезают лишние привкус и запах, вода приобретает голубой оттенок. Избыток озона быстро разлагается, образуя кислород.

Озонирование воды имеет следующие определенные преимущества перед хлорированием:

1) озон является одним из самых сильных окислителей, его окислительно-восстановительный потенциал выше, чем у хлора и даже хлора диоксида;

2) при озонировании в воду не вносится ничего постороннего и не происходит сколько-нибудь заметных изменений минерального состава воды и pH;

3) избыток озона через несколько минут превращается в кислород, и поэтому не влияет на организм и не ухудшает органолептические свойства воды;

4) озон, вступая во взаимодействие с соединениями, содержащимися в воде, не вызывает появления неприятных привкусов и запахов;

5) озон обесцвечивает и дезодорирует воду, содержащую органические вещества природного и промышленного происхождения, придающие ей запах, привкус и окраску;

6) по сравнению с хлором озон эффективнее обеззараживает воду от споровых форм и вирусов;

7) процесс озонирования в меньшей степени подвержен влиянию переменных факторов (pH, температуры и т. п.), что облегчает технологическую эксплуатацию водоочистных сооружений, а контроль за эффективностью не сложней, чем при хлорировании воды;

8) озонирование воды обеспечивает бесперебойность процесса обработки воды, отпадает необходимость перевозки и хранения небезопасного хлора;

9) при озонировании образуется значительно меньше новых токсических веществ, чем при хлорировании. Преимущественно это альдегиды (например, формальдегид) и кетоны, которые образуются в сравнительно небольших количествах;

10) озонирование воды дает возможность комплексной обработки воды, при которой может одновременно достигаться обеззараживание и улучшение органолептических свойств (цветность, запах и привкус).

Обеззараживание воды ионами серебра. Вода, обработанная серебром в дозе 0,1 мг/л, сохраняет высокие санитарно-гигиенические показатели в течение года. Вводить серебро можно непосредственно, путем обеспечения контакта воды с поверхностью самого металла, а также растворяя соли серебра в воде электролитическим способом. Л.А. Кульский разработал ионаторы ЛК-27, ЛК-28, в которых предусматривается анодное растворение серебра электрическим постоянным током.

Механизм действия химических дезинфектантов на микроорганизмы. Начальной стадией действия любого дезинфектанта на бактериальную клетку является его сорбция на клеточной поверхности (О.С. Савлук, 1998). После диффузии дезинфектантов сквозь клеточную стенку мишенями их действия становятся цитоплазматическая мембрана, нуклеоид, цитоплазма, рибосомы, мезосомы. Следующий этап - деградация макромолекулярных, в том числе белковых, структур бактериальной клетки в результате инактивации высокореактивноспособных функциональных групп (сульфгидрильных, аминных, фе-нольных, индольных, тиоэтиловых, фосфатных, кетогрупп, эндоциклических атомов азота и пр.). Наиболее чувствительными являются ферменты, содержащие SH-группы, т. е. тиоловые ферменты. Среди них наиболее сильно угнетаются дегидрогеназы, которые обеспечивают дыхание бактерий и локализованы преимущественно в мезосомах.

Среди органелл бактериальной клетки одной из наиболее повреждаемых химическими дезинфектантами является цитоплазматическая мембрана. Это обусловлено ее легкой доступностью для окислителя (сравнительно с другими органеллами) и наличием большого количества активных групп (в том числе сульфгидрильных), которые легко инактивируются. Поэтому для повреждения цитоплазматической мембраны необходимы сравнительно незначительные количества дезинфектантов. Ввиду важности функций цитоплазматической мембраны для жизнедеятельности бактериальной клетки, ее повреждение является чрезвычайно опасным.

Нуклеоид, основную часть которого представляет молекула ДНК, несмотря на наличие реактивноспособных групп, которые потенциально способны взаимодействовать с дезинфектантами, малодоступен для их молекул и ионов. Это вызвано, во-первых, трудностями транспорта дезинфектанта из водного раствора в нуклеоид через внешнюю и цитоплазматическую мембраны бактериальной клетки, а отсюда -- с непродуктивными потерями обеззараживающих агентов. Во-вторых, наличие первичной гидратной оболочки на поверхности ДНК становится препятствием для некоторых дезинфектантов. В частности, эта гидратная оболочка непроницаема для катионов.

Значительное количество дезинфектанта необходимо для инактивации рибосом и полисом, которые содержат рРНК, что обусловлено их высокой концентрацией в бактериальной клетке (по сравнению с ДНК).

Химические дезинфектанты должны иметь максимально широкий спектр бактерицидного действия и минимальную токсичность для организма. С учетом механизма взаимодействия с бактериальными клетками химические дезинфектанты разделены на две группы:

1. Вещества, которые поражают клеточные структуры за счет химико-физического воздействия, т. е. вещества полярной структуры, которые содержат липофильные и гидрофильные группы (спирты, фенолы, крезолы, детергенты, полипептидные антибиотики). Растворяют фрагменты клеточных структур - мембран, нарушая их целость и соответственно функции. Обладая широким спектром бактерицидного действия благодаря сходству строения клеточных мембран у разнообразных прокариотов, этот класс дезинфектантов эффективен лишь в высоких концентрациях - от 1 до 10 М.

2. Вещества, поражающие клеточные структуры за счет химического взаимодействия. Их можно разделить на 2 подкласса: 1) вещества, которые только тормозят рост бактерий; 2) вещества, вызывающие их гибель. Грань между ними достаточно условна и в большой степени определяется концентрацией. К дезинфектантам, которые вызывают гибель клеток, принадлежат почти все тяжелые металлы, образующие с сульфгидрильными группами тяжело диссоциируемые комплексы, а также циан-анионы, которые образуют тяжело диссоциируемые комплексы с железом, чем блокируют функцию терминального дыхательного фермента цитохромоксидазы. Дезинфектанты, которые тормозят рост бактерий, при взаимодействии с функциональными группами клеточных соединений или приводят к их превращению (обратимому в определенных условиях) в другие группы, или ингибируют их вследствие структурного подобия дезинфектантов с нормальными клеточными метаболитами.

Эффективность действия химических дезинфектантов зависит и от возможностей их транспорта через клеточные структуры к мишени в клетке. У грациликутных (грамотрицательных) и фирмакутных (грамположительных) бактерий оболочки имеют разное строение, причем основное отличие состоит в том, что грациликутные бактерии имеют дополнительную внешнюю прослойку, состоящую из фосфолипидов, липопротеинов и белков. И двух-, и трехслойная структуры оболочки обеспечивают высокую селективность проникновения извне в клетку чужеродных веществ.

Кроме транспортных ограничений, на эффективность химических дезинфектантов может влиять электролитный состав обеззараживаемой воды. Например, при использовании для дезинфекции катионов тяжелых металлов наличие некоторых анионов (С1~, Вг", I", SO^~, PO J" и пр.) и щелочная среда, может привести к образованию тяжелорастворимых плохо диссоциируемых соединений.

Взаимодействие дезинфектантов с метаболитами клетки и химическими соединениями, которые содержатся в ней, также может привести к изменению физико-химических свойств дезинфектанта. Так, по данным Л.А. Куль-ского (1988), внутриклеточная жидкость содержит почти 3 мг-экв/л анионов, до 100 мг-экв/л HPOj" и почти 20 мг-экв/л SOj", чего вполне достаточно для превращения многих дезинфектантов, например катионов тяжелых металлов, в малодиссоциированные соединения.

Механизм бактерицидного действия позволяет объяснить синергические эффекты, которые наблюдаются экспериментально при обеззараживании воды комбинациями химических дезинфектантов или путем физического влияния и действия химического дезинфектанта. С позиции рассмотренного механизма, действием одного из комбинации дезинфектантов нейтрализуется система "жертвенной защиты" бактериальной клетки, после чего другой дезинфектант получает практически беспрепятственный доступ к основным мишеням и, взаимодействуя с ними, инактивирует клетку.

Так, оптимальными бактерицидными свойствами должны обладать комбинации химических дезинфектантов, в которых один способен необратимо связывать сульфгидрильные группы белков оболочки, а другой, имеющий высокоселективные транспортные свойства, быстро диффундирует в цитоплазму клетки и, взаимодействуя с ДНК и РНК, инактивирует бактериальную клетку.Такими высокоэффективными комбинациями дезинфектантов являются системы С12: Н202, С12: 03, С12: Ag+, I2: Ag+ и т. п. При сочетании физического влияния и действия химического дезинфектанта в результате физического воздействия на оболочку бактериальной клетки происходит дезорганизация или частичное разрушение ее структуры. Это способствует более легкой транспортировке химического дезинфектан-та к мишеням клетки и ее дальнейшей инактивации. Применение комбинаций дезинфектантов очень эффективно в отношении инактивации бактериальных клеток-мутантов, которые находятся в клеточных популяциях в количестве ю-4-ю-".

Рассмотренный механизм бактерицидного действия химических дезинфектантов позволяет объяснить закономерности инактивации вирусов и бактериофагов. В частности, повышенная резистентность к химическим дезинфектан-там бактериофагов по сравнению с бактериальными клетками объясняется их пребыванием в цитоплазме бактерии и таким образом низкой доступностью для большинства химических дезинфектантов. Инактивация химическими де-зинфектантами вирусов и бактериофагов вне бактериальной клетки, возможно, осуществляется благодаря денатурации белковых оболочек вируса и взаимодействия с его ферментными системами, расположенными под белковыми оболочками.

Обеззараживание воды ультрафиолетовым (УФ) облучением. Обеззараживание воды УФ-лучами относится к физическим (безреагентным) методам. Безреагентные методы имеют ряд преимуществ, при их применении не изменяется состав и свойства воды, не появляются неприятные привкусы и запахи, отпадает необходимость в транспортировке и хранении реагентов.

Бактерицидное действие оказывают участок УФ-части оптического спектра в диапазоне волн от 200 до 295 нм. Максимум бактерицидного действия приходится на 260 нм. Такие лучи проникают через 25-сантиметровый слой прозрачной и бесцветной воды. Обеззараживается вода УФ-лучами достаточно быстро. После 1-2 мин облучения гибнут вегетативные формы патогенных микроорганизмов. Мутность и особенно цветность, окраска и соли железа, снижая проницаемость воды для бактерицидных УФ-лучей, замедляют этот процесс. То есть предпосылкой надежного обеззараживания воды УФ-лучами является предварительное ее осветление и обесцвечивание.

Обеззараживают УФ-облучением с помощью бактерицидных ламп преимущественно воды подземных водоисточников, коли-индекс которых не более 1000 КОЕ/л, содержание железа - не более 0,3 мг/л. Бактерицидные установки оборудуют на всасывающих и напорных линиях насосов II подъема в

Рис. 26. Установка для обеззараживания воды УФ-лучами (OB AKX-1):

А - разрез; б - схема движения воды по камере; 1 - смотровое окно; 2 - корпус; 3 - перегородки;

4 - подача воды; 5 - ртутно-кварцевая лампа ПРК-7; 6 - кварцевый чехол отдельных зданиях или помещениях. Если продуктивность водопроводной станции до 30 м3/ч, применяют установки с непогружным источником облучения в виде аргонно-ртутных ламп низкого давления. Если продуктивность станции составляет 30-150 м3/ч, то применяют установки с погружными ртут-но-кварцевыми лампами высокого давления (рис. 26).

При использовании аргонно-ртутных ламп низкого давления в воде не образуются токсические побочные продукты, тогда как под действием ртутно-кварцевых ламп высокого давления химический состав воды может изменяться за счет фотохимических превращений растворенных в воде веществ.

Обеззараживающий эффект бактерицидных УФ-лучей обусловлен преимущественно фотохимическими реакциями, вследствие чего возникают необратимые повреждения ДНК бактериальной клетки. Кроме ДНК, УФ-лучи повреждают и другие структурные части клетки, в частности рРНК, клеточные мембраны. Выход бактерицидной энергии составляет 11% при оптимальной длине большей части излучаемых волн.

Таким образом, бактерицидные лучи не денатурируют воду и не изменяют ее органолептических свойств, а также имеют более широкий спектр абиотического действия - они губительно влияют на споры, вирусы и яйца гельминтов, устойчивые к хлору. В то же время использование этого метода обеззараживания воды усложняет оперативный контроль эффективности, так как результаты определения микробного числа и коли-индекса воды можно получить только через 24 ч инкубации посевов, а экспрессного метода, который подобен определению остаточного свободного или связанного хлора или остаточного озона, в данном случае не существует.

Обеззараживание воды ультразвуком. Бактерицидное действие ультразвука объясняется главным образом механическим разрушением бактерий в ультразвуковом поле. Данные электронной микроскопии свидетельствуют о разрушении клеточной оболочки бактерий. Бактерицидный эффект ультразвука не зависит от мутности (в пределах до 50 мг/л) и цветности воды. Он распространяется как на вегетативные, так и на споровые формы микроорганизмов и зависит лишь от интенсивности колебаний.

Ультразвуковые колебания, которые могут быть использованы для обеззараживания воды, получают пьезоэлектрическим или магнитострикционным путем. Чтобы получить воду, отвечающую требованиям ГОСТа 2874-82 "Вода питьевая. Гигиенические требования и контроль за качеством", интенсивность ультразвука должна составлять около 2 Вт/см2, частота колебаний - 48 кГц в 1 с. Ультразвук частотой 20-30 кГц уничтожает бактерии за 2-5 с.

Термическое обеззараживание воды. Метод используют для обеззараживания небольшого количества воды в санаториях, больницах, на пароходах, поездах и пр. Полное обеззараживание воды и гибель патогенных бактерий достигается через 5-10 мин кипячения воды. Для этого типа обеззараживания используют специальные типы кипятильников.

Обеззараживание рентгеновским излучением. Метод предусматривает облучение воды коротковолновым рентгеновским излучением длиной волны 60-100 нм. Коротковолновое излучение глубоко проникает в бактериальные клетки, обусловливает их значительные изменения и ионизацию. Метод изучен недостаточно.

Обеззараживание вакуумированием. Метод предусматривает инактивацию бактерий и вирусов при пониженном давлении. Полный бактерицидный эффект достигается в течение 15-20 мин. Оптимальный режим обработки - при температуре 20-60 °С и давлении 2,2-13,3 кПа.

Другие физические методы обеззараживания, такие как обработка у-облу-чением, высоковольтными разрядами, электрическими разрядами малой мощности, переменным электрическим током, используют ограничено вследствие их высокой энергоемкости, сложности аппаратуры, а также из-за их недостаточной изученности и отсутствия информации о возможности образования вредных побочных соединений. Большинство из них сегодня находятся на стадии научных разработок.

Обеззараживание воды в полевых условиях. Система водоснабжения в полевых условиях должна гарантировать получение качественной питьевой воды, не содержащей возбудителей инфекционных болезней. Из технических средств, пригодных для улучшения качества воды в полевых условиях, особого внимания заслуживают тканево-угольные фильтры (ТУФ): портативные, транспортабельные, простые и высокопродуктивные.

ТУФ конструкции М.Н. Клюканова предназначены для временного использования (водоснабжения в полевых условиях, сельской местности, на

новостройках, во время экспедиций). Очищают и обеззараживают воду по методике М.Н. Клюканова путем одновременной коагуляции и дезинфекции повышенными дозами хлора (суперхлорирование) с дальнейшей фильтрацией через ТУФ (рис. 27). На тканевом фильтрующем слое задерживаются взвешенные частиц, то есть достигается осветление и обесцвечивание воды, а на угольном фильтрующем слое осуществляется дехлорирование.

Для коагуляции используют алюминия сульфат - A12(S04)3 в количестве 100- 200 мг/л. Доза активного хлора для обеззараживания воды (суперхлорирование) составляет не менее 50 мг/л. В воду одновременно вносят коагулянт и хлорную известь или ДТСГК (двутретиосновную соль гипо-

Хлорита кальция) в дозах 150 и 50 мг/л соответственно. В этом случае на коагуляцию не влияет щелочность воды:

А) с хлорной известью -

A12(S04)3 + 6СаОС12 + 6Н20 -> -> 2А1(ОН)3 + 3CaS04 + ЗСаС12 + 6HOCI;

Б) с ДТСГК -

A12(S04)3 + ЗСа(ОС1)2 2Са(ОН)2 + 2Н20 -> ->2А1(ОН)3 + 3CaS04 + 2Са(ОС1)2 + 2НОС1.

Обычно коагуляция происходит по реакции алюминия сульфата с гидрокарбонатами воды, которых должно быть не менее 2 мг-экв/л. В других случаях воду необходимо подщелачивать.

Через 15 мин после обработки приведенными выше реактивами отстоянную воду фильтруют через ТУФ. В очищенной воде определяют остаточный хлор и органолептические свойства.

Водопроводная сеть и сооружения на ней. Водопроводная сеть (распределительная система водопровода) представляет собой подземную систему труб, по которым вода под давлением (не менее 2,5-4 атм при пятиэтажной застройке), создаваемым насосной станцией II подъема, подается в населенный пункт и разводится на его территории. Она состоит из основных водоводов, по которым вода с водопроводной станции поступает в населенный пункт, и разветвленной сети труб, по которым вода подводится к водонапорным резервуарам, внешним водозаборным сооружениям (уличным колонкам, пожарным гидрантам), жилым и общественным зданиям. При этом основной водовод разветвляется на несколько магистральных, которые в свою очередь разветвляются на уличные, дворовые и домовые. Последние соединяются с системой труб внутреннего водопровода жилых и общественных зданий.

Рис. 28. Схема водопроводной сети: А - тупиковая схема; Б - кольцевая схема; а - насосная станция; б - водопровод; в - водонапорная башня; г - заселенные кварталы; д - разводящая сеть

По конфигурации водопроводная сеть может быть: 1) кольцевой; 2) тупиковой; 3) смешанной (рис. 28). Тупиковая сеть состоит из отдельных глухих линий, в которые вода поступает с одной стороны. При повреждении такой сети на каком-либо участке прекращается подача воды всем потребителям, которые подключены к линии, расположенной за точкой повреждения в направлении движения воды. В тупиковых концах распределительной сети вода может застаиваться, может появляться осадок, который служит благоприятной средой для размножения микроорганизмов. Тупиковую водопроводную сеть как исключение оборудуют на небольших поселковых и сельских водопроводах.

Наилучшей с гигиенической точки зрения является замкнутая водопроводная сеть, которая состоит из системы смежных замкнутых контуров, или колец. Повреждение на каком-либо участке не приводит к прекращению подачи воды, так как она может поступать по другим линиям.

Распределительная система водопровода должна обеспечить бесперебойную подачу воды во все точки ее потребления и предотвратить загрязнение воды на всем пути ее поступления от главных водопроводных сооружений до потребителей. Для этого водопроводная сеть должна быть водонепроницаемой. Загрязнение воды в водопроводной сети при централизованном водоснабжении вызывают: нарушение герметичности водопроводных труб, значительное снижение давления в водопроводной сети, что приводит к подсасыванию загрязнения в негерметичных участках, и наличие источника загрязнения вблизи участка нарушения герметичности водопроводных труб. Объединять сети хозяйственно-питьевого водопровода с сетями, подающими непитьевую воду (технический водопровод), недопустимо.

Водопроводные трубы изготавливают из чугуна, стали, железобетона, пластмасс и т. п. Трубы из полимерных материалов, а также внутренние антикоррозийные покрытия используют только после их гигиенической оценки и получения разрешения Министерства здравоохранения. Стальные трубы применяют на участках с внутренним давлением свыше 1,5 МПа, при пересечении с железнодорожными путями, автомобильными дорогами, поверхностными водоемами (реки), в местах пересечения хозяйственно-питьевого водопровода с канализацией. Они нуждаются в защите наружной и внутренней поверхностей от коррозии. Диаметр труб хозяйственно-питьевого водопровода в городских населенных пунктах должен быть не менее 100 мм, в сельских - более 75 мм. Герметичного соединения отдельных отрезков труб длиной 5-10 м достигают с помощью фланцев, раструбов или муфт (рис. 29). Фланцевые соединения применяют лишь при открытом (на поверхности земли) прокладывании труб, где они доступны для внешнего осмотра и проверки герметичности.

Прокладыванию водопроводных линий хозяйственно-питьевого водоснабжения должна предшествовать санитарная оценка территории не менее чем на 40 м в обе стороны при расположении водопровода на незастроенной территории и на 10-15 м - на застроенной. Почва, по которой будет проложена трасса водопровода, должна быть незагрязненной. Трассу не следует прокладывать по болотам, свалкам, кладбищам, скотомогильникам, то есть там, где почва загрязнена. Вдоль водопроводов необходимо организовать санитарно-за-щитную полосу (см. с. 129, 130).

Водопроводные трубы должны быть проложены на 0,5 м ниже уровня распространения в почве нулевой температуры (уровня замерзания почвы). При этом в зависимости от климатического района глубина заложения труб колеблется от 3,5 до 1,5 м. В южных регионах для предотвращения перегревания воды в летнее время глубина прокладывания водопроводных труб должна быть такой, чтобы слой почвы над трубой был толщиной не менее 0,5 м.

Водопроводные линии нужно прокладывать на 0,5 м выше канализационных. Если водопроводные трубы прокладываются на одном уровне с параллельно проложенными канализационными линиями, расстояние между ними должно составлять не менее 1,5 м при диаметре водопроводных труб до 200 мм и не менее 3 м - при диаметре свыше 200 мм. При этом необходимо использовать металлические трубы. Металлические водопроводные трубы применяют также в местах их пересечения с канализационными линиями. При этом водопроводные трубы следует прокладывать на 0,5 м выше канализационных. Как исключение в местах пересечения водопроводные трубы можно располагать ниже канализационных. При этом разрешают использовать только стальные водопроводные трубы, дополнительно защитив их специальным металлическим кожухом длиной не менее 5 м в обе стороны от пересечения в глинистых грунтах и не менее 10 м - в грунтах с высокой фильтрационной способностью (например, песчаных). Канализационные трубы на указанном участке должны быть чугунными.

На водоводах и линиях водопроводной сети устанавливают: поворотные затворы (засовы) для выделения ремонтных участков; вантузы - для выпуска воздуха во время работы трубопроводов; клапаны - для выпуска и впуска воздуха при освобождении трубопроводов от воды на время ремонта и последующего заполнения; выпуски - для сбрасывания воды при опорожнении трубопроводов; регуляторы давления, клапаны для защиты от гидравлических ударов, если неожиданно потребуется отключить или включить насосы и т. п. Длина ремонтных участков при прокладывании водопроводов в одну линию не должна превышать 3 км, в две линии и более - 5 км.

Запорную, регулировочную и охранную арматуру устанавливают в смотровых водопроводных колодцах. Смотровые колодцы также оборудуют во всех местах стыков основных, магистральных и уличных водопроводов. Колодцы - это размещенные под землей водонепроницаемые железобетонные шахты. Для спуска в смотровой колодец предусмотрен люк с герметично закрытой крышкой, которую утепляют в холодный период года; в стену вмонтированы чугунные или стальные скобы. Опасность загрязнения воды в водопроводной сети через смотровые колодцы возникает при заполнении шахты водой. Это может произойти в результате поступления воды через негерметичные стенки и дно, ливневых вод через негерметично закрытую крышку или воды из водопроводной сети через негерметичные стыки труб и арматуры. Во время снижения давления в сети вода, которая собралась в смотровом колодце, может подсасываться в трубы.

Водонапорные (запасные) резервуары предназначены для создания запаса воды, который компенсирует возможное несоответствие между подачей воды и ее потреблением в отдельные часы суток. Наполняют резервуары преимущественно ночью, а днем в часы интенсивного водопользования вода из них поступает в сеть, нормализуя давление.

Устанавливают водонапорные резервуары в наиболее высокой точке рельефа на башнях, возвышающихся над наиболее высокими зданиями населенного пункта (рис. 30). Территорию вокруг водонапорных башен ограждают. Резервуары должны быть водонепроницаемы, из железа или железобетона. Для очистки, ремонта и обеззараживания внутренней поверхности резервуара

Рис. 30. Водонапорная башня: а - внешний вид; б - разрез: I - подающе-разводящая труба; 2 - переливная труба

Предусмотрены люки с плотно закрытыми и запломбированными крышками. Для воздухообмена резервуаров оборудуют вентиляционные отверстия, закрытые сетками и защищенные от атмосферных осадков. На трубах, подающих и отводящих воду, устанавливают краны для отбора проб воды с целью контроля ее качества до и после резервуара. Водонапорные резервуары нуждаются в периодической (1-2 раза в год) дезинфекции.

На больших водопроводах запасные резервуары - резервуары чистой воды - оборудуют под землей. Из них воду подают в водопроводную сеть насосными станциями III подъема.

Водоразборные колонки. Население берет воду из водораспределительной системы или через домовые вводы и краны внутридомовой водопроводной сети, или через наружные водоразборные сооружения - колонки.

Уличные водоразборные колонки являются наиболее уязвимыми элементами водопровода. Известно немало случаев эпидемических вспышек инфекционных болезней, которые получили название эпидемии "одной колонки"

Существуют разные конструкции колонок, но наиболее распространенные - системы Черкунова и московского типа. Устанавливают их в районах застройки без ввода труб централизованного хозяйственно-питьевого водопровода в сооружения. При этом радиус обслуживания колонки должен быть не более 100 м. В последнее время в городах при централизованном водоснабжении с забором воды из поверхностных водоемов колонки широко применяют для организации бюветного артезианского водоснабжения1.

Водоразборная колонка системы Черкунова (рис. 31) состоит из наземной и подземной частей. Подземная часть (смотровой колодец) имеет вид шахты с водонепроницаемыми железобетонными стенками и дном. Там размещены эжектор (его устанавливают на пути движения воды из водопроводной магистрали во внутреннюю водяную трубку колонки) и сливной бачок с воздушной трубкой. В железобетонном перекрытии шахты расположен герметично закрытый люк. Наземная часть колонки имеет выводную трубку и ручку, которая штангой соединена с клапаном, расположенным перед эжектором на выходе воды из водопроводной магистрали. Вокруг колонки в радиусе 1,5-2 м оборудуют отмостку с наклоном от колонки, под выводной трубой - лоток для отведения воды, пролившейся во время пользования.

При нажатии ручки открывается клапан, и вода из водопроводной магистрали под давлением поднимается по водяной трубе и выливается через выводную трубу колонки. Когда ручку отпускают, клапан закрывается. Поскольку вода, оставшаяся в водяной трубе, в холодный период года замерзает и разрывает трубу, то предусмотрен ее слив в металлический бачок на дне смотрового колодца. При этом воздух из бачка через воздушную трубку поступает в шахту. При повторном нажатии ручки и открывании клапана вода, выходя под давлением через суженное отверстие водопроводной магистрали в водяную трубу, приводит в действие эжектор. Эффект эжекции (подсасывания), который возникает в первые секунды после открытия клапана и длится недолго, подсасывает воду из бачка в водяную трубку. Бачок через воздушную трубу заполняется воздухом из шахты. Таким образом, первые порции воды, поступающие из колонки сразу после нажатия ручки, являются смесью воды из водопроводной сети и сливного бачка. Вследствие подсасывания воды из бачка давление в эжекторе выравнивается, эффект эжекции исчезает, после чего к потребителю поступает вода исключительно из водопроводной сети. Когда ручку отпускают, бачок снова наполняется водой из водяной трубки колонки.

Реальная угроза загрязнения воды в колонке может возникнуть в том случае, если шахта колонки заполнится водой. Пути поступления воды в шахту могут быть различными. Так, атмосферные осадки и поверхностный сток

*Бюветное водоснабжение осуществляется за счет локального водопровода. Его элементами являются: 1) подземный межпластовый (желательно, артезианский) источник I класса по ГОСТу 2761-84; 2) артезианская скважина; 3) подземная насосная станция с погружным центробежным насосом; 4) напорный водовод; 5) бювет с водоразборными колонками (преимущественно московского типа). Бюветное артезианское водоснабжение широко распространено в Киеве, где централизованное водоснабжение осуществляется за счет Днепровского и Деснянского речных и артезианского водопроводов.*

Рис. 31. Водоразборная колонка системы Черкунова: 1 - деталь эжектора и бачка; 2 - инжектор; 3 - муфта; 4 - суженный конец водопроводной трубы; 5 - противовес; 6 - лоток; 7 - штукатурка; 8 - настил из досок; 9 - воздушная трубка; 10 - водяная труба; 11 -эжектор; 12 - скобы; 13 - штанга; 14 - песок; 15 - клапан (38 мм); 16 - запорный кран; 17 - бачок

Могут проникать в смотровой колодец через неплотное перекрытие или негерметичный люк. При нарушении целости железобетонных стенок и дна шахты вода может поступить из почвы (почвенная влага, которая образуется при фильтрации атмосферных и талых вод), особенно при высоком уровне стояния грунтовых вод. Шахта может быть залита водой, поступившей из водопроводной сети. Это происходит при снижении давления в сети ниже 1 атм. При этом

Зрачности и повышение цветности ухудшают органолептические свойства колодезной и родниковой воды, ограничивают ее использование, а иногда свидетельствуют о загрязнении воды в результате погрешностей в оборудовании водозаборных сооружений (колодцев или каптажей родников), неправильного их размещения относительно потенциальных источников загрязнения, или неправильной эксплуатации. Иногда причиной снижения прозрачности и повышения цветности колодезной и родниковой воды может быть высокая концентрация солей железа (свыше 1 мг/л).

В колодезной воде, которая является эпидемически безопасной, индекс БГКП обычно не превышает 10 (коли-титр не менее 100), микробное число - не более 400 в 1 см3. При таких санитарно-микробиологических показателях в воде не определяют возбудителей кишечных инфекций, имеющих водный фактор передачи.

Содержание нитратов в колодезной и родниковой воде не должно превышать 45 мг/л, в перерасчете на азот нитратов - 10 мг/л. Превышение указанной концентрации может обусловить водно-нитратную метгемоглобинемию (острый токсический цианоз) у младенцев, находящихся на искусственном вскармливании, вследствие использования воды с высоким содержанием нитратов для приготовления питательных смесей. Незначительное повышение уровня метгемоглобина в крови без угрожающих признаков гипоксии может наблюдаться и у детей в возрасте от 1 до 6 лет, а также у людей пожилого возраста.

Увеличение содержания аммонийных солей, нитритов и нитратов в колодезной и родниковой воде может свидетельствовать о загрязнении почвы, через которую фильтруется питающая источник вода, а также о том, что одновременно с этими веществами могли попасть патогенные микроорганизмы. При свежем загрязнении в воде увеличивается содержание аммонийных солей. Наличие нитратов в воде при условии отсутствия аммиака и нитритов свидетельствует о сравнительно давнем поступлении в воду азотсодержащих веществ. При систематическом загрязнении в воде выявляют как аммонийные соли, так и нитриты и нитраты. К увеличению содержания нитратов в грунтовых водах также приводит интенсивное использование в сельском хозяйстве азотных удобрений. Повышение перманганатной окисляемости грунтовой воды свыше 4 мг/л свидетельствует о возможном загрязнении легкоокисляющимися веществами минерального и органического происхождения.

Одним из показателей загрязнения местных водоисточников водоснабжения являются хлориды. В то же время высокие концентрации (свыше 30-50 мг/л) хлоридов в воде могут быть вызваны их вымыванием из солончаковых почв. При таких условиях в 1 л воды могут содержаться сотни и тысячи миллиграммов хлоридов. Вода с содержанием хлоридов свыше 350 мг/л имеет солоноватый вкус и отрицательно влияет на организм. Для правильной оценки происхождения хлоридов следует учесть их наличие в воде соседних однотипных водоисточников, а также другие показатели загрязнения.

В отдельных случаях каждый из этих показателей может иметь и другую природу. Например, органические вещества могут быть растительного происхождения. Поэтому воду из местного источника можно считать загрязненной только при следующих условиях: 1) повышен не один, а несколько санитарно-химических показателей загрязнения; 2) одновременно повышены санитарно-микробиологические показатели эпидемической безопасности - микробное число и коли-индекс; 3) возможность загрязнения подтверждается данными санитарного обследования колодца или каптажа родника.

Гигиенические требования к размещению и устройству шахтных колодцев. Шахтный колодец - это сооружение, при помощи которого население набирает грунтовую воду и поднимает ее на поверхность. В условиях местного водоснабжения одновременно выполняет функции водозаборного, водоподъемного и водоразборного сооружений.

При выборе места размещения колодца, кроме гидрогеологических условий, необходимо учитывать санитарные условия местности и удобство пользования колодцем. Расстояние от колодца до потребителя не должно превышать 100 м. Колодцы размещают по уклону местности выше всех источников загрязнения, расположенных и на поверхности, и в толще грунта. При соблюдении этих условий расстояние между колодцем и источником загрязнения (площадкой для подземной фильтрации, выгребом, компостом и пр.) должно быть не менее 30-50 м. Если потенциальный источник загрязнения расположен выше по рельефу местности, чем колодец, то расстояние между ними в случае мелкозернистой почвы должно быть не менее 80-100 м, а иногда даже 120-150 м.

Научно обосновать величину санитарного разрыва между колодцем и потенциальным источником загрязнения почвы можно по формуле Салтыкова - Белицкого, в которой учтены местные почвенные и гидрогеологические условия. Расчет основывается на том, что загрязнения, продвигаясь вместе с грунтовыми водами в направлении колодца, не должны достичь места водозабора, то есть должно быть достаточно времени для обеззараживания загрязнения. Расчет производят по формуле:

Где L - допустимое расстояние между источником загрязнения и точкой водозабора (м), к - коэффициент фильтрации1 (м/сут) определяют экспериментально либо по таблицам, п, - уровень подземных вод в районе загрязнения водоносного горизонта, определяется экспериментально нивелиром; п2 - уровень воды водоносного горизонта в точке водозабора; t - необходимое время движения воды между источником загрязнения и точкой водозабора (это время принимается равным для бактериальных загрязнений 200 сут, а для химических - 400 сут); ц - активная пористость почвы2.

*Коэффициент фильтрации - расстояние, которое проходит вода в почве, двигаясь вертикально вниз под действием силы тяжести. Зависит от механического состава почвы. Составляет для среднезернистых песков - 0,432, для мелкозернистых - 0,043, для суглинков - 0,0043 м/сут.*

*Активная пористость - это соотношение объема пор образца водовмещающей породы к общему объему образца. Зависит от механического состава грунта: для крупнозернистых песков - 0,15, для мелкозернистых - 0,35.*

Эта формула пригодна для расчетов лишь в том случае, когда водовмеща-ющей породой являются мелко- и среднезернистые пески. Если водовмещаю-щей слой представлен крупнозернистыми песками или даже гравелистыми грунтами, к найденой величине следует добавить коэффициент запаса А:

Коэффициент определяют по формуле: А = ai + а2 + а3, где а! - радиус воронки депрессии1 максимально составляет для крупнозернистых песков 300- 400 м, для среднего гравия - 500-600 м; а2 - расстояние, на которое распространяется факел загрязнения (в зависимости от мощности источника загрязнения колеблется от 10 до 100 м); а3 - величина охранной зоны, нарушающей гидравлическую связь между факелом загрязнения и периферическим концом радиуса воронки депрессии (10-15 м).

Колодец - это вертикальная шахта квадратного или круглого сечения (площадью приблизительно 1 м2), которая доходит до водоносного слоя (рис. 33). Дно оставляют открытым, а боковые стенки закрепляют водонепроницаемым материалом (бетон, железобетон, кирпич, дерево и др.). На дно колодца насыпают слой гравия толщиной 30 см. Стенки колодца должны подниматься над поверхностью земли не менее чем на 1 м. Вокруг колодца оборудуют глиняный замок и отмостку для предупреждения просачивания вдоль стенок колодца (снаружи) загрязнений, которые вымываются из поверхностных слоев почвы. Для строительства глиняного замка вокруг колодца выкапывают яму глубиной 2 м, шириной 1 м и заполняют ее жирной глиной. Для отмостки вокруг наземной части колодца поверх глиняного замка в радиусе 2 м делают подсыпку песком и заливают цементом или бетоном с уклоном для отведения в сторону от колодца атмосферных осадков и воды, разливающейся при пользовании колодцем. Для отведения ливневых вод устраивают перехватывающую канаву. В радиусе 3-5 м вокруг общественных колодцев должно быть сделано ограждение для ограничения подъезда транспорта.

Подъем воды из колодца желательно осуществлять при помощи насоса. Если это невозможно, то оборудуют коловорот с закрепленным на нем общественным ведром. Пользоваться собственным ведром недопустимо, так как с этим связана наибольшая опасность загрязнения воды в колодце. Сруб колодца плотно закрывают крышкой и над срубом и коловоротом делают навес.

Каптажем называется специальное сооружение для сбора родниковой воды (рис. 34). Место выхода воды должно быть ограждено водонепроницаемыми стенками и закрыто сверху. Чтобы в родник не попадали поверхностные стоки, устраивают отводные канавы. Вокруг стенок каптажа оборудуют замок из жирной глины и отмостку. Материалами для каптажных сооружений могут

*Воронка депрессии - зона пониженного давления, формирующаяся в водовмещающей породе при откачивании воды из колодца вследствие сопротивления, которое оказывает порода. Зависит от механического состава породы и скорости откачивания воды.*

Рис. 33. Общий вид шахтного колодца: 1 - донный трехслойный фильтр; 2 - железобетонные кольца из пористого бетона; 3 - железобетонные кольца; 4 - крышка; 5 - лазовые скобы; 6 - каменная отмостка; 7 - коловорот; 8 - глиняный замок; 9 - крышка навеса

Быть бетон, железобетон, кирпич, камень, дерево. Чтобы вода в каптаже не поднималась выше определенного уровня, на этом уровне оборудуют переливную трубу.

Санация шахтных колодцев. Санация шахтного колодца - это комплекс мероприятий по ремонту, очистке и дезинфекции колодца с целью предупреждения загрязнения воды в нем.

С профилактической целью санацию колодца проводят перед вводом его в эксплуатацию, а далее, если эпидемическая ситуация благоприятна, нет загрязнения и жалоб от населения на качество воды, - периодически раз в год после очистки и текущего ремонта. Обязательным является проведение

Рис. 34. Простой каптаж нисходящего родника: 1 - водоносный слой; 2 - водоупорный слой; 3 - гравийный фильтр; 4 - приемная камера; 5 - смотровой колодец; 6 - люк смотрового колодца с крышкой;7 - вентиляционный люк;8 - перегородка; 9 - выпуск в канализацию или ров; 10 - труба, подающая воду потребителю

Профилактической дезинфекции после капитального ремонта колодца. Профилактическая санация состоит из двух этапов: 1) очистки и ремонта; 2) дезинфекции.

Если имеются эпидемиологические основания считать колодец очагом распространения острых желудочно-кишечных инфекционных заболеваний, а также, если имеется подозрение (тем более данные) о загрязнении воды фекалиями, трупами животных, другими посторонними предметами, санацию проводят по эпидпоказаниям. Санацию по эпидпоказаниям проводят в три этапа: 1) предварительная дезинфекция; 2) очистка и ремонт; 3) заключительная дезинфекция.

Методика санации шахтных колодцев. Санацию по эпидпоказаниям начинают с дезинфекции подводной части колодца объемным способом. Для этого определяют объем воды в колодце и рассчитывают необходимое количество хлорной извести или кальция гипохлорита по формуле:

Где Р - количество хлорной извести или кальция гипохлорита (г), Е - объем воды в колодце (м3); С - заданная концентрация активного хлора в воде колодца (100-150 г/м3), достаточная для обеззараживания стенок сруба и гравийного фильтра на дне, H - содержание активного хлора в хлорной извести или в кальции гипохлорите (%); 100 - постоянный числовой коэффициент. Если вода в колодце очень холодная (+4 °С...+6 °С), количество хлорсодержащего препарата для дезинфекции колодца объемным способом увеличивают вдвое. Рассчитанное количество дезинфектанта растворяют в небольшом объеме воды в ведре до получения равномерной смеси, осветляют отстаиванием и выливают этот раствор в колодец. Воду в колодце хорошо перемешивают в течение 15-20 мин шестами или частым опусканием и подниманием ведра на тросе. Затем колодец закрывают крышкой и оставляют на 1,5-2 ч.

После предварительной дезинфекции из колодца полностью откачивают воду насосом или ведрами. Перед тем как человек спускается в колодец, проверяют, не накопился ли там С02, для чего в ведре на дно колодца опускают зажженную свечу. Если она гаснет, то работать можно только в противогазе.

Затем производят очистку дна от ила, грязи, мусора и случайных предметов. Стенки сруба очищают механическим путем от загрязнений и обрастаний и при необходимости ремонтируют. Выбранные из колодца грязь и ил помещают в яму на расстоянии не менее 20 м от колодца на глубину 0,5 м, заливают 10% раствором хлорной извести или 5% раствором кальция гипохлорита и закапывают.

Для окончательной дезинфекции наружную и внутреннюю поверхность сруба орошают из гидропульта 5% раствором хлорной извести или 3% раствором кальция гипохлорита из расчета 0,5 дм3 на 1 м2 площади. Затем ждут, пока колодец наполнится водой до обычного уровня, после чего дезинфицируют подводную его часть объемным способом из расчета 100-150 мг активного хлора на 1 л воды в колодце в течение 6-8 ч. По истечении указанного времени контакта берут пробу воды из колодца и проверяют ее на наличие остаточного хлора или делают пробу на запах. Если запах хлора отсутствует, добавляют 1/4 или 1/3 от первоначального количества препарата и оставляют еще на 3-4 ч. После этого отбирают пробу воды и направляют в лабораторию территориальной СЭС для бактериологического и физико-химического анализа. Должно быть проведено не менее 3 исследований, через 24 ч каждое.

Дезинфекцию колодца с профилактической целью начинают с определения объема воды в колодце. Затем откачивают воду, чистят и ремонтируют колодец, дезинфицируют наружную и внутреннюю части сруба методом орошения, выжидают, пока колодец наполнится водой, и дезинфицируют подводную часть объемным способом.

Обеззараживание воды в колодце с помощью дозирующих патронов. Среди мероприятий по оздоровлению местного водоснабжения важное место занимает непрерывное обеззараживание воды в колодце при помощи дозирующих патронов. Показаниями к этому являются: 1) несоответствие микробиологических показателей качества воды в колодце санитарным требованиям; 2) наличие признаков загрязнения воды по санитарно-химическим показателям (обеззараживают до выявления источника загрязнения и получения положительных результатов после санации); 3) недостаточное улучшение качества воды после дезинфекции (санации) колодца (коли-титр ниже 100, коли-индекс выше 10); 4) в очагах кишечных инфекций в населенном пункте после дезинфекции колодца вплоть до ликвидации очага. Обеззараживают воду в колодце с помощью дозирующего патрона только специалисты территориальной СЭС, обязательно контролируя при этом качество воды по санитарно-химическим и микробиологическим показателям.

Дозирующие патроны представляют собой керамические емкости цилиндрической формы вместимостью 250, 500 или 1000 см3. Изготавливают их из: шамотной глины, инфузорной земли (рис. 35). В патроны засыпают хлорную известь или кальция гипохлорит и погружают их в колодец. Количество

Рис. 35. Дозирующий патрон

Необходимых для обеззараживания воды хлорсодержащих веществ зависит от многих факторов. К ним относятся: исходное качество грунтовой воды, характер, степень загрязнения и объем воды в колодце, интенсивность и режим водоразбора, скорость поступления грунтовых вод, дебит колодца. Количество активного хлора зависит и от санитарного состояния колодца: количества придонного ила, степени загрязнения сруба и т. п. Известно, что возбудители кишечных инфекций в придонном иле находят благоприятные условия и длительное время сохраняют жизнедеятельность. Вот почему длительное обеззараживание (хлорирование) воды при помощи дозирующих патронов не может быть эффективным без предварительной очистки и дезинфекции колодца.

Количество кальция гипохлорита активностью не ниже 52%, необходимое для длительного обеззараживания воды в колодце, рассчитывают по формуле:

X, = 0,07 Х2 + 0,08 Х3+ 0,02 Х4 + 0,14 Х5,

Где X, - количество препарата, необходимое для загрузки патрона (кг), Х2 - объем воды в колодце (м3), рассчитывают как произведение площади сечения колодца на высоту водяного столба; Х3 - дебит колодца (м3/ч), определяют экспериментально; Х4 - водоразбор (м3/сут), устанавливают путем опроса населения; Х5 - хлорпоглощаемость воды (мг/л), определяют экспериментально.

Формула дана для расчета количества кальция гипохлорита, содержащего 52% активного хлора. В случае дезинфекции хлорной известью (25% активного хлора) расчетное количество препарата следует увеличить в 2 раза. При обеззараживании воды в колодце в зимнее время расчетное количество препарата также увеличивают вдвое. Если содержание активного хлора в дезинфек-танте ниже расчетного, то производят перерасчет по формуле:

Где Р - количество хлорной извести или кальция гипохлорита (кг); X! - рассчитанное по предыдущей формуле количество кальция гипохлорита (кг); Н, - содержание активного хлора в кальции гипохлорите, принятое в расчет (52%о); Н2 - фактическое содержание активного хлора в препарате - кальции гипохлорите или хлорной извести (%). Кроме того, при обеззараживании воды в колодце в зимнее время расчетное количество препарата увеличивают вдвое. Для определения дебита - количества воды (в 1 м3), которое можно получить из колодца за 1 ч, в течение определенного времени быстро откачивают

Из него воду, измеряя ее количество, и регистрируют время восстановления исходного уровня воды. Рассчитывают дебит колодца по формуле:

Где D - дебит колодца (м3/ч), V - объем откачанной воды (м3); t - суммарное время, состоящее из времени откачивания и восстановления уровня воды в колодце (мин); 60 - постоянный коэффициент.

Перед заполнением патрон предварительно выдерживают в воде в течение 3-5 ч, затем заполняют рассчитанным количеством дезинфицирующего хлор-содержащего препарата, добавляют 100-300 см3 воды и тщательно перемешивают (до образования равномерной смеси). После этого патрон закрывают керамической или резиновой пробкой, подвешивают в колодце и погружают в толщу воды приблизительно на 0,5 м ниже верхнего уровня воды (на 0,2-0,5 м от дна колодца). Благодаря пористости стенок патрона активный хлор поступает в воду.

Контроль за концентрацией активного остаточного хлора в воде колодца проводят через 6 ч после погружения дозирующего патрона. Если концентрация активного остаточного хлора в воде ниже 0,5 мг/л, необходимо погрузить дополнительный патрон и провести затем соответствующий контроль эффективности обеззараживания. Если концентрация активного остаточного хлора в воде значительно выше 0,5 мг/л, извлекают один из патронов и проводят соответствующий контроль эффективности обеззараживания. В дальнейшем контролируют концентрацию активного остаточного хлора не реже одного раза в неделю, проверяя также микробиологические показатели качества воды.

  • При выполнении очистки воды необходимо использовать методы обеззараживания, которые позволяют устранить опасность от оставшихся в ней болезнетворных бактерий после фильтрации и коагулирования. Основными из них являются: хлорирование, озонирование, применение солей тяжёлых металлов и физические методы воздействия (ультразвук и ультрафиолет). На крупных очистительных сооружениях используют хлорирование и очистку хлорсодержащими веществами. Однако, настолько ли эффективен данный метод и безопасен?

    Использование хлора и содержащих его веществ

    Суть этого метода обеззараживания воды заключается в создании условий для протекания химических реакций окислительно-восстановительного типа. Под действием хлора на органические соединения происходит нарушение обмена веществ клеток бактерий, что приводит к их гибели.

    Эффективность реагента зависит от наличий свободного или связанного хлора в его составе, а также от его концентрации. Оптимальным вариантом считается совпадение количества реагента с концентрацией бактерий, что приведёт к полному окислению всех примесей различного происхождения. В случае перерасхода хлора возникают в воде хлопья и комочки, образованные путём адсорбции взвешенных веществ. В результате оказывается, что внутри них бактерии и микробы остались в защищённом нетронутом состоянии, что неприемлемо.

    Во время процесса обеззараживания воды происходит разрушение, разложение или минерализация примесей. При наличии в составе стоков растворимых и нерастворимых элементов в ходе реакции могут возникать неприятные запахи из-за распада хлорсодержащих продуктов, а также органических веществ и организмов. Наиболее неприятными считаются фенолы и ароматические соединения, так как вкус воды изменяется при их наличии всего в одной десятимиллионной части. Ситуация может ухудшится еще больше при повышении температуры в виде образования устойчивого запаха.

    Выполнять фильтрацию и осветление стоков также помогают и хлорсодержащие компоненты:

    1. Хлорноватистая кислота является слабой и поэтому её действие должно быть обеспечено активностью окружающей среды и подходящим типом химической реакции.
    2. Двуокись хлора представляет наибольший интерес при обеззараживании, так как после обработки не образуются фенолы, а соответственно и гарантировано отсутствие неприятного запаха.

    Для избежания появления запаха и привкуса воды выполняют хлорирование с аммонизацией. В процессе гидролиза хлораминов за счёт медленной скорости протекания реакции и проявляется антибактериальное свойство.

    Однако, несмотря на все преимущества хлорирования, у данного метода есть серьёзный недостаток, который заключается в отсутствии полной стерильности воды. В воде остаются в единичных количествах спорообразующие бактерии и некоторые виды опасных вирусов. Для их уничтожения требуется значительно повышать концентрацию хлора и время контакта.

    Озонирование воды

    Способ озонирования заключается в высокой диффузии озона сквозь оболочки микроорганизмов, растворённых в воде, с последующим их окислением и гибелью. Обладая высоким антибактериальным действием, озон способен разрушать болезнетворные бактерии в несколько раз быстрее хлора при прочих одинаковых условиях. Максимальная эффективность достигается при уничтожении вегетативных бактерий. Спорообразующие микроорганизмы проявляют высокую стойкость и уничтожаются гораздо хуже.

    Важным моментом в данном методе является подбор концентраций озона в воде, так как от этого напрямую зависит какие бактерии будут уничтожены, а какие нет. Например, для уничтожения моллюсков дрейссены потребуется доза в 3 мг/л, что является полностью безопасным для дальнейшего существования водяных клещей и хиромонид. Поэтому необходимо проведение химического состава воды и определение типов микроорганизмов, которые в ней находятся, то есть степень загрязнённости воды. Обычно доза находится в пределах 0,5-4,0 мг/л.

    Степень обеззараживания воды и осветления озоном существенно ухудшается при повышенной мутности. Однако степень очистки практически не зависит от температуры воды.

    Среди преимуществ метода можно выделить такие:

    1. Улучшение вкуса воды и полное отсутствие дополнительных химически активных веществ или их соединений.
    2. Отсутствие необходимости проведения дополнительных действий при превышении концентрации озона, как, например, в случае хлорирования.
    3. Возможность создания озона за счёт химической реакции прямо в водном растворе или при помощи озонаторов.

    Судя из вышесказанного, метод является безопасным и эффективным, но его распространённому применению при очистке стала необходимость использования большого количества электричества, а также сложность технической реализации.

    Использование ионов серебра

    Обеззараживание воды с применением ионов серебра основано на возникающих химических процессах, которые до конца не изучены. Однако были выдвинуты следующие гипотезы:

    1. Ионы нарушают обмен веществ бактерий с внешней средой, что приводит к их гибели.
    2. Ионы за счёт адсорбции на поверхности микроорганизмов выполняют каталитическую роль и окисляют плазму в присутствии кислорода.
    3. Ионы проникают внутрь вредоносной клетки и надёжно соединяются с протоплазмой, нарушая её функциональность и, таким образом, разрушая её.

    Скорость химической реакции увеличивается при повышении концентрации реагирующих веществ и увеличении температуры среды. При нагревании на 10 0 скорость реакции возрастает в несколько раз по истечении некоторого промежутка времени. Поэтому полное обеззараживание при оптимальной скорости и в минимальные сроки достигается при нагреве до определённого температурного уровня, который зависит от степени загрязнений.

    Также для очистки воды применяют металлическое серебро, поскольку в ней имеются ионы серебра с незначительной концентрацией, которые и выполняют роль очистки. Их накопление стимулируется наличием увеличенной площади контакта с металлическим серебром. Поэтому при использовании такого метода добиваются увеличения поверхности контакта за счёт осаждения на материал с развитой площадью, через который и пропускают воду.

    Технически такой способ реализуется путём создания электролитических процессов, когда в роли материала анода выступает серебро. При помощи регулирования электрических параметров удаётся добиться нужной концентрации ионов и с высокой точностью регулировать протекание процесса обеззараживания воды. Чтобы точно дозировать ионы серебра применяют ионаторы. Концентрацию регулируют при помощи оценки содержания солей, которые являются причиной изменения потенциала между электродами. Поэтому «серебряную воду» приготавливают отдельно.

    При сравнении метода ионизирования серебром с хлорированием, учёные выделяют первый, поскольку он способен убивать бактерии и микроорганизмы более эффективно. Однако и ему достаточно сложно справляться некоторыми типами бактерий, например, коли (кишечная палочка). Она является самой устойчивой и поэтому по её наличию в растворе можно качественно судить о степени очистки воды. Также как и при озонировании на скорость очистки влияет мутность раствора и количество взвешенных частиц.

    Обеззараживание воды ультразвуковыми волнами

    Обеззараживание ультразвуковым способом основано на создании упругих волн, частота которых превышает 20 кГц и обладает определённой интенсивностью. Они меняют свойства жидкости и разрушают органические вещества путём повышения окружающего их давления в 10 5 атмосфер (эффект кавитации). То есть гибель бактерий наступает не из-за протекающей химической реакции, а вследствие механического разрушения, вызывающего распад белковой составляющей протоплазмы. Наиболее уязвимы одноклеточные микроорганизмы, моногенетические сосальщики а также и более крупные организмы, загрязняющие воду.

    Существует несколько способов создания излучения:

    1. Пъезоэлектрический эффект. При создании электрического поля кристаллы кварца способны деформироваться и излучать при этом ультразвуковые волны. Применяют кварцевые пластины одинаковой толщины и определённой формы, отшлифованные и плотно приложенные с двух сторон толстой стальной плиты. Во время подачи тока на массивную плиту в электрическом поле она излучает ультразвук.
    2. Магнитострикционный эффект. Основан на намагничивании ферромагнитных предметов под действием магнитного поля, меняющего их геометрические размеры и объём с последующим сдвигом осевой линии. Эффекта зависит от угла приложения поля относительно оси кристалла, если речь идёт о монокристалле. По измерениям уровня ультразвука данный способ является эффективнее первого.

    В ходе лабораторных исследований было установлено, что ультразвук способен уничтожать за время до двух минут более 95% кишечных палочек. Однако при этом стоит понимать, что одновременно с вредоносными бактериями происходит уничтожение и полезных. В частности было установлено нарушение флоры и фауны морского планктона. То есть можно сделать вывод о том, что метод весьма эффективен, но вода при его воздействии теряет свои полезные свойства, что является его основным недостатком.

    Термическая обработка

    Метод основан на кипячении воды путём повышения температуры выше 100 0 С. Достаточно эффективный метод обеззараживания воды, но медленный, по сравнению с другими способами, и требующий значительных затрат энергии на нагрев. Поэтому его применяют только в тех случаях, когда объёмы воды минимальны. Он простой и не требующий особых навыков и знаний, поэтому получил распространение для получения небольших количеств питьевой воды в столовых, больницах и т. д. Из-за громоздкости и экономической нецелесообразности в промышленных или малых масштабах его не применяют.

    Из недостатков можно выделить тот факт, что термообработка воды не способна удалить болезнетворные споры. Поэтому этот метод нельзя использовать при обеззараживании водных растворов с неизвестным химическим составом.

    Ультрафиолетовые лампы

    Обеззараживание ультрафиолетом достигается за счёт применения лучей с длиной волны в интервале 2000-2950 А, которые изменяют формы бактерий, полностью уничтожая их. Эффект зависит от сообщённой излучением энергии, содержания взвеси в растворе, количестве микроорганизмов, мутности и поглощающей способности водной среды. Поэтому принято различать такие степени влияния воздействия облучения:

    1. Безопасная доза облучения, которая не вызывает гибель бактерий.
    2. Минимальная доза, которая вызывает гибель части бактерий конкретного вида. Однако бактерии, которые находились в состоянии покоя, начинают активно расти и размножаться в специально стимулируемой среде. При длительном воздействии происходит их вымирание.
    3. Полная доза, которая приводит к обеззараживанию воды.

    Кишечные палочки являются наиболее устойчивыми к УФ излучению. Поэтому по их количеству можно качественно определять степень дезинфекции воды в условиях отсутствия спорообразующих бактерий. При их наличии критерием чистоты воды служит возникновение сопротивляемости излучению бактерий, образующих споры.

    Источниками УФ излучения являются ртутные, аргонно-ртутные или ртутно-кварцевые лампы. Эффективность и целесообразность их применения напрямую зависит от коэффициента поглощения. Лампы с низким давлением обладают максимальным бактериальным действием, но имеют мощность до 30 Вт, а с большим - меньшим эффектом, но повышенной мощностью.

    Преимуществами метода являются:

    1. Отсутствие необходимости использования физических или химических свойств воды или применения реагентов.
    2. Отсутствие осадков и примесей.
    3. Неизменность цвета и вкуса воды, а также отсутствие посторонних запахов.
    4. Простота реализации.

    То есть УФ метод является наиболее безопасным и эффективным при выполнении процесса обеззараживания воды и полностью лишён недостатков всех вышеописанных способов. Однако перед его использованием необходимо выполнить предварительную очистку, чтобы снизить содержание примесей.

    При необходимости очистки воды с выполнением обеззараживания стоит обращаться к профессионалам, которые смогут оценить состав и грамотно подобрать наиболее эффективные методы. Компания ЭГА сможет выполнить поставленные задачи в кратчайшие сроки благодаря слаженным действиям команды опытных специалистов. В результате воду можно будет безопасно использовать в качестве питьевой.

    Видео

    Вода является неотъемлемой часть нашей жизни. Ежедневно мы выпиваем определенный объем и часто даже не задумываемся о том, что обеззараживание воды и ее качество важная тема. А зря, тяжелые металлы, химические соединения и болезнетворные бактерии способны вызвать необратимые изменения в человеческом организме. На сегодняшний день гигиене воды уделяется серьезное внимание. Современные методы обеззараживания питьевой воды способны очистить ее от бактерий, грибков, вирусов. Они придут на помощь и в том случае, если вода плохо пахнет, имеет посторонние привкусы, цветность.

    Предпочтительные методы повышения качества выбирают в зависимости от содержащихся в воде микроорганизмов, уровня загрязненности, источника водоснабжения и других факторов. Обеззараживание направлено на удаление болезнетворных бактерий, которые разрушающе влияют на организм человека.

    Очищенная вода прозрачна, не имеет посторонних привкусов и запахов, а также абсолютно безопасна. На практике для борьбы с вредными микроорганизмами применяют способы двух групп, а также их комбинацию:

    • химические;
    • физические;
    • комбинированные.

    Для того, чтобы выбрать эффективные методы дезинфекции необходимо провести анализ жидкости. Среди проводимых анализов выделяют:

    • химический;
    • бактериологический;

    Применение химического анализа позволяет определить содержание в воде различных химических элементов: нитратов, сульфатов, хлоридов, фторидов и т.д. Все же показатели, анализируемые данным методом, можно подразделить на 4 группы:

    1. Органолептические показатели. Химический анализ воды позволяет определить ее вкус, запах и цвет.
    2. Интегральные показатели – плотность, кислотность и жесткость воды.
    3. Неорганические – различные металлы, содержащиеся в воде.
    4. Органические показатели – содержание в воде веществ, которые могут изменяться под воздействием окислителей.

    Бактериологический анализ направлен на выявление различных микроорганизмов: бактерий, вирусов, грибков. Подобный анализ выявляет источник заражения и помогает определить методы обеззараживания.

    Химические методы обеззараживания питьевой воды

    Химические способы основаны на добавлении в воду различных реагентов-окислителей, которые убивают вредоносные бактерии. Наибольшую популярность среди таких веществ получили хлор, озон, гипохлорит натрия, диоксид хлора.

    Для достижения высокого качества важно правильно рассчитать дозу реагента. Малое количество вещества может не возыметь эффекта, а даже наоборот способствовать увеличению числа бактерий. Реагент необходимо вводить с избытком, это позволит уничтожить как имеющиеся микроорганизмы, так и бактерии, попавшие в воду после обеззараживания.

    Избыток нужно рассчитывать очень аккуратно, чтобы он не мог нанести вред людям. Наиболее популярные химические методы:

    • хлорирование;
    • озонирование;
    • олигодинамия;
    • полимерные реагенты;
    • иодирование;
    • бромирование.

    Хлорирование

    Очистка воды хлорированием является традиционным и одним из самых популярных способов очищения воды. Хлорсодержащие вещества активно используют для очистки питьевой воды, воды в бассейнах, дезинфекции помещений.

    Свою популярность данный способ приобрел благодаря простоте использования, низкой стоимости, высокой эффективности. Большинство патогенных микроорганизмов, вызывающих различные заболевания, не устойчивы к хлору, который оказывает бактерицидное действие.

    Для создания неблагоприятных условий, препятствующих размножению и развитию микроорганизмов, достаточно ввести хлор в небольшом избытке. Избыток хлора способствуют продлению эффекта обеззараживания.

    В процессе обработки воды возможны следующие способы хлорирования: предварительное и конечное. Предварительное хлорирование применяют максимально близко к месту забора воды, на данном этапе использование хлора не только обеззараживают воду, но и способствуют удалению ряда химических элементов, в том числе железа и марганца. Конечное хлорирование – последний этап в процессе обработки, во время которого происходит уничтожение вредоносных микроорганизмов посредством хлора.

    Также различают нормальное хлорирование и перехлорирование. Нормальное хлорирование применяют для дезинфекции жидкости из источников с хорошим санитарными показателями. Перехлорирование – в случае сильной зараженности воды, а также если она заражена фенолами, которые в случае нормального хлорирования только усугубляют состояние воды. Остатки хлора в таком случаем удаляют дехлорированием.

    Хлорирование, как и другие методы, наряду с достоинствами имеет и свои минусы. Попадая в организм человека в избытке, хлор ведет к проблемам с почками, печенью, ЖКТ. Высокая коррозионная активность хлора влечет быстрый износ оборудования. В процессе хлорирования образуются всевозможные побочные продукты. Например, тригалометаны (соединения хлора с веществами органического происхождения), способны вызвать симптомы астмы.

    В силу широты применения хлорирования у ряда микроорганизмов сформировалась устойчивость к хлору, поэтому определенный процент заражения воды все же возможен.

    Для дезинфекции воды чаще всего используют газообразный хлор, хлорную известь, диоксид хлора и гипохлорит натрия.

    Хлор – самый популярный реагент. Используют его в жидком и газообразном виде. Уничтожая болезнетворную микрофлору, устраняет неприятный вкус и запах. Предотвращает рост водорослей и ведет к улучшению качества жидкости.

    Для очищения хлором используют хлораторы, в которых газообразный хлор абсорбируют с водой, а далее полученную жидкость доставляют до места применения. Несмотря на популярность данного метода, он является довольно опасным. Транспортировка и хранение высокотоксичного хлора обязывает к соблюдению техники безопасности.

    Хлорная известь – вещество, получаемое под воздействием газообразного хлора на сухую гашеную известь. Для обеззараживания жидкости применяют хлорную известь, процент хлора в которой составляет не менее 32-35%. Данный реагент очень опасен для человека, вызывает сложности при производстве. В силу этих и других факторов хлорная известь теряет свою популярность.

    Диоксид хлора оказывает бактерицидное воздействие, практически не загрязняет воду. В отличие от хлора не образует тригалометанов. Основная причина, которая тормозит его использование – высокая взрывоопасность, что затрудняет производство, транспортировку и хранение. В настоящее время освоена технология производства на месте применения. Уничтожает все виды микроорганизмов. К недостаткам можно отнести способность образовывать вторичные соединения – хлораты и хлориты.

    Гипохлорит натрия применяют в жидком виде. Процент активного хлора в нем в два раза больше, чем в хлорной извести. В отличие от диоксида титана обладает относительной безопасностью при хранении и использовании. Ряд бактерий устойчив к его воздействию. В случае длительного хранения теряет свои свойства. На рынке присутствует в виде жидкого раствора с различным содержанием хлора.

    Стоит отметить, что все хлорсодержащие реагенты обладают высокой коррозионной активностью, в связи с чем их не рекомендуется использовать для очищения воды, поступающей в воду через металлические трубопроводы.

    Озонирование

    Озон, так же как и хлор, является сильным окислителем. Проникая сквозь оболочки микроорганизмов, он разрушает стенки клетки и убивает ее. как с обеззараживанием воды, так и с ее обесцвечиванием и дезодорированные. Способен окислять железо и марганец.

    Обладая высоким антисептическим действием, озон разрушает вредные микроорганизмы в сотни раз быстрее, чем другие реагенты. В отличие от хлора, уничтожает практически все известные виды микроорганизмов.

    При распаде реагент преобразуется в кислород, который насыщает организм человека на клеточном уровне. Быстрый распад озона в то же время является и недостатком данного метода, поскольку уже через 15-20 мин. после процедуры, вода может подвергнуться повторному заражению. Существует теория, согласно которой при воздействии озона на воду, начинается разложение фенольных групп гуминовых веществ. Они активируют организмы, который до момента обработки находились в спячке.

    Насыщаясь озоном вода становится коррозионно-активной. Это ведет к повреждению труб водопровода, сантехники, бытовой техники. В случае ошибочного количества озона возможно образование побочных элементов, которые обладают высокой токсичностью.

    Озонирование имеет и другие минусы, к которым стоит отнести высокую стоимость покупки и установки, большие электрозатраты, а также высокий класс опасности озона. При работе с реагентом необходимо соблюдать осторожность и технику безопасности.

    Озонирование воды возможно с помощью системы, состоящей из:

    • озоногенератора, в котором происходит процесс выделения озона из кислорода;
    • системы, которая позволяет ввести озон в воду и смешать его с жидкостью;
    • реактора – емкости, в которой происходит взаимодействие озона с водой;
    • деструктора – устройства, которое удаляет остаточный озон, а также приборов, контролирующих озон в воде и воздухе.

    Олигодинамия

    Олигодинамия – обеззараживание воды посредством воздействия на нее благородных металлов. Наиболее изучено применение золота, серебра и меди.

    Самым же популярным металлом в целях уничтожения вредных микроорганизмов является серебро. Его свойства раскрыли еще в древности, в емкость с водой помещали ложку или монетку из серебра и давали такой воде отстояться. Утверждение, что такой метод эффективен довольно спорное.

    Теории влияния серебра на микробы не получили окончательного подтверждения. Существует гипотеза, согласно которой клетку разрушают электростатические силы, возникающие между ионами серебра с положительным зарядом и отрицательно заряженными клетками бактерий.

    Серебро – тяжелый металл, который в случае накопления в организме может вызывать ряд заболеваний. Достичь антисептического эффекта можно лишь при высоких концентрациях данного металла, которое губительно для организма. Меньшее количество серебра способно только приостановить рост бактерий.

    К тому же, практически не чувствительные к серебру спорообразующие бактерии, не доказано его влияние на вирусы. Поэтому применение серебра целесообразно лишь для продления сроков хранения изначально чистой воды.

    Другим тяжелым металлом, способным оказывать бактерицидное воздействие, является медь. Еще в древности заметили, что вода, которая стояла в медных сосудах, гораздо дольше сохраняла свои высоковеществ. На практике данный метод используют в основных в бытовых условиях для очищения небольшого объема воды.

    Полимерные реагенты

    Использование полимерных реагентов – современный метод обеззараживания воды. Он значительно выигрывает у хлорирования и озонирования за счет своей безопасности. Жидкость, очищенная полимерными антисептиками не имеет вкуса и посторонних запахов, не вызывает коррозию металла, не воздействует на организм человека. Данный метод получил распространение в очистке воды в бассейнах. Вода, очищенная полимерным реагентом, не имеет цвета, постороннего вкуса и запаха.

    Иодирование и бромирование

    Иодирование – метод обеззараживания, использующий иодсодержащие соединения. Дезинфицирующие свойства йода известны медицине с давних времен. Несмотря на то, что данный метод широко известен и неоднократно предпринимались попытки его использования, использование йода в качестве дезинфектора воды популярности не приобрело. Данный метод имеет существенный недостаток, растворяясь в воде, он вызывает специфический запах.

    Бром – довольно эффективный реагент, который уничтожает большую часть известных бактерий. Однако, в силу своей высокой стоимости популярностью не пользуется.

    Физические методы обеззараживания воды

    Физические способы очистки и дезинфекции работают воду без использования реагентов и вмешательства в химический состав. Наиболее популярные физические методы:

    • УФ-облучение;
    • ультразвуковое воздействие;
    • термическая обработка;
    • электроимпульсный способ;

    УФ-излучение

    Все большую популярность среди методов обеззараживания воды набирает применение УФ-излучения. В основе методики лежит тот факт, что лучи, длина волны у которых 200-295 нм, могут убивать патогенные микроорганизмы. Проникая сквозь клеточную стенку, они воздействуют на нуклеиновые кислоты (РНД и ДНК), а также вызывают нарушения в структуре мембран и клеточных стенок микроорганизмов, что ведет к гибели бактерий.

    Для определения дозы излучения необходимо провести бактериологический анализ воды, это позволит выявить виды патогенных микроорганизмов и их восприимчивость к лучам. На эффективность также влияет мощность используемой лампы и уровень поглощения излучения водой.

    Доза УФ-излучения равна произведению интенсивности излучения на его продолжительность. Чем выше устойчивость микроорганизмов, тем дольше на них необходимо воздействовать

    УФ-излучение не влияет на химический состав воды, не образует побочных соединений, таким образом исключает возможность нанесения вреда человеку.

    При использовании данного метода невозможна передозировка, УФ-облучение отличается высокой скоростью реакции, для обеззараживания всего объема жидкости требуется несколько секунд. Не меняя состав воды, излучение способно уничтожить все известные микроорганизмы.

    Однако, не лишен данный метод и недостатков. В отличие от хлорирования, обладающего пролонгирующим эффектом, эффективность облучения сохраняется до тех пор, пока лучи воздействуют на воду.

    Хороший результат достижим лишь в очищенной воде. На уровень поглощения ультрафиолета влияют содержащиеся в воду примеси. Например, железо способно служить для бактерий своеобразным щитом и «прятать» их от воздействия лучей. Поэтому целесообразно провести предварительную очистку воды.

    Система для УФ-излучения состоит из нескольких элементов: выполненной из нержавеющей стали камеры, в которую помещена лампа, защищенная кварцевыми чехлами. Проходя через механизм такой установки, вода постоянно подвергается действию ультрафиолета и полному обеззараживанию.

    Ультразвуковое обеззараживание

    Ультразвуковое обеззараживание основано на методе кавитации. За счет того, что под воздействием ультразвука происходят резкие перепады давления, микроорганизмы разрушаются. Эффективен ультразвук и для борьбы с водорослями

    Данный метод имеет узкий круг использования и находится на стадии освоения. Преимуществом является нечувствительность к высокой мутности и цветности воды, а также возможность воздействовать на большинство форм микроорганизмов.

    К сожалению, данный метод применим только для малых объемов воды. Как и УФ-облучение оказывает эффект только в процессе взаимодействия с водой. Не возымело ультразвуковое обеззараживание популярности и в силу необходимости установки сложного и дорого оборудования.

    Термическая обработка воды

    В домашних условиях термический способ очистки воды – всем известное кипячение. Высокая температура убивает большинство микроорганизмов. В промышленных условиях данный метод неэффективен в силу его громоздкости, больших временных затрат и низкой интенсивности. К тому же, термическая обработка не способна избавить от посторонних привкусов и болезнетворных спор.

    Электроимпульсный способ

    В основе электроимпульсного способа лежит применение электрических разрядов, которые формируют ударную волну. Под воздействием гидравлического удара микроорганизмы гибнут. Данный метод эффективен как для вегетативных, так и спорообразующих бактерий. Способен достичь результата даже в мутной воде. Кроме того, бактерицидные свойства обработанной воды сохраняются до четырех месяцев.

    Минусом является высокая энергоемкость и дороговизна.

    Комбинированные методы обеззараживания воды

    Для достижения наибольшего эффекта используют комбинированные способы, как правило, реагентные методы сочетают с безреагентными.

    Высокую популярность возымело сочетание УФ-облучения с хлорированием. Так, уф-лучи убивают патогенную микрофлору, а хлор препятствует повторному заражению. Данный метод используют как для очистки питьевой воды, так и очистки воды в бассейнах.

    Для обеззараживания бассейнов УФ-излучение преимущественно используют с гипохлоритом натрия.

    Заменить хлорирование на первом этапе можно озонированием

    Другие методы включает в себя окисление в сочетании с тяжелыми металлами. Окислителями могут выступать как хлорсодержащие элементы, так и озон. Суть комбинирования состоит в том, что окислители обивают вредные микробы, а тяжелые металлы позволяют сохранить воду обеззараженной. Существуют и другие способы комплексной дезинфекции воды.

    Очистка и обеззараживание воды в бытовых условиях

    Часто необходимо очистить воду в небольших количествах прямо здесь и сейчас. Для этих целей используют:

    • растворимые обеззараживающие таблетки;
    • перманганат калия;
    • кремний;
    • подручные цветы, травы.

    Обеззараживающие таблетки могут выручить в походных условиях. Как правило, одну таблетку применяют на 1 л. воды. Этот метод можно отнести к химической группе. Чаще всего в основе таких таблеток лежит активный хлор. Время действия таблетки 15-20 минут. В случае сильного загрязнения количество можно удвоить.

    Если вдруг таблеток не оказалось, возможно применение обычной марганцовки из расчета 1-2 г. на ведро воды. После того, как вода отстоится, она готова к использованию.

    Также бактерицидное действие оказывают природные растения – ромашку, чистотел, зверобой, бруснику.

    Еще один реагент – кремний. Поместите его в воду и дайте ей отстояться в течение суток.

    Источники водоснабжения их пригодность для обеззараживания

    Источники водоснабжения можно разделить на два вида – поверхностные и подземные воды. К первой группе относится вода из рек и озер, морей и водохранилищ.

    При анализе пригодности вод для питья, расположенных на поверхности, проводят бактериологический и химический анализ, оценивают состояние дна, температуру, плотность и соленость морской воды, радиоактивность воды и т.д. Немаловажную роль при выбора источника играет нахождение по близости промышленных объектов. Еще один этап оценки источника водозабора – просчет возможных рисков заражения воды.

    Состав воды в открытых водоемах зависит от времени года, такая вода содержит различные загрязнения, среди которых и болезнетворные микроорганизмы. Наиболее высок риск заражения водоемов рядом с городами, заводами, фабриками и другими объектами промышленности.

    Речная вода очень мутная, отличается цветностью и жесткостью, а также большим количеством микроорганизмов, заражение которыми чаще всего происходит из стоковых вод. В воде из озер и водохранилищ часто встречается цветение из-за развития водорослей. Также такие воды

    Особенность поверхностных источников заключается в большой водной поверхности, которая соприкасается с солнечными лучами. С одной стороны, это способствует самоочищению воды, с другой – служит развитию флоры и фауны.

    Несмотря на то, что поверхностные воды могу самоочищаться, это не спасает их от механических примесей, также патогенной микрофлоры, поэтому при водозаборе подвергаются тщательному очищению с дальнейшим обеззараживанием.

    Другой вид источников водозабора – подземные воды. Содержание микроорганизмов в них минимально. Для обеспечения населения лучше всего подходит родниковая и артезианская вода. Чтобы определить их качество, эксперты анализируют гидрологию слоев горных пород. Особое внимание уделяют санитарному состоянию территории в районе забора воды, так как этого зависит не только качество воды в здесь и сейчас, но и перспектива заражения вредоносными микроорганизмами в дальнейшем.

    Артезианская и родниковая вода выигрывает у воды из рек и озер, она защищена от бактерий, содержащихся в стоковых водах, от воздействия солнечных лучей и других факторах, способствующих развитию неблагоприятной микрофлоры.

    Нормативные документы водно-санитарного законодательства

    Поскольку вода являет собой источник человеческой жизни, ее качеству и санитарному состоянию уделяется серьезное внимание, в том числе на законодательном уровне. Основными документами в данной сфере являются Водный кодекс и Федеральный закон «О санитарно-эпидемиологическом благополучии населения».

    Водный кодекс содержит в себе правила по использования и охраны водных объектов. Приводит классификацию подземных и поверхностных вод, определяет меры наказания за нарушение водного законодательства и др.

    ФЗ «О санитарно-эпидемиологическом благополучии населения» регламентирует требования к источникам, вода из которых может быть использована для питья и ведения хозяйства.

    Также существуют государственные стандарты качества, которые определяют показатели пригодности и выдвигают требования к способам анализа воды:

    ГОСТы качества воды

    • ГОСТ Р 51232-98 Вода питьевая. Общие требования к организации и методам контроля качества.
    • ГОСТ 24902-81 Вода хозяйственно-питьевого назначения. Общие требования к полевым методам анализа.
    • ГОСТ 27064-86 Качество вод. Термины и определения.
    • ГОСТ 17.1.1.04-80 Классификация подземных вод по целям водопользования.

    СНиПы и требования к воде

    Строительные нормы и правила (СНиП) содержат в себе правила по организации внутреннего водопровода и канализации зданий, регламентируют монтаж систем водоснабжения, отопления и т.д.

    • СНиП 2.04.01-85 Внутренний водопровод и канализация зданий.
    • СНиП 3.05.01-85 Внутренние санитарно-технические системы.
    • СНиП 3.05.04-85 Наружные сети и сооружения водоснабжения и канализации.

    СанПиНы на водоснабжение

    В санитарно-эпидемиологических правилах и нормах (СанПиН) можно найти, какие существует требования к качеству воды как из центрального водопровода, так и воды из колодцев, скважин.

    • СанПиН 2.1.4.559-96 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества.»
    • СанПиН 4630-88 «ПДК и ОДУ вредных веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования»
    • СанПиН 2.1.4.544-96 Требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников.
    • СанПиН 2.2.1/2.1.1.984-00 Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов.