Формулы пифагора сторон треугольника. Различные способы доказательства теоремы пифагора

Средний уровень

Прямоугольный треугольник. Полный иллюстрированный гид (2019)

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК. НАЧАЛЬНЫЙ УРОВЕНЬ.

В задачах прямой угол вовсе не обязательно - левый нижний, так что тебе нужно научиться узнавать прямоугольный треугольник и в таком виде,

и в таком,

и в таком

Что же хорошего есть в прямоугольном треугольнике? Ну..., во-первых, есть специальные красивые названия для его сторон.

Внимание на рисунок!

Запомни и не путай: катетов - два, а гипотенуза - всего одна (единственная, неповторимая и самая длинная)!

Ну вот, названия обсудили, теперь самое важное: Теорема Пифагора.

Теорема Пифагора.

Эта теорема - ключик к решению многих задачек с участием прямоугольного треугольника. Её доказал Пифагор в совершенно незапамятные времена, и с тех пор она принесла много пользы знающим её. А самое хорошее в ней то, что она - простая.

Итак, Теорема Пифагора:

Помнишь шутку: «Пифагоровы штаны на все стороны равны!»?

Давай нарисуем эти самые пифагоровы штаны и посмотрим на них.

Правда, похоже на какие - то шорты? Ну и на какие стороны и где она равны? Почему и откуда возникла шутка? А шутка эта связана как раз с теоремой Пифагора, точнее с тем, как сам Пифагор формулировал свою теорему. А формулировал он её так:

«Сумма площадей квадратов , построенных на катетах, равна площади квадрата , построенного на гипотенузе».

Правда, немножко по-другому звучит? И вот, когда Пифагор нарисовал утверждение своей теоремы, как раз и получилась такая картинка.


На этой картинке сумма площадей маленьких квадратов равна площади большого квадрата. А чтобы дети лучше запоминали, что сумма квадратов катетов равна квадрату гипотенузы, кто-то остроумный и выдумал эту шутку про Пифагоровы штаны.

Почему же мы сейчас формулируем теорему Пифагора

А Пифагор мучился и рассуждал про площади?

Понимаешь, в древние времена не было… алгебры! Не было никаких обозначений и так далее. Не было надписей. Представляешь, как бедным древним ученикам было ужасно запоминать всё словами??! А мы можем радоваться, что у нас есть простая формулировка теоремы Пифагора. Давай её ещё раз повторим, чтобы лучше запомнить:

Теперь уже должно быть легко:

Квадрат гипотенузы равен сумме квадратов катетов.

Ну вот, самую главную теорему о прямоугольном треугольнике обсудили. Если тебе интересно, как она доказывается, читай следующие уровни теории, а сейчас пойдём дальше… в тёмный лес… тригонометрии! К ужасным словам синус, косинус, тангенс и котангенс.

Синус, косинус, тангенс, котангенс в прямоугольном треугольнике.

На самом деле все совсем не так страшно. Конечно, «настоящее» определение синуса, косинуса, тангенса и котангенса нужно смотреть в статье . Но очень не хочется, правда? Можем обрадовать: для решения задач про прямоугольный треугольник можно просто заполнить следующие простые вещи:

А почему же всё только про угол? Где же угол? Для того, чтобы в этом разобраться, нужно знать, как утверждения 1 - 4 записываются словами. Смотри, понимай и запоминай!

1.
Вообще-то звучит это так:

А что же угол? Есть ли катет, который находится напротив угла, то есть противолежащий (для угла) катет? Конечно, есть! Это катет!

А как же угол? Посмотри внимательно. Какой катет прилегает к углу? Конечно же, катет. Значит, для угла катет - прилежащий, и

А теперь, внимание! Посмотри, что у нас получилось:

Видишь, как здорово:

Теперь перейдём к тангенсу и котангенсу.

Как это теперь записать словами? Катет каким является по отношению к углу? Противолежащим, конечно - он «лежит» напротив угла. А катет? Прилегает к углу. Значит, что у нас получилось?

Видишь, числитель и знаменатель поменялись местами?

И теперь снова углы и совершили обмен:

Резюме

Давай вкратце запишем всё, что мы узнали.

Теорема Пифагора:

Главная теорема о прямоугольном треугольнике - теорема Пифагора.

Теорема Пифагора

Кстати, хорошо ли ты помнишь, что такое катеты и гипотенуза? Если не очень, то смотри на рисунок - освежай знания

Вполне возможно, что ты уже много раз использовал теорему Пифагора, а вот задумывался ли ты, почему же верна такая теорема. Как бы её доказать? А давай поступим, как древние греки. Нарисуем квадрат со стороной.

Видишь, как хитро мы поделили его стороны на отрезки длин и!

А теперь соединим отмеченные точки

Тут мы, правда ещё кое что отметили, но ты сам посмотри на рисунок и подумай, почему так.

Чему же равна площадь большего квадрата? Правильно, . А площадь меньшего? Конечно, . Осталась суммарная площадь четырех уголков. Представь, что мы взяли их по два и прислонили друг к другу гипотенузами. Что получилось? Два прямоугольника. Значит, площадь «обрезков» равна.

Давай теперь соберем всё вместе.

Преобразуем:

Вот и побывали мы Пифагором - доказали его теорему древним способом.

Прямоугольный треугольник и тригонометрия

Для прямоугольного треугольника выполняются следующие соотношения:

Синус острого угла равен отношению противолежащего катета к гипотенузе

Косинус острого угла равен отношению прилежащего катета к гипотенузе.

Тангенс острого угла равен отношению противолежащего катета к прилежащему катету.

Котангенс острого угла равен отношению прилежащего катета к противолежащему катету.

И ещё раз всё это в виде таблички:

Это очень удобно!

Признаки равенства прямоугольных треугольников

I. По двум катетам

II. По катету и гипотенузе

III. По гипотенузе и острому углу

IV. По катету и острому углу

a)

b)

Внимание! Здесь очень важно, чтобы катеты были «соответствующие». Например, если будет так:

То ТРЕУГОЛЬНИКИ НЕ РАВНЫ , несмотря на то, что имеют по одному одинаковому острому углу.

Нужно, чтобы в обоих треугольниках катет был прилежащим, или в обоих - противолежащим .

Ты заметил, чем отличаются признаки равенства прямоугольных треугольников от обычных признаков равенства треугольников? Загляни в тему « и обрати внимание на то, что для равенства «рядовых» треугольников нужно равенство трех их элементов: две стороны и угол между ними, два угла и сторона между ними или три стороны. А вот для равенства прямоугольных треугольников достаточно всего двух соответственных элементов. Здорово, правда?

Примерно такая же ситуация и с признаками подобия прямоугольных треугольников.

Признаки подобия прямоугольных треугольников

I. По острому углу

II. По двум катетам

III. По катету и гипотенузе

Медиана в прямоугольном треугольнике

Почему это так?

Рассмотрим вместо прямоугольного треугольника целый прямоугольник.

Проведём диагональ и рассмотрим точку - точку пересечения диагоналей. Что известно про диагонали прямоугольника?

И что из этого следует?

Вот и получилось, что

  1. - медиана:

Запомни этот факт! Очень помогает!

А что ещё более удивительно, так это то, что верно и обратное утверждение.

Что же хорошего можно получить из того, что медиана, проведенная к гипотенузе, равна половине гипотенузы? А давай посмотрим на картинку

Посмотри внимательно. У нас есть: , то есть расстояния от точки до всех трёх вершин треугольника оказались равны. Но в треугольнике есть всего одна точка, расстояния от которой о всех трёх вершин треугольника равны, и это - ЦЕНТР ОПИСАННОЙ ОКРУЖНОСТИ. Значит, что получилось?

Вот давай мы начнём с этого «кроме того...».

Посмотрим на и.

Но у подобных треугольников все углы равны!

То же самое можно сказать и про и

А теперь нарисуем это вместе:

Какую же пользу можно извлечь из этого «тройственного» подобия.

Ну, например - две формулы для высоты прямоугольного треугольника.

Запишем отношения соответствующих сторон:

Для нахождения высоты решаем пропорцию и получаем первую формулу "Высота в прямоугольном треугольнике" :

Итак, применим подобие: .

Что теперь получится?

Опять решаем пропорцию и получаем вторую формулу :

Обе эти формулы нужно очень хорошо помнить и применять ту, которую удобнее. Запишем их ещё раз

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: .

Признаки равенства прямоугольных треугольников:

  • по двум катетам:
  • по катету и гипотенузе: или
  • по катету и прилежащему острому углу: или
  • по катету и противолежащему острому углу: или
  • по гипотенузе и остром углу: или.

Признаки подобия прямоугольных треугольников:

  • одному острому углу: или
  • из пропорциональности двух катетов:
  • из пропорциональности катета и гипотенузы: или.

Синус, косинус, тангенс, котангенс в прямоугольном треугольнике

  • Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе:
  • Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе:
  • Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему:
  • Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему: .

Высота прямоугольного треугольника: или.

В прямоугольном треугольнике медиана , проведённая из вершины прямого угла, равна половине гипотенузы: .

Площадь прямоугольного треугольника:

  • через катеты:

Теорема Пифагора : Сумма площадей квадратов, опирающихся на катеты (a и b ), равна площади квадрата, построенного на гипотенузе (c ).

Геометрическая формулировка:

Изначально теорема была сформулирована следующим образом:

Алгебраическая формулировка:

То есть, обозначив длину гипотенузы треугольника через c , а длины катетов через a и b :

a 2 + b 2 = c 2

Обе формулировки теоремы эквивалентны, но вторая формулировка более элементарна, она не требует понятия площади . То есть второе утверждение можно проверить, ничего не зная о площади и измерив только длины сторон прямоугольного треугольника.

Обратная теорема Пифагора:

Доказательства

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы . Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.

Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства (например с помощью дифференциальных уравнений).

Через подобные треугольники

Следующее доказательство алгебраической формулировки - наиболее простое из доказательств, строящихся напрямую из аксиом. В частности, оно не использует понятие площади фигуры .

Пусть ABC есть прямоугольный треугольник с прямым углом C . Проведём высоту из C и обозначим её основание через H . Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC . Введя обозначения

получаем

Что эквивалентно

Сложив, получаем

Доказательства методом площадей

Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.

Доказательство через равнодополняемость

  1. Расположим четыре равных прямоугольных треугольника так, как показано на рисунке 1.
  2. Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол - 180°.
  3. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и двух внутренних квадратов.

Что и требовалось доказать.

Доказательства через равносоставленность

Элегантное доказательство при помощи перестановки

Пример одного из таких доказательств указан на чертеже справа, где квадрат, построенный на гипотенузе, перестановкой преобразуется в два квадрата, построенных на катетах.

Доказательство Евклида

Чертеж к доказательству Евклида

Иллюстрация к доказательству Евклида

Идея доказательства Евклида состоит в следующем: попробуем доказать, что половина площади квадрата, построенного на гипотенузе, равна сумме половин площадей квадратов, построенных на катетах, а тогда и площади большого и двух малых квадратов равны.

Рассмотрим чертеж слева. На нём мы построили квадраты на сторонах прямоугольного треугольника и провели из вершины прямого угла С луч s перпендикулярно гипотенузе AB, он рассекает квадрат ABIK, построенный на гипотенузе, на два прямоугольника - BHJI и HAKJ соответственно. Оказывается, что площади данных прямоугольников в точности равны площадям квадратов, построенных на соответствующих катетах.

Попытаемся доказать, что площадь квадрата DECA равна площади прямоугольника AHJK Для этого воспользуемся вспомогательным наблюдением: Площадь треугольника с той же высотой и основанием, что и данный прямоугольник, равна половине площади заданного прямоугольника. Это следствие определения площади треугольника как половины произведения основания на высоту. Из этого наблюдения вытекает, что площадь треугольника ACK равна площади треугольника AHK (не изображённого на рисунке), которая, в свою очередь, равна половине площади прямоугольника AHJK.

Докажем теперь, что площадь треугольника ACK также равна половине площади квадрата DECA. Единственное, что необходимо для этого сделать, - это доказать равенство треугольников ACK и BDA (так как площадь треугольника BDA равна половине площади квадрата по указанному выше свойству). Равенство это очевидно, треугольники равны по двум сторонам и углу между ними. Именно - AB=AK,AD=AC - равенство углов CAK и BAD легко доказать методом движения: повернём треугольник CAK на 90° против часовой стрелки, тогда очевидно, что соответствующие стороны двух рассматриваемых треугольников совпадут (ввиду того, что угол при вершине квадрата - 90°).

Рассуждение о равенстве площадей квадрата BCFG и прямоугольника BHJI совершенно аналогично.

Тем самым мы доказали, что площадь квадрата, построенного на гипотенузе, слагается из площадей квадратов, построенных на катетах. Идея данного доказательства дополнительно проиллюстрирована с помощью анимации, расположенной выше.

Доказательство Леонардо да Винчи

Доказательство Леонардо да Винчи

Главные элементы доказательства - симметрия и движение.

Рассмотрим чертёж, как видно из симметрии, отрезок C I рассекает квадрат A B H J на две одинаковые части (так как треугольники A B C и J H I равны по построению). Пользуясь поворотом на 90 градусов против часовой стрелки, мы усматриваем равенство заштрихованных фигур C A J I и G D A B . Теперь ясно, что площадь заштрихованной нами фигуры равна сумме половин площадей квадратов, построенных на катетах, и площади исходного треугольника. С другой стороны, она равна половине площади квадрата, построенного на гипотенузе, плюс площадь исходного треугольника. Последний шаг в доказательстве предоставляется читателю.

Доказательство методом бесконечно малых

Следующее доказательство при помощи дифференциальных уравнений часто приписывают известному английскому математику Харди , жившему в первой половине XX века.

Рассматривая чертёж, показанный на рисунке, и наблюдая изменение стороны a , мы можем записать следующее соотношение для бесконечно малых приращений сторон с и a (используя подобие треугольников):

Доказательство методом бесконечно малых

Пользуясь методом разделения переменных, находим

Более общее выражение для изменения гипотенузы в случае приращений обоих катетов

Интегрируя данное уравнение и используя начальные условия, получаем

c 2 = a 2 + b 2 + constant.

Таким образом, мы приходим к желаемому ответу

c 2 = a 2 + b 2 .

Как нетрудно видеть, квадратичная зависимость в окончательной формуле появляется благодаря линейной пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми вкладами от приращения разных катетов.

Более простое доказательство можно получить, если считать, что один из катетов не испытывает приращения (в данном случае катет b ). Тогда для константы интегрирования получим

Вариации и обобщения

  • Если вместо квадратов построить на катетах другие подобные фигуры, то верно следующее обобщение теоремы Пифагора: В прямоугольном треугольнике сумма площадей подобных фигур, построенных на катетах, равна площади фигуры, построенной на гипотенузе. В частности:
    • Сумма площадей правильных треугольников, построенных на катетах, равна площади правильного треугольника, построенного на гипотенузе.
    • Сумма площадей полукругов, построенных на катетах (как на диаметре), равна площади полукруга, построенного на гипотенузе. Этот пример используется при доказательстве свойств фигур, ограниченных дугами двух окружностей и носящих имя гиппократовых луночек .

История

Чу-пей 500–200 до нашей эры. Слева надпись: сумма квадратов длин высоты и основания есть квадрат длины гипотенузы.

В древнекитайской книге Чу-пей говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.

Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.

Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м. и привяжем к ней по цветной полоске на расстоянии 3м. от одного конца и 4 метра от другого. Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра. Гарпедонаптам можно было бы возразить, что их способ построения становиться излишним, если воспользоваться, например, деревянным угольником, применяемым всеми плотниками. И действительно, известны египетские рисунки, на которых встречается такой инструмент, например рисунки, изображающие столярную мастерскую.

Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммураби, т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника . Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях. Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой-на критическом изучении греческих источников, Ван-дер-Варден (голландский математик) сделал следующий вывод:

Литература

На русском языке

  • Скопец З. А. Геометрические миниатюры. М., 1990
  • Еленьский Щ. По следам Пифагора. М., 1961
  • Ван-дер-Варден Б. Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. М., 1959
  • Глейзер Г. И. История математики в школе. М., 1982
  • В.Литцман, «Теорема Пифагора» М., 1960.
    • Сайт о теореме Пифагора с большим числом доказательств материал взят из книги В.Литцмана, большое число чертежей представлено в виде отдельных графических файлов.
  • Теорема Пифагора и пифагоровы тройки глава из книги Д. В. Аносова «Взгляд на математику и нечто из нее»
  • О теореме Пифагора и способах ее доказательства Г. Глейзер, академик РАО, Москва

На английском

  • Теорема Пифагора на WolframMathWorld (англ.)
  • Cut-The-Knot, секция посвящённая теореме пифагора, около 70 доказательств и обширная дополнительная информация (англ.)

Wikimedia Foundation . 2010 .

Убедитесь, что данный вам треугольник является прямоугольным, так как теорема Пифагора применима только к прямоугольным треугольникам. В прямоугольных треугольниках один из трех углов всегда равен 90 градусам.

  • Прямой угол в прямоугольном треугольнике обозначается значком в виде квадрата, а не в виде кривой, которая обозначает непрямые углы.

Обозначьте стороны треугольника. Катеты обозначьте как «а» и «b» (катеты – стороны, пересекающиеся под прямым углом), а гипотенузу – как «с» (гипотенуза – самая большая сторона прямоугольного треугольника, лежащая напротив прямого угла).

  • Определите, какую сторону треугольника требуется найти. Теорема Пифагора позволяет найти любую сторону прямоугольного треугольника (если известны две другие стороны). Определите, какую сторону (a, b, c) необходимо найти.

    • Например, дана гипотенуза, равная 5, и дан катет, равный 3. В этом случае необходимо найти второй катет. Мы вернемся к этому примеру позднее.
    • Если две другие стороны неизвестны, необходимо найти длину одной из неизвестных сторон, чтобы иметь возможность применить теорему Пифагора. Для этого используйте основные тригонометрические функции (если вам дано значение одного из непрямых углов).
  • Подставьте в формулу a 2 + b 2 = c 2 данные вам значения (или найденные вами значения). Помните, что a и b – это катеты, а с – это гипотенуза.

    • В нашем примере напишите: 3² + b² = 5².
  • Возведите в квадрат каждую известную сторону. Или же оставьте степени – вы можете возвести числа в квадрат позже.

    • В нашем примере напишите: 9 + b² = 25.
  • Обособьте неизвестную сторону на одной стороне уравнения. Для этого перенесите известные значения на другую сторону уравнения. Если вы находите гипотенузу, то в теореме Пифагора она уже обособлена на одной стороне уравнения (поэтому делать ничего не нужно).

    • В нашем примере перенесите 9 на правую сторону уравнения, чтобы обособить неизвестное b². Вы получите b² = 16.
  • Извлеките квадратный корень из обеих частей уравнения после того, как на одной стороне уравнения присутствует неизвестное (в квадрате), а на другой стороне – свободный член (число).

    • В нашем примере b² = 16. Извлеките квадратный корень из обеих частей уравнения и получите b = 4. Таким образом, второй катет равен 4.
  • Используйте теорему Пифагора в повседневной жизни, так как ее можно применять в большом числе практических ситуаций. Для этого научитесь распознавать прямоугольные треугольники в повседневной жизни – в любой ситуации, в которой два предмета (или линии) пересекаются под прямым углом, а третий предмет (или линия) соединяет (по диагонали) верхушки двух первых предметов (или линий), вы можете использовать теорему Пифагора, чтобы найти неизвестную сторону (если две другие стороны известны).

    • Пример: дана лестница, прислоненная к зданию. Нижняя часть лестницы находится в 5 метрах от основания стены. Верхняя часть лестницы находится в 20 метрах от земли (вверх по стене). Какова длина лестницы?
      • «в 5 метрах от основания стены» означает, что а = 5; «находится в 20 метрах от земли» означает, что b = 20 (то есть вам даны два катета прямоугольного треугольника, так как стена здания и поверхность Земли пересекаются под прямым углом). Длина лестницы есть длина гипотенузы, которая неизвестна.
        • a² + b² = c²
        • (5)² + (20)² = c²
        • 25 + 400 = c²
        • 425 = c²
        • с = √425
        • с = 20,6. Таким образом, приблизительная длина лестницы равна 20,6 метров.
  • ИЗМЕРЕНИЕ ПЛОЩАДЕЙ ГЕОМЕТРИЧЕСКИХ ФИГУР.

    § 58. ТЕОРЕМА ПИФАГОРА 1 .

    __________
    1 Пифагор - греческий учёный, живший около 2500 лет назад (564-473 гг. до нашей эры).
    _________

    Пусть дан прямоугольный треугольник, стороны которого а , b и с (черт. 267).

    Построим на его сторонах квадраты. Площади этих квадратов соответственно равны а 2 , b 2 и с 2 . Докажем, что с 2 = а 2 + b 2 .

    Построим два квадрата МКОР и М"К"О"Р" (черт. 268, 269), приняв за сторону каждого из них отрезок, равный сумме катетов прямоугольного треугольника АBС.

    Выполнив в этих квадратах построения, показанные на чертежах 268 и 269, мы увидим, что квадрат МКОР разбился на два квадрата с площадями а 2 и b 2 и четыре равных прямоугольных треугольника, каждый из которых равен прямоугольному треугольнику АВС. Квадрат М"К"О"Р" разбился на четырёхугольник (он на чертеже 269 заштрихован) и четыре прямоугольных треугольника, каждый из которых также равен треугольнику АBС. Заштрихованный четырёхугольник - квадрат, так как стороны его равны (каждая равна гипотенузе треугольника АBС, т. е. с ), а углы - прямые / 1 + / 2 = 90°, откуда / 3 = 90°).

    Таким образом, сумма площадей квадратов, построенных на катетах (на чертеже 268 эти квадраты заштрихованы), равна площади квадрата МКОР без суммы площадей четырёх равных треугольников, а площадь квадрата, построенного на гипотенузе (на чертеже 269 этот квадрат тоже заштрихован), равна площади квадрата М"К"О"Р", равного квадрату МКОР, без суммы площадей четырёх таких же треугольников. Следовательно, площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на катетах.

    Получаем формулу с 2 = а 2 + b 2 , где с - гипотенуза, а и b - катеты прямоугольного треугольника.

    Теорему Пифагора кратко принято формулировать так:

    Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов.

    Из формулы с 2 = а 2 + b 2 можно получить такие формулы:

    а 2 = с 2 - b 2 ;
    b
    2 = с 2 - а 2 .

    Этими формулами можно пользоваться для нахождения неизвестной стороны прямоугольного треугольника по двум данным его сторонам.
    Например:

    а) если даны катеты а = 4 см, b =3 см, то можно найти гипотенузу (с ):
    с 2 = а 2 + b 2 , т. е. с 2 = 4 2 + 3 2 ; с 2 = 25, откуда с = √25 =5 (см);

    б) если даны гипотенуза с = 17 см и катет а = 8 см, то можно найти другой катет (b ):

    b 2 = с 2 - а 2 , т. е. b 2 = 17 2 - 8 2 ; b 2 = 225, откуда b = √225 = 15 (см).

    Следствие: Если в двух прямоугольных треугольниках АВС и А 1 В 1 С 1 гипотенузы с и с 1 равны, а катет b треугольника АBС больше катета b 1 треугольника А 1 В 1 C 1 ,
    то катет а треугольника АВС меньше катета а 1 треугольника А 1 В 1 C 1 . (Сделать чертёж, иллюстрирующий это следствие.)

    В самом деле, на основании теоремы Пифагора получим:

    а 2 = с 2 - b 2 ,
    а 1 2 = с 1 2 - b 1 2

    В записанных формулах уменьшаемые равны, а вычитаемое в первой формуле больше вычитаемого во второй формуле, следовательно, первая разность меньше второй,
    т. е. а 2 < а 1 2 . Откуда а < а 1 .

    Упражнения.

    1. Пользуясь чертежом 270, доказать теорему Пифагора для равнобедренного прямоугольного треугольника.

    2. Один катет прямоугольного треугольника равен 12 см, другой - 5 см. Вычислить длину гипотенузы этого треугольника.

    3. Гипотенуза прямоугольного треугольника равна 10 см, один из катетов равен 8 см. Вычислить длину другого катета этого треугольника.

    4. Гипотенуза прямоугольного треугольника равна 37 см, один из его катетов равен 35 см. Вычислить длину другого катета этого треугольника.

    5. Построить квадрат, по площади вдвое больший данного.

    6. Построить квадрат, по площади вдвое меньший данного. Указание. Провести в данном квадрате диагонали. Квадраты, построенные на половинах этих диагоналей, будут искомыми.

    7. Катеты прямоугольного треугольника соответственно равны 12 см и 15 см. Вычислить длину гипотенузы этого треугольника с точностью до 0,1 см.

    8. Гипотенуза прямоугольного треугольника равна 20 см, один из его катетов равен 15 см. Вычислить длину другого катета с точностью до 0,1 см.

    9. Какой длины должна быть лестница, чтобы её можно было приставить к окну, находящемуся на высоте 6 м, если нижний конец лестницы должен отстоять от здания на 2,5 м? (Черт. 271.)

    Главная

    Способы доказательства теоремы Пифагора.

    Г. Глейзер,
    академик РАО, Москва

    О теореме Пифагора и способах ее доказательства

    Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах...

    Это одна из самых известных геометрических теорем древности, называемая теоремой Пифагора. Ее и сейчас знают практически все, кто когда-либо изучал планиметрию. Мне кажется, что если мы хотим дать знать внеземным цивилизациям о существовании разумной жизни на Земле, то следует посылать в космос изображение Пифагоровой фигуры. Думаю, что если эту информацию смогут принять мыслящие существа, то они без сложной дешифровки сигнала поймут, что на Земле существует достаточно развитая цивилизация.

    Знаменитый греческий философ и математик Пифагор Самосский, именем которого названа теорема, жил около 2,5 тысяч лет тому назад. Дошедшие до нас биографические сведения о Пифагоре отрывочны и далеко не достоверны. С его именем связано много легенд. Достоверно известно, что Пифагор много путешествовал по странам Востока, посещал Египет и Вавилон. В одной из греческих колоний Южной Италии им была основана знаменитая «Пифагорова школа», сыгравшая важную роль в научной и политической жизни древней Греции. Именно Пифагору приписывают доказательство известной геометрической теоремы. На основе преданий, распространенных известными математиками (Прокл, Плутарх и др.), длительное время считали, что до Пифагора эта теорема не была известна, отсюда и название – теорема Пифагора.

    Не подлежит, однако, сомнению, что эту теорему знали за много лет до Пифагора. Так, за 1500 лет до Пифагора древние египтяне знали о том, что треугольник со сторонами 3, 4 и 5 является прямоугольным, и пользовались этим свойством (т. е. теоремой, обратной теореме Пифагора) для построения прямых углов при планировке земельных участков и сооружений зданий. Да и поныне сельские строители и плотники, закладывая фундамент избы, изготовляя ее детали, вычерчивают этот треугольник, чтобы получить прямой угол. Это же самое проделывалось тысячи лет назад при строительстве великолепных храмов в Египте, Вавилоне, Китае, вероятно, и в Мексике. В самом древнем дошедшем до нас китайском математико-астрономическом сочинении «Чжоу-би», написанном примерно за 600 лет до Пифагора, среди других предложений, относящихся к прямоугольному треугольнику, содержится и теорема Пифагора. Еще раньше эта теорема была известна индусам. Таким образом, Пифагор не открыл это свойство прямоугольного треугольника, он, вероятно, первым сумел его обобщить и доказать, перевести тем самым из области практики в область науки. Мы не знаем, как он это сделал. Некоторыми историками математики предполагается, что все же доказательство Пифагора было не принципиальным, а лишь подтверждением, проверкой этого свойства на ряде частных видов треугольников, начиная с равнобедренного прямоугольного треугольника, для которого оно очевидно следует из рис. 1.

    С глубокой древности математики находят все новые и новые доказательства теоремы Пифагора, все новые и новые замыслы ее доказательств. Таких доказательств – более или менее строгих, более или менее наглядных – известно более полутора сотен, но стремление к преумножению их числа сохранилось. Думаю, что самостоятельное «открытие» доказательств теоремы Пифагора будет полезно и современным школьникам.

    Рассмотрим некоторые примеры доказательств, которые могут подсказать направления таких поисков.

    Доказательство Пифагора

    "Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах. " Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямо-угольного треугольника. Вероятно, с него и на-чиналась теорема. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы. Например, для DАВС: квадрат, построенный на гипо-тенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катететах по два. Теорема доказана.

    Доказательства, основанные на использовании понятия равновеликости фигур.

    При этом можно рассмотреть доказательства, в которых квадрат, построенный на гипотенузе данного прямоугольного треугольника «складывается» из таких же фигур, что и квадраты, построенные на катетах. Можно рассматривать и такие доказательства, в которых применяется перестановка слагаемых фигур и учитывается ряд новых идей.

    На рис. 2 изображено два равных квадрата. Длина сторон каждого квадрата равна a + b. Каждый из квадратов разбит на части, состоящие из квадратов и прямоугольных треугольников. Ясно, что если от площади квадрата отнять учетверенную площадь прямоугольного треугольника с катетами a, b, то останутся равные площади, т. е. c 2 = a 2 + b 2 . Впрочем, древние индусы, которым принадлежит это рассуждение, обычно не записывали его, а сопровождали чертеж лишь одним словом: «смотри!» Вполне возможно, что такое же доказательство предложил и Пифагор.

    Аддитивные доказательства.

    Эти доказательства основаны на разложении квадратов, построенных на катетах, на фигуры, из которых можно сложить квадрат, построенный на гипотенузе.

    Здесь: ABC – прямоугольный треугольник с прямым углом C; CMN; CKMN; PO||MN; EF||MN.

    Самостоятельно докажите попарное равенство треугольников, полученных при разбиении квадратов, построенных на катетах и гипотенузе.

    Докажите теорему с помощью этого разбиения.

     На основе доказательства ан-Найризия выполнено и другое разложение квадратов на попарно равные фигуры (рис. 5, здесь ABC – прямоугольный треугольник с прямым углом C).

     Еще одно доказательство методом разложения квадратов на равные части, называемое «колесом с лопастями», приведено на рис. 6. Здесь: ABC– прямоугольный треугольник с прямым углом C; O – центр квадрата, построенного на большом катете; пунктирные прямые, проходящие через точку O, перпендикулярны или параллельны гипотенузе.

     Это разложение квадратов интересно тем, что его попарно равные четырехугольники могут быть отображены друг на друга параллельным переносом. Может быть предложено много и других доказательств теоремы Пифагора с помощью разложения квадратов на фигуры.

    Доказательства методом достроения.

    Сущность этого метода состоит в том, что к квадратам, построенным на катетах, и к квадрату, построенному на гипотенузе, присоединяют равные фигуры таким образом, чтобы получились равновеликие фигуры.

    Справедливость теоремы Пифагора вытекает из равновеликости шестиугольников AEDFPB и ACBNMQ. Здесь CEP, прямая EP делит шестиугольник AEDFPB на два равновеликих четырехугольника, прямая CM делит шестиугольник ACBNMQ на два равновеликих четырехугольника; поворот плоскости на 90° вокруг центра A отображает четырехугольник AEPB на четырехугольник ACMQ.

    На рис. 8 Пифагорова фигура достроена до прямоугольника, стороны которого параллельны соответствующим сторонам квадратов, построенных на катетах. Разобьем этот прямоугольник на треугольники и прямоугольники. Из полученного прямоугольника вначале отнимем все многоугольники 1, 2, 3, 4, 5, 6, 7, 8, 9, остался квадрат, построенный на гипотенузе. Затем из того же прямоугольника отнимем прямоугольники 5, 6, 7 и заштрихованные прямоугольники, получим квадраты, построенные на катетах.

    Теперь докажем, что фигуры, вычитаемые в первом случае, равновелики фигурам, вычитаемым во втором случае.

    KLOA = ACPF = ACED = a 2 ;

    LGBO = CBMP = CBNQ = b 2 ;

    AKGB = AKLO + LGBO = c 2 ;

    отсюда c 2 = a 2 + b 2 .

    OCLP = ACLF = ACED = b 2 ;

    CBML = CBNQ = a 2 ;

    OBMP = ABMF = c 2 ;

    OBMP = OCLP + CBML;

    c 2 = a 2 + b 2 .

    Алгебраический метод доказательства.

    Рис. 12 иллюстрирует доказательство великого индийского математика Бхаскари (знаменитого автора Лилавати, XII в.). Рисунок сопровождало лишь одно слово: СМОТРИ! Среди доказательств теоремы Пифагора алгебраическим методом первое место (возможно, самое древнее) занимает доказательство, использующее подобие.

    Приведем в современном изложении одно из таких доказательств, принадлежащих Пифагору.

    На рис. 13 ABC – прямоугольный, C – прямой угол, CMAB, b 1 – проекция катета b на гипотенузу, a 1 – проекция катета a на гипотенузу, h – высота треугольника, проведенная к гипотенузе.

    Из того, что ABC подобен ACM следует

    b 2 = cb 1 ; (1)

    из того, что ABC подобен BCM следует

    a 2 = ca 1 . (2)

    Складывая почленно равенства (1) и (2), получим a 2 + b 2 = cb 1 + ca 1 = c(b 1 + a 1) = c 2 .

    Если Пифагор действительно предложил такое доказательство, то он был знаком и с целым рядом важных геометрических теорем, которые современные историки математики обычно приписывают Евклиду.

    Доказательство Мёльманна (рис. 14).
    Площадь данного прямоугольного треугольника, с одной стороны, равна с другой, где p – полупериметр треугольника, r – радиус вписанной в него окружности Имеем:

    откуда следует, что c 2 =a 2 +b 2 .

    во втором

    Приравнивая эти выражения, получаем теорему Пифагора.

    Комбинированный метод

    Равенство треугольников

    c 2 = a 2 + b 2 . (3)

    Сравнивая соотношения (3) и (4), получаем, что

    c 1 2 = c 2 , или c 1 = c.

    Таким образом, треугольники – данный и построенный – равны, так как имеют по три соответственно равные стороны. Угол C 1 прямой, поэтому и угол C данного треугольника тоже прямой.

    Древнеиндийское доказательство.

    Матема-тики Древней Индии заметили, что для доказа-тельства теоремы Пифагора достаточно исполь-зовать внутреннюю часть древнекитайского чер-тежа. В написанном на пальмовых листьях трак-тате «Сиддханта широмани» («Венец знания») крупнейшего индийского математика ХП в. Бха-скары поме-щен чертеж (рис. 4)

    характерным для индийских доказательств l словом «смотри!». Как видим, прямоугольнь-ные треугольники уложены здесь гипотенузой наружу и квадрат с 2 перекладывается в «крес-ло невесты» с 2 2 . Заметим, что частные слу-чаи теоремы Пифагора (например, построение квадрата, площадь которого вдвое больше рис.4 площади данного квадрата) встречаются в древнеиндийском трактате "Сульва"

    Решили прямоугольный треугольник и квадраты, построенные на его катетах, или, иначе, фигуры, составленные из 16 одинаковых равнобедренных прямоугольных треугольников и потому укладывающиеся в квадрат. Такова лили. малая толика богатств, скрытых в жемчужине античной математики - теореме Пифагора.

    Древнекитайское доказательство.

    Математические трактаты Древнего Китая дошли до нас в редакции П в. до н.э. Дело в том, что в 213 г. до н.э. китайский император Ши Хуан-ди, стремясь ликвидировать прежние традиции, приказал сжечь все древние книги. Во П в. до н.э. в Китае была изобретена бумага и одно-временно начинается воссоздание древних книг.Главное из сохранивших-ся астрономических сочинений - в книге «Математика» помещен чертеж (рис. 2, а), доказы-вающий теорему Пифагора. Ключ к этому доказательству подобрать нетрудно. В самом деле, на древне-китайском чертеже четыре равных прямоугольных треугольника с кате-тами a, b и гипотенузой с уложены г) так, что их внешний контур образует Рис- 2 квадрат со стороной а+Ь, а внутрен-ний - квадрат со стороной с, построенный на гипотенузе (рис. 2, б). Если квадрат со стороной с вырезать и оставшиеся 4 затушеванных треугольника уложить в два прямоугольника (рис. 2, в), то ясно, что образовавшаяся пустота, с одной стороны, равна С 2 , а с другой - с 2 2 , т.е. c 2=  2 +b 2 . Теорема доказана. Заметим, что при таком доказательстве построения внутри квадрата на гипотенузе, которые мы ви-дим на древнекитайском чертеже (рис. 2, а), не используются. По-видимому, древ-некитайские математики имели другое доказательство. Именно если в квадрате со стороной с два заштрихованных треугольника (рис. 2, б) отрезать и приложить гипотенузами к двум другим гипотенузам (рис. 2, г), то легко обнаружить, что

    Полученная фигура, которую иногда называют «креслом невесты», состоит из двух квадратов со сторонами а и Ь, т.е. c 2 == a 2 2 .

    На рисунке 3 воспроизведен чертеж из трактата «Чжоу-би...». Здесь теорема Пифагора рассмотрена для египетского треугольника с катетами 3, 4 и гипотену-зой 5 единиц измерения. Квадрат на гипотенузе содержит 25 клеток, а вписанный в него квадрат на большем катете-16. Ясно, что оставшаяся часть содержит 9 клеток. Это и будет квадрат на меньшем катете.