Некоторые свойства прямоугольных треугольников. Прямоугольный треугольник

Сторона a может быть идентифицирована как прилежащая к углу В и противолежащая углу A , а сторона b - как прилежащая к углу A и противолежащая углу В .

Типы прямоугольных треугольников

  • Если длины всех трёх сторон прямоугольного треугольника являются целыми числами, то треугольник называется пифагоровым треугольником , а длины его сторон образуют так называемую пифагорову тройку .

Свойства

Высота

Высота прямоугольного треугольника.

Тригонометрические соотношения

Пусть h и s (h >s ) сторонами двух квадратов, вписанных в прямоугольный треугольник с гипотенузой c . Тогда:

Периметр прямоугольного треугольника равен сумме радиусов вписанной и трёх описанных окружностей.

Примечания

Ссылки

  • Weisstein, Eric W. Right Triangle (англ.) на сайте Wolfram MathWorld .
  • Wentworth G.A. A Text-Book of Geometry . - Ginn & Co., 1895.

Wikimedia Foundation . 2010 .

Смотреть что такое "Прямоугольный треугольник" в других словарях:

    прямоугольный треугольник - — Тематики нефтегазовая промышленность EN right triangle … Справочник технического переводчика

    И (прост.) трёхугольник, треугольника, муж. 1. Геометрическая фигура, ограниченная тремя взаимно пересекающимися прямыми, образующими три внутренних угла (мат.). Тупоугольный треугольник. Остроугольный треугольник. Прямоугольный треугольник.… … Толковый словарь Ушакова

    ПРЯМОУГОЛЬНЫЙ, прямоугольная, прямоугольное (геом.). Имеющий прямой угол (или прямые углы). Прямоугольный треугольник. Прямоугольные фигуры. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    У этого термина существуют и другие значения, см. Треугольник (значения). Треугольник (в евклидовом пространстве) это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки. Три точки,… … Википедия

    треугольник - ▲ многоугольник имеющий, три, угол треугольник простейший многоугольник; задается 3 точками, не лежащими на одной прямой. треугольный. остроугольник. остроугольный. прямоугольный треугольник: катет. гипотенуза. равнобедренный треугольник. ▼… … Идеографический словарь русского языка

    ТРЕУГОЛЬНИК, а, муж. 1. Геометрическая фигура многоугольник с тремя углами, а также всякий предмет, устройство такой формы. Прямоугольный т. Деревянный т. (для черчения). Солдатский т. (солдатское письмо без конверта, свёрнутое уголком; разг.). 2 … Толковый словарь Ожегова

    Треугольник (многоугольник) - Треугольники: 1 остроугольный, прямоугольный и тупоугольный; 2 правильный (равносторонний) и равнобедренный; 3 биссектрисы; 4 медианы и центр тяжести; 5 высоты; 6 ортоцентр; 7 средняя линия. ТРЕУГОЛЬНИК, многоугольник с 3 сторонами. Иногда под… … Иллюстрированный энциклопедический словарь

    Энциклопедический словарь

    треугольник - а; м. 1) а) Геометрическая фигура, ограниченная тремя пересекающимися прямыми, образующими три внутренних угла. Прямоугольный, равнобедренный треуго/льник. Вычислить площадь треугольника. б) отт. чего или с опр. Фигура или предмет такой формы.… … Словарь многих выражений

    А; м. 1. Геометрическая фигура, ограниченная тремя пересекающимися прямыми, образующими три внутренних угла. Прямоугольный, равнобедренный т. Вычислить площадь треугольника. // чего или с опр. Фигура или предмет такой формы. Т. крыши. Т.… … Энциклопедический словарь


Инструкция

Углы, противолежащие катетам a и b обозначим соответственно через A и B. Гипотенуза, по определению, это сторона прямоугольного треугольника, которая противоположна прямому углу (при этом с другими сторонами треугольника гипотенуза образует острые углы). Длину гипотенузы обозначим через с.

Вам понадобится:
Калькулятор.

Воспользуйтесь для катета следующим выражением: a=sqrt(c^2-b^2), в том случае, если вам известны величины гипотенузы и другого катета. Это выражение получается из теоремы Пифагора, которая гласит, что квадрат гипотенузы треугольника сумме квадратов катетов. Оператор sqrt извлечение квадратного корня. Знак "^2" означает возведение во вторую степень.

Используйте формулу a=c*sinA, если вам известна гипотенуза (c) и угол, противолежащий искомому (этот угол мы обозначили, как A).
Выражение a=c*cosB используйте для нахождения катета, если вам известна гипотенуза (c) и угол, прилежащий искомому катету (этот угол мы обозначили как B).
Вычислите катет по a=b*tgA в случае, задан катет b и угол, противолежащий искомому катету (этот угол мы условились обозначать A).

Обратите внимание:
Если же в вашей задаче катет не находится ни одним из описанных способов, скорее всего, её можно свести к какому-то из них.

Полезные советы:
Все эти выражения получаются из общеизвестных определений тригонометрических функций, поэтому, даже если вы забыли какое-то из них, вы всегда сможете путём несложных операций его быстро вывести. Также, полезно знать значения тригонометрических функций для наиболее типичных углов 30, 45, 60, 90, 180 градусов.

Видео по теме

Источники:

  • «Пособие по математике для поступающих в вузы», под ред. Г.Н. Яковлева, 1982
  • катет прямоугольного треугольника

Квадратный треугольник более точно называется прямоугольным треугольником. Соотношения между сторонами и углами этой геометрической фигуры подробно рассматриваются в математической дисциплине тригонометрии.

Вам понадобится

  • - лист бумаги;
  • - ручка;
  • - таблицы Брадиса;
  • - калькулятор.

Инструкция

Найдите треугольника с помощью теоремы Пифагора. Согласно этой теореме, квадрат гипотенузы равен сумме квадратов катетов: с2 = a2+b2 , где с – гипотенуза треугольника , a и b – его катеты. Чтобы применить это , нужно знать длину любых двух сторон прямоугольного треугольника .

Если по условиям заданы размеры катетов, отыщите длину гипотенузы. Для этого с помощью извлеките квадратный корень из суммы катетов, каждый из которых предварительно возведите в квадрат.

Вычислите длину одного из катетов, если известны размеры гипотенузы и другого катета. При помощи калькулятора извлеките квадратный корень из разности гипотенузы и известного катета, также возведенного в квадрат.

Если в задаче заданы гипотенуза и один из прилежащих к ней острых углов, используйте таблицы Брадиса. В них приведены значения тригонометрических функций для большого числа углов. Воспользуйтесь калькулятором с функциями синуса и косинуса, а также теоремами тригонометрии, которые описывают соотношения между сторонами и прямоугольного треугольника .

Найдите катеты при помощи основных тригонометрических функций: a = c*sin α, b = c*cos α, где а – катет, противолежащий к углу α, b – катет, прилежащий к углу α. Подобным образом посчитайте размер сторон треугольника , если заданы гипотенуза и другой острый угол: b = c*sin β, a = c*cos β, где b – катет, противолежащий к углу β, а – катет, прилежащий к углу β.

В случае, a и прилежащий к нему острый угол β, не забывайте, что в прямоугольном треугольнике сумма острых углов всегда равна 90°: α + β = 90°. Отыщите значение угла, противолежащего к катету а: α = 90° – β. Или воспользуйтесь тригонометрическими формулами приведения: sin α = sin (90° – β) = cos β; tg α = tg (90° – β) = ctg β = 1/tg β.

Видео по теме

Источники:

  • Как найти стороны прямоугольного треугольника по катету и острому углу в 2019

Совет 3: Как найти острый угол в прямоугольном треугольнике

Прямоугольный треугольник, вероятно, - одна из самых известных, с исторической точки зрения, геометрических фигур. Пифагоровым "штанам" конкуренцию может составить лишь "Эврика!" Архимеда.

Вам понадобится

  • - чертеж треугольника;
  • - линейка;
  • - транспортир.

Инструкция

Сумма углов треугольника составляет 180 градусов. В прямоугольном треугольнике один угол (прямой) всегда будет 90 градусов, а остальные острыми, т.е. меньше 90 градусов каждый. Чтобы определить, какой угол в прямоугольном треугольнике является прямым, измерьте с помощью линейки стороны треугольника и определите наибольшую. Она гипотенуза (AB) и располагается напротив прямого угла (C). Остальные две стороны образуют прямой угол и катетами (AC, BC).

Когда определили, какой угол является острым, вы можете либо величину угла при помощи транспортира, либо рассчитать с помощью математических формул.

Чтобы определить величину угла с помощью транспортира, совместите его вершину (обозначим ее буквой А) с специальной отметкой на линейке в центре транспортира, катет АС должен совпадать с ее верхним краем. Отметьте на полукруглой части транспортира точку, через которую гипотенуза AB. Значение в этой точке соответствует величине угла в градусах. Если на транспортире указаны 2 величины, то для острого угла нужно выбирать меньшую, для тупого - большую.

Полученное значение найдите в справочных Брадиса и определите какому углу соответствует полученное числовое значение. Этим методом пользовались наши бабушки.

В наше достаточно взять с функцией вычисления тригонометрических формул. Например, встроенный калькулятор Windows. Запустите приложение "Калькулятор", в пункте меню "Вид" выберете пункт "Инженерный". Вычислите синус искомого угла, например, sin (A) = BC/AB = 2/4 = 0.5

Переключите калькулятор в режим обратных функций, кликнув по кнопке INV на табло калькулятора, затем кликните по кнопке функции арксинуса (на табло обозначена, как sin в минус первой степени). В окошке расчета появится следующая надпись: asind (0.5) = 30. Т.е. значение искомого угла - 30 градусов.

Средний уровень

Прямоугольный треугольник. Полный иллюстрированный гид (2019)

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК. НАЧАЛЬНЫЙ УРОВЕНЬ.

В задачах прямой угол вовсе не обязательно - левый нижний, так что тебе нужно научиться узнавать прямоугольный треугольник и в таком виде,

и в таком,

и в таком

Что же хорошего есть в прямоугольном треугольнике? Ну..., во-первых, есть специальные красивые названия для его сторон.

Внимание на рисунок!

Запомни и не путай: катетов - два, а гипотенуза - всего одна (единственная, неповторимая и самая длинная)!

Ну вот, названия обсудили, теперь самое важное: Теорема Пифагора.

Теорема Пифагора.

Эта теорема - ключик к решению многих задачек с участием прямоугольного треугольника. Её доказал Пифагор в совершенно незапамятные времена, и с тех пор она принесла много пользы знающим её. А самое хорошее в ней то, что она - простая.

Итак, Теорема Пифагора:

Помнишь шутку: «Пифагоровы штаны на все стороны равны!»?

Давай нарисуем эти самые пифагоровы штаны и посмотрим на них.

Правда, похоже на какие - то шорты? Ну и на какие стороны и где она равны? Почему и откуда возникла шутка? А шутка эта связана как раз с теоремой Пифагора, точнее с тем, как сам Пифагор формулировал свою теорему. А формулировал он её так:

«Сумма площадей квадратов , построенных на катетах, равна площади квадрата , построенного на гипотенузе».

Правда, немножко по-другому звучит? И вот, когда Пифагор нарисовал утверждение своей теоремы, как раз и получилась такая картинка.


На этой картинке сумма площадей маленьких квадратов равна площади большого квадрата. А чтобы дети лучше запоминали, что сумма квадратов катетов равна квадрату гипотенузы, кто-то остроумный и выдумал эту шутку про Пифагоровы штаны.

Почему же мы сейчас формулируем теорему Пифагора

А Пифагор мучился и рассуждал про площади?

Понимаешь, в древние времена не было… алгебры! Не было никаких обозначений и так далее. Не было надписей. Представляешь, как бедным древним ученикам было ужасно запоминать всё словами??! А мы можем радоваться, что у нас есть простая формулировка теоремы Пифагора. Давай её ещё раз повторим, чтобы лучше запомнить:

Теперь уже должно быть легко:

Квадрат гипотенузы равен сумме квадратов катетов.

Ну вот, самую главную теорему о прямоугольном треугольнике обсудили. Если тебе интересно, как она доказывается, читай следующие уровни теории, а сейчас пойдём дальше… в тёмный лес… тригонометрии! К ужасным словам синус, косинус, тангенс и котангенс.

Синус, косинус, тангенс, котангенс в прямоугольном треугольнике.

На самом деле все совсем не так страшно. Конечно, «настоящее» определение синуса, косинуса, тангенса и котангенса нужно смотреть в статье . Но очень не хочется, правда? Можем обрадовать: для решения задач про прямоугольный треугольник можно просто заполнить следующие простые вещи:

А почему же всё только про угол? Где же угол? Для того, чтобы в этом разобраться, нужно знать, как утверждения 1 - 4 записываются словами. Смотри, понимай и запоминай!

1.
Вообще-то звучит это так:

А что же угол? Есть ли катет, который находится напротив угла, то есть противолежащий (для угла) катет? Конечно, есть! Это катет!

А как же угол? Посмотри внимательно. Какой катет прилегает к углу? Конечно же, катет. Значит, для угла катет - прилежащий, и

А теперь, внимание! Посмотри, что у нас получилось:

Видишь, как здорово:

Теперь перейдём к тангенсу и котангенсу.

Как это теперь записать словами? Катет каким является по отношению к углу? Противолежащим, конечно - он «лежит» напротив угла. А катет? Прилегает к углу. Значит, что у нас получилось?

Видишь, числитель и знаменатель поменялись местами?

И теперь снова углы и совершили обмен:

Резюме

Давай вкратце запишем всё, что мы узнали.

Теорема Пифагора:

Главная теорема о прямоугольном треугольнике - теорема Пифагора.

Теорема Пифагора

Кстати, хорошо ли ты помнишь, что такое катеты и гипотенуза? Если не очень, то смотри на рисунок - освежай знания

Вполне возможно, что ты уже много раз использовал теорему Пифагора, а вот задумывался ли ты, почему же верна такая теорема. Как бы её доказать? А давай поступим, как древние греки. Нарисуем квадрат со стороной.

Видишь, как хитро мы поделили его стороны на отрезки длин и!

А теперь соединим отмеченные точки

Тут мы, правда ещё кое что отметили, но ты сам посмотри на рисунок и подумай, почему так.

Чему же равна площадь большего квадрата? Правильно, . А площадь меньшего? Конечно, . Осталась суммарная площадь четырех уголков. Представь, что мы взяли их по два и прислонили друг к другу гипотенузами. Что получилось? Два прямоугольника. Значит, площадь «обрезков» равна.

Давай теперь соберем всё вместе.

Преобразуем:

Вот и побывали мы Пифагором - доказали его теорему древним способом.

Прямоугольный треугольник и тригонометрия

Для прямоугольного треугольника выполняются следующие соотношения:

Синус острого угла равен отношению противолежащего катета к гипотенузе

Косинус острого угла равен отношению прилежащего катета к гипотенузе.

Тангенс острого угла равен отношению противолежащего катета к прилежащему катету.

Котангенс острого угла равен отношению прилежащего катета к противолежащему катету.

И ещё раз всё это в виде таблички:

Это очень удобно!

Признаки равенства прямоугольных треугольников

I. По двум катетам

II. По катету и гипотенузе

III. По гипотенузе и острому углу

IV. По катету и острому углу

a)

b)

Внимание! Здесь очень важно, чтобы катеты были «соответствующие». Например, если будет так:

То ТРЕУГОЛЬНИКИ НЕ РАВНЫ , несмотря на то, что имеют по одному одинаковому острому углу.

Нужно, чтобы в обоих треугольниках катет был прилежащим, или в обоих - противолежащим .

Ты заметил, чем отличаются признаки равенства прямоугольных треугольников от обычных признаков равенства треугольников? Загляни в тему « и обрати внимание на то, что для равенства «рядовых» треугольников нужно равенство трех их элементов: две стороны и угол между ними, два угла и сторона между ними или три стороны. А вот для равенства прямоугольных треугольников достаточно всего двух соответственных элементов. Здорово, правда?

Примерно такая же ситуация и с признаками подобия прямоугольных треугольников.

Признаки подобия прямоугольных треугольников

I. По острому углу

II. По двум катетам

III. По катету и гипотенузе

Медиана в прямоугольном треугольнике

Почему это так?

Рассмотрим вместо прямоугольного треугольника целый прямоугольник.

Проведём диагональ и рассмотрим точку - точку пересечения диагоналей. Что известно про диагонали прямоугольника?

И что из этого следует?

Вот и получилось, что

  1. - медиана:

Запомни этот факт! Очень помогает!

А что ещё более удивительно, так это то, что верно и обратное утверждение.

Что же хорошего можно получить из того, что медиана, проведенная к гипотенузе, равна половине гипотенузы? А давай посмотрим на картинку

Посмотри внимательно. У нас есть: , то есть расстояния от точки до всех трёх вершин треугольника оказались равны. Но в треугольнике есть всего одна точка, расстояния от которой о всех трёх вершин треугольника равны, и это - ЦЕНТР ОПИСАННОЙ ОКРУЖНОСТИ. Значит, что получилось?

Вот давай мы начнём с этого «кроме того...».

Посмотрим на и.

Но у подобных треугольников все углы равны!

То же самое можно сказать и про и

А теперь нарисуем это вместе:

Какую же пользу можно извлечь из этого «тройственного» подобия.

Ну, например - две формулы для высоты прямоугольного треугольника.

Запишем отношения соответствующих сторон:

Для нахождения высоты решаем пропорцию и получаем первую формулу "Высота в прямоугольном треугольнике" :

Итак, применим подобие: .

Что теперь получится?

Опять решаем пропорцию и получаем вторую формулу :

Обе эти формулы нужно очень хорошо помнить и применять ту, которую удобнее. Запишем их ещё раз

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: .

Признаки равенства прямоугольных треугольников:

  • по двум катетам:
  • по катету и гипотенузе: или
  • по катету и прилежащему острому углу: или
  • по катету и противолежащему острому углу: или
  • по гипотенузе и остром углу: или.

Признаки подобия прямоугольных треугольников:

  • одному острому углу: или
  • из пропорциональности двух катетов:
  • из пропорциональности катета и гипотенузы: или.

Синус, косинус, тангенс, котангенс в прямоугольном треугольнике

  • Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе:
  • Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе:
  • Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему:
  • Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему: .

Высота прямоугольного треугольника: или.

В прямоугольном треугольнике медиана , проведённая из вершины прямого угла, равна половине гипотенузы: .

Площадь прямоугольного треугольника:

  • через катеты:

Средний уровень

Прямоугольный треугольник. Полный иллюстрированный гид (2019)

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК. НАЧАЛЬНЫЙ УРОВЕНЬ.

В задачах прямой угол вовсе не обязательно - левый нижний, так что тебе нужно научиться узнавать прямоугольный треугольник и в таком виде,

и в таком,

и в таком

Что же хорошего есть в прямоугольном треугольнике? Ну..., во-первых, есть специальные красивые названия для его сторон.

Внимание на рисунок!

Запомни и не путай: катетов - два, а гипотенуза - всего одна (единственная, неповторимая и самая длинная)!

Ну вот, названия обсудили, теперь самое важное: Теорема Пифагора.

Теорема Пифагора.

Эта теорема - ключик к решению многих задачек с участием прямоугольного треугольника. Её доказал Пифагор в совершенно незапамятные времена, и с тех пор она принесла много пользы знающим её. А самое хорошее в ней то, что она - простая.

Итак, Теорема Пифагора:

Помнишь шутку: «Пифагоровы штаны на все стороны равны!»?

Давай нарисуем эти самые пифагоровы штаны и посмотрим на них.

Правда, похоже на какие - то шорты? Ну и на какие стороны и где она равны? Почему и откуда возникла шутка? А шутка эта связана как раз с теоремой Пифагора, точнее с тем, как сам Пифагор формулировал свою теорему. А формулировал он её так:

«Сумма площадей квадратов , построенных на катетах, равна площади квадрата , построенного на гипотенузе».

Правда, немножко по-другому звучит? И вот, когда Пифагор нарисовал утверждение своей теоремы, как раз и получилась такая картинка.


На этой картинке сумма площадей маленьких квадратов равна площади большого квадрата. А чтобы дети лучше запоминали, что сумма квадратов катетов равна квадрату гипотенузы, кто-то остроумный и выдумал эту шутку про Пифагоровы штаны.

Почему же мы сейчас формулируем теорему Пифагора

А Пифагор мучился и рассуждал про площади?

Понимаешь, в древние времена не было… алгебры! Не было никаких обозначений и так далее. Не было надписей. Представляешь, как бедным древним ученикам было ужасно запоминать всё словами??! А мы можем радоваться, что у нас есть простая формулировка теоремы Пифагора. Давай её ещё раз повторим, чтобы лучше запомнить:

Теперь уже должно быть легко:

Квадрат гипотенузы равен сумме квадратов катетов.

Ну вот, самую главную теорему о прямоугольном треугольнике обсудили. Если тебе интересно, как она доказывается, читай следующие уровни теории, а сейчас пойдём дальше… в тёмный лес… тригонометрии! К ужасным словам синус, косинус, тангенс и котангенс.

Синус, косинус, тангенс, котангенс в прямоугольном треугольнике.

На самом деле все совсем не так страшно. Конечно, «настоящее» определение синуса, косинуса, тангенса и котангенса нужно смотреть в статье . Но очень не хочется, правда? Можем обрадовать: для решения задач про прямоугольный треугольник можно просто заполнить следующие простые вещи:

А почему же всё только про угол? Где же угол? Для того, чтобы в этом разобраться, нужно знать, как утверждения 1 - 4 записываются словами. Смотри, понимай и запоминай!

1.
Вообще-то звучит это так:

А что же угол? Есть ли катет, который находится напротив угла, то есть противолежащий (для угла) катет? Конечно, есть! Это катет!

А как же угол? Посмотри внимательно. Какой катет прилегает к углу? Конечно же, катет. Значит, для угла катет - прилежащий, и

А теперь, внимание! Посмотри, что у нас получилось:

Видишь, как здорово:

Теперь перейдём к тангенсу и котангенсу.

Как это теперь записать словами? Катет каким является по отношению к углу? Противолежащим, конечно - он «лежит» напротив угла. А катет? Прилегает к углу. Значит, что у нас получилось?

Видишь, числитель и знаменатель поменялись местами?

И теперь снова углы и совершили обмен:

Резюме

Давай вкратце запишем всё, что мы узнали.

Теорема Пифагора:

Главная теорема о прямоугольном треугольнике - теорема Пифагора.

Теорема Пифагора

Кстати, хорошо ли ты помнишь, что такое катеты и гипотенуза? Если не очень, то смотри на рисунок - освежай знания

Вполне возможно, что ты уже много раз использовал теорему Пифагора, а вот задумывался ли ты, почему же верна такая теорема. Как бы её доказать? А давай поступим, как древние греки. Нарисуем квадрат со стороной.

Видишь, как хитро мы поделили его стороны на отрезки длин и!

А теперь соединим отмеченные точки

Тут мы, правда ещё кое что отметили, но ты сам посмотри на рисунок и подумай, почему так.

Чему же равна площадь большего квадрата? Правильно, . А площадь меньшего? Конечно, . Осталась суммарная площадь четырех уголков. Представь, что мы взяли их по два и прислонили друг к другу гипотенузами. Что получилось? Два прямоугольника. Значит, площадь «обрезков» равна.

Давай теперь соберем всё вместе.

Преобразуем:

Вот и побывали мы Пифагором - доказали его теорему древним способом.

Прямоугольный треугольник и тригонометрия

Для прямоугольного треугольника выполняются следующие соотношения:

Синус острого угла равен отношению противолежащего катета к гипотенузе

Косинус острого угла равен отношению прилежащего катета к гипотенузе.

Тангенс острого угла равен отношению противолежащего катета к прилежащему катету.

Котангенс острого угла равен отношению прилежащего катета к противолежащему катету.

И ещё раз всё это в виде таблички:

Это очень удобно!

Признаки равенства прямоугольных треугольников

I. По двум катетам

II. По катету и гипотенузе

III. По гипотенузе и острому углу

IV. По катету и острому углу

a)

b)

Внимание! Здесь очень важно, чтобы катеты были «соответствующие». Например, если будет так:

То ТРЕУГОЛЬНИКИ НЕ РАВНЫ , несмотря на то, что имеют по одному одинаковому острому углу.

Нужно, чтобы в обоих треугольниках катет был прилежащим, или в обоих - противолежащим .

Ты заметил, чем отличаются признаки равенства прямоугольных треугольников от обычных признаков равенства треугольников? Загляни в тему « и обрати внимание на то, что для равенства «рядовых» треугольников нужно равенство трех их элементов: две стороны и угол между ними, два угла и сторона между ними или три стороны. А вот для равенства прямоугольных треугольников достаточно всего двух соответственных элементов. Здорово, правда?

Примерно такая же ситуация и с признаками подобия прямоугольных треугольников.

Признаки подобия прямоугольных треугольников

I. По острому углу

II. По двум катетам

III. По катету и гипотенузе

Медиана в прямоугольном треугольнике

Почему это так?

Рассмотрим вместо прямоугольного треугольника целый прямоугольник.

Проведём диагональ и рассмотрим точку - точку пересечения диагоналей. Что известно про диагонали прямоугольника?

И что из этого следует?

Вот и получилось, что

  1. - медиана:

Запомни этот факт! Очень помогает!

А что ещё более удивительно, так это то, что верно и обратное утверждение.

Что же хорошего можно получить из того, что медиана, проведенная к гипотенузе, равна половине гипотенузы? А давай посмотрим на картинку

Посмотри внимательно. У нас есть: , то есть расстояния от точки до всех трёх вершин треугольника оказались равны. Но в треугольнике есть всего одна точка, расстояния от которой о всех трёх вершин треугольника равны, и это - ЦЕНТР ОПИСАННОЙ ОКРУЖНОСТИ. Значит, что получилось?

Вот давай мы начнём с этого «кроме того...».

Посмотрим на и.

Но у подобных треугольников все углы равны!

То же самое можно сказать и про и

А теперь нарисуем это вместе:

Какую же пользу можно извлечь из этого «тройственного» подобия.

Ну, например - две формулы для высоты прямоугольного треугольника.

Запишем отношения соответствующих сторон:

Для нахождения высоты решаем пропорцию и получаем первую формулу "Высота в прямоугольном треугольнике" :

Итак, применим подобие: .

Что теперь получится?

Опять решаем пропорцию и получаем вторую формулу :

Обе эти формулы нужно очень хорошо помнить и применять ту, которую удобнее. Запишем их ещё раз

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: .

Признаки равенства прямоугольных треугольников:

  • по двум катетам:
  • по катету и гипотенузе: или
  • по катету и прилежащему острому углу: или
  • по катету и противолежащему острому углу: или
  • по гипотенузе и остром углу: или.

Признаки подобия прямоугольных треугольников:

  • одному острому углу: или
  • из пропорциональности двух катетов:
  • из пропорциональности катета и гипотенузы: или.

Синус, косинус, тангенс, котангенс в прямоугольном треугольнике

  • Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе:
  • Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе:
  • Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему:
  • Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему: .

Высота прямоугольного треугольника: или.

В прямоугольном треугольнике медиана , проведённая из вершины прямого угла, равна половине гипотенузы: .

Площадь прямоугольного треугольника:

  • через катеты:

Свойства прямоугольного треугольника

Дорогие семиклассники, вы уже знаете какие геометрические фигуры называются треугольниками, умеете доказывать признаки их равенства. Знаете вы и о частных случаях треугольников: равнобедренных и прямоугольных. Свойства равнобедренных треугольников вам хорошо известны.

Но и у прямоугольных треугольников есть немало свойств. Одно, очевидное, связано с теоремой о сумме внутренних углов треугольника: в прямоугольном треугольнике сумма острых углов равно 90°. Самое удивительное свойство прямоугольного треугольника вы узнаете в 8 классе , когда изучите знаменитую теорему Пифагора.

А сейчас мы поговорим еще о двух важных свойствах. Одно из них относится к прямоугольным треугольникам с углом 30°, а другое к произвольным прямоугольным треугольникам. Сформулируем и докажем эти свойства.

Вам хорошо известно, что в геометрии принято формулировать утверждения обратные к доказанным, когда условие и заключение в утверждении меняются местами. Далеко не всегда обратные утверждения оказываются верными. В нашем случае оба обратных утверждения верны.

Свойство 1.1 В прямоугольном треугольнике катет, лежащий против угла в 30° равен половине гипотенузы.

Доказательство: Рассмотрим прямоугольный ∆ АВС, в котором ÐА=90°, ÐВ=30°, тогда ÐС=60°..gif" width="167" height="41">, следовательно , что и требовалось доказать.

Свойство 1.2 (обратное к свойству 1.1) Если в прямоугольном треугольнике катет равен половине гипотенузы, то противолежащий ему угол равен 30°.

Свойство 2.1 В прямоугольном треугольнике медиана, проведенная к гипотенузе равна половине гипотенузы.

Рассмотрим прямоугольный ∆ АВС, в котором ÐВ=90°.

BD-медиана, то есть AD=DC. Докажем, что .

Для доказательства сделаем дополнительное построение: продолжим BD за точку D так, чтоBD=DN и соединим N с A и C..gif" width="616" height="372 src=">

Дано: ∆ABC, ÐC=90o, ÐA=30o, ÐBEC=60o, EC=7см

1. ÐEBC=30o, т. к. в прямоугольном ∆BCE сумма острых углов 90о

2. BE=14см(свойство 1)

3. ÐABE=30o, так как ÐA+ÐABE=ÐBEC (свойство внешнего угла треугольника) поэтому ∆AEB- равнобедренный AE=EB=14см.

3. (свойство 1).

BC=2AN=20 см (свойство 2).

Задача 3. Доказать, что высота и медиана прямоугольного треугольника, проведенные к гипотенузе, образуют угол, равный разности острых углов треугольника.

Дано: ∆ АВС, ÐВАС=90°, АМ-медиана, АН-высота.

Доказать: ÐМАН=ÐС-ÐВ.

Доказательство:

1)ÐМАС=ÐС (по свойству 2 ∆ АМС-равнобедренный, АМ=СМ)

2)ÐМАН=ÐМАС-ÐНАС=ÐС-ÐНАС.

Остается доказать, что ÐНАС=ÐВ. Это следует из того, что ÐВ+ÐС=90°(в ∆ АВС) и ÐНАС+ÐС=90° (из ∆ АНС).

Итак, ÐМАН=ÐС-ÐВ, что и требовалось доказать.

https://pandia.ru/text/80/358/images/image014_39.gif" width="194" height="184">Дано: ∆АВС, ÐВАС=90°, АН-высота, .

Найти: ÐВ, ÐС.

Решение: Проведем медиану АМ. Пусть АН=х, тогда ВС=4х и

ВМ=МС=АМ=2х.

В прямоугольном ∆ АМН, гипотенуза АМ в 2 раза больше катета АН, поэтому ÐАМН=30°. Так как ВМ=АМ,

ÐВ=ÐВАМ100%">

Док-во: Пусть в ∆ABC ÐA=900 и AC=1/2BC

Продолжим AC за точку А так, что AD=AC. Тогда ∆ABC=∆ABD(по 2-м катетам). BD=BC=2AC=CD, таким образом ∆DBC-равносторонний, ÐС=60о и ÐАВС=30о.

Задача 5

В равнобедренном треугольнике один из углов 120о, основание равно 10 см. Найти высоту, проведенную к боковой стороне.

Решение: для начала отметим, что угол 120о может быть только при вершине треугольника и что высота проведенная к боковой стороне попадет на её продолжение.

https://pandia.ru/text/80/358/images/image019_27.gif" height="26">К вертикальной стене прислонили лестницу. На середине лестницы сидит котенок. Вдруг лестница начала скользить вниз по стене. Какую траекторию будет описывать котенок?

АВ - лестница, К - котенок.

При любом положении лестницы, пока она окончательно не упала на землю ∆АВС- прямоугольный. СК - медиана ∆АВС.

По свойству 2 СК=1/2АВ. То есть в любой момент времени длина отрезка СК постоянна.

Ответ: точка К будет двигаться по дуге окружности с центром С и радиусом СК=1/2АВ.

Задачи для самостоятельного решения.

Один из углов прямоугольного треугольника равен 60о, а разность гипотенузы и меньшего катета равна 4см. найти длину гипотенузы. В прямоугольном ∆ АВС с гипотенузой ВС и углом В, равным 60о, проведена высота АD. Найти DC, если DB=2см. В ∆АВС ÐС=90о, СD - высот, ВС=2ВD. Докажите, что АD=3ВD. Высота прямоугольного треугольника делит гипотенузу на части 3см и 9см. Найти углы треугольника и расстояние от середины гипотенузы до большего катета. Биссектриса разбивает треугольник на два равнобедренных треугольника. Найти углы исходного треугольника. Медиана разбивает треугольник на два равнобедренных. Можно ли найти углы

Исходного треугольника?