Това, което се нарича степен с естествен показател. Публикации с етикет "примери за свойства на степени с естествен показател"

Първо ниво

Степен и неговите свойства. Изчерпателно ръководство (2019)

Защо са необходими дипломи? Къде ще ви трябват? Защо трябва да отделите време да ги изучавате?

Да научите всичко за дипломите, за какво служат, как да използвате знанията си в Ежедневиетопрочетете тази статия.

И, разбира се, познаването на степени ще ви доближи до успеха преминаване на OGEили Единен държавен изпит и прием в университета на вашите мечти.

Да вървим... (Да вървим!)

Важна забележка! Ако видите gobbledygook вместо формули, изчистете кеша. За да направите това, натиснете CTRL+F5 (на Windows) или Cmd+R (на Mac).

ПЪРВО НИВО

Повдигането на степен е същото математическа операциякато събиране, изваждане, умножение или деление.

Сега ще обясня всичко човешки езикмного прости примери. Бъди внимателен. Примерите са елементарни, но обясняват важни неща.

Да започнем с добавянето.

Тук няма какво да се обяснява. Вече знаете всичко: осем сме. Всеки има по две бутилки кола. Колко кола има? Точно така - 16 бутилки.

Сега умножение.

Същият пример с кола може да се напише по различен начин: . Математиците са хитри и мързеливи хора. Те първо забелязват някои модели и след това намират начин да ги „преброят“ по-бързо. В нашия случай те забелязаха, че всеки от осемте души имаше еднакъв брой бутилки кола и измислиха техника, наречена умножение. Съгласете се, счита се за по-лесно и по-бързо от.


Така че, за да броите по-бързо, по-лесно и без грешки, просто трябва да запомните таблица за умножение. Разбира се, можете да правите всичко по-бавно, по-трудно и с грешки! Но…

Ето таблицата за умножение. Повторете.

И още един по-красив:

Какви други умни трикове за броене са измислили мързеливите математици? точно - повишаване на число на степен.

Повдигане на число на степен

Ако трябва да умножите число само по себе си пет пъти, тогава математиците казват, че трябва да повдигнете това число на пета степен. Например, . Математиците помнят, че две на пета степен е... И те решават такива проблеми в главите си - по-бързо, лесно и безгрешно.

Всичко, което трябва да направите е запомнете какво е маркирано с цвят в таблицата на степените на числата. Повярвайте ми, това ще направи живота ви много по-лесен.

Между другото, защо се нарича втора степен? квадратчисла, а третият - куб? Какво означава? Много Добър въпрос. Сега ще имате както квадрати, така и кубчета.

Пример от реалния живот №1

Нека започнем с квадрата или втората степен на числото.

Представете си квадратен басейн с размери метър на метър. Басейнът е във вашата дача. Горещо е и много искам да плувам. Но... басейнът няма дъно! Трябва да покриете дъното на басейна с плочки. Колко плочки ви трябват? За да определите това, трябва да знаете долната площ на басейна.

Можете просто да изчислите, като посочите с пръст, че дъното на басейна се състои от кубчета метър по метър. Ако имате плочки метър на метър, ще ви трябват парчета. Лесно е... Но къде сте виждали такива плочки? Плочката най-вероятно ще бъде см на см и тогава ще бъдете измъчвани от „броене с пръст“. След това трябва да умножите. И така, от едната страна на дъното на басейна ще поставим плочки (парчета), а от другата също плочки. Умножете по и ще получите плочки ().

Забелязахте ли, че за да определим площта на дъното на басейна, умножихме едно и също число по себе си? Какво означава? Тъй като умножаваме едно и също число, можем да използваме техниката на „постепенно степенуване“. (Разбира се, когато имате само две числа, все още трябва да ги умножите или да ги повдигнете на степен. Но ако имате много от тях, тогава повишаването им на степен е много по-лесно и също така има по-малко грешки в изчисленията , За Единния държавен изпит това е много важно).
И така, тридесет на втора степен ще бъде (). Или можем да кажем, че тридесет на квадрат ще бъде. С други думи, втората степен на число винаги може да бъде представена като квадрат. И обратното, ако видите квадрат, той ВИНАГИ е втората степен на дадено число. Квадратът е изображение на втората степен на число.

Пример от реалния живот №2

Ето една задача за вас: пребройте колко квадратчета има на шахматната дъска, като използвате квадрата на числото... От едната страна на клетките и от другата също. За да изчислите техния брой, трябва да умножите осем по осем или... ако забележите, че шахматната дъска е квадрат със страна, тогава можете да квадратирате осем. Ще получите клетки. () Така?

Пример от реалния живот #3

Сега кубът или третата степен на число. Същият басейн. Но сега трябва да разберете колко вода ще трябва да се излее в този басейн. Трябва да изчислите обема. (Между другото, обемите и течностите се измерват в кубични метри. Неочаквано, нали?) Начертайте басейн: дъно с размери метър и дълбочина метър и се опитайте да преброите колко кубчета с размери метър на метър ще се поберат във вашия басейн.

Просто посочете пръста си и пребройте! Едно, две, три, четири...двадесет и две, двадесет и три...Колко получихте? Не сте изгубени? Трудно ли е да броите с пръст? Така че! Вземете пример от математиците. Те са мързеливи и затова забелязаха, че за да изчислите обема на басейна, трябва да умножите неговата дължина, ширина и височина един по друг. В нашия случай обемът на басейна ще бъде равен на кубчета... По-лесно, нали?

Сега си представете колко мързеливи и хитри са математиците, ако опростят и това. Сведохме всичко до едно действие. Забелязаха, че дължината, ширината и височината са равни и че едно и също число се умножава по себе си... Какво означава това? Това означава, че можете да се възползвате от степента. И така, това, което някога сте преброили с пръста си, те правят с едно действие: три кубчета са равни. Написано е така: .

Всичко, което остава е помнете градусната таблица. Освен ако, разбира се, не сте мързеливи и хитри като математиците. Ако обичате да работите усилено и да правите грешки, можете да продължите да броите с пръст.

Е, за да ви убедя най-накрая, че дипломите са измислени от отказали се и хитри хора, за да решават своите житейски проблеми, и за да не ви създавам проблеми, ето още няколко примера от живота.

Пример от реалния живот #4

Имате милион рубли. В началото на всяка година за всеки милион, който правите, правите още един милион. Тоест всеки милион, който имате, се удвоява в началото на всяка година. Колко пари ще имате след години? Ако сега седите и „броите с пръста си“, това означава, че сте много трудолюбив човеки.. глупав. Но най-вероятно ще дадете отговор след няколко секунди, защото сте умни! И така, първата година - две умножено по две... втората година - какво стана, още две, третата година... Стоп! Забелязахте, че числото се умножава по себе си пъти. Значи две на пета степен е милион! А сега си представете, че имате състезание и този, който брои най-бързо, ще вземе тези милиони... Струва си да си припомним силата на числата, не мислите ли?

Пример от реалния живот #5

Имаш милион. В началото на всяка година печелите още два за всеки милион. Страхотно нали? Всеки милион се утроява. Колко пари ще имате след една година? Да преброим. Първата година - умножете по, след това резултатът с още един ... Вече е скучно, защото вече сте разбрали всичко: три се умножава по себе си пъти. Така че на четвърта степен е равно на милион. Просто трябва да помниш, че три на четвърта степен е или.

Сега знаете, че като повдигнете число на степен, ще улесните много живота си. Нека да разгледаме по-подробно какво можете да правите със степените и какво трябва да знаете за тях.

Термини и понятия... за да не се бъркаме

Така че, първо, нека дефинираме понятията. Какво мислиш, какво е степенен показател? Много е просто - това е числото, което е "на върха" на степента на числото. Не научно, но ясно и лесно за запомняне...

Е, в същото време какво такава основа за степен? Още по-просто - това е числото, което се намира отдолу, в основата.

Ето една рисунка за добра мярка.

Добре в общ изглед, с цел обобщаване и по-добро запомняне... Степен с основа “ ” и показател “ ” се чете като “на степен” и се записва по следния начин:

Степен на числото c естествен показател

Вероятно вече се досещате: защото показателят е естествено число. Да, но какво е естествено число? Елементарно! Естествените числа са онези числа, които се използват при броене при изброяване на предмети: едно, две, три... Когато броим предмети, не казваме: „минус пет“, „минус шест“, „минус седем“. Ние също не казваме: „една трета“ или „нула цяло пет“. Това не са естествени числа. Какви числа мислите, че са това?

Числа като „минус пет“, „минус шест“, „минус седем“ се отнасят за цели числа.Като цяло целите числа включват всички естествени числа, числа, противоположни на естествените числа (т.е. взети със знак минус) и число. Нулата е лесна за разбиране - това е, когато няма нищо. Какво означават отрицателните („минус“) числа? Но те са измислени предимно за посочване на дългове: ако имате баланс на телефона си в рубли, това означава, че дължите на оператора рубли.

Всички фракции са рационални числа. Как са възникнали, според вас? Много просто. Преди няколко хиляди години нашите предци открили, че им липсват естествени числа за измерване на дължина, тегло, площ и т.н. И те измислиха рационални числа... Интересно, нали?

Има ли още ирационални числа. Какви са тези числа? Накратко безкрайно десетичен знак. Например, ако разделите обиколката на кръг на неговия диаметър, ще получите ирационално число.

Резюме:

Нека дефинираме концепцията за степен, чийто експонент е естествено число (т.е. цяло число и положително).

  1. Всяко число на първа степен е равно на себе си:
  2. Да повдигнете число на квадрат означава да го умножите по себе си:
  3. Да кубирате число означава да го умножите само по себе си три пъти:

Определение.Повишаването на число на естествена степен означава числото да се умножи по себе си пъти:
.

Свойства на степените

Откъде са дошли тези имоти? Сега ще ви покажа.

Да видим: какво е това И ?

A-приори:

Колко множителя има общо?

Много е просто: добавихме множители към факторите и резултатът е множители.

Но по дефиниция това е степен на число с показател, тоест: , което трябваше да се докаже.

Пример: Опростете израза.

Решение:

Пример:Опростете израза.

Решение:Важно е да се отбележи, че в нашето правило Задължителнотрябва да има същите причини!
Следователно ние комбинираме мощностите с основата, но тя остава отделен фактор:

само за произведението на мощностите!

При никакви обстоятелства не можете да пишете това.

2. това е всичко та степен на число

Точно както при предишното свойство, нека се обърнем към определението за степен:

Оказва се, че изразът се умножава по себе си пъти, тоест според дефиницията това е степента на числото:

По същество това може да се нарече „изваждане на индикатора от скоби“. Но никога не можете да направите това напълно:

Да си припомним формулите за съкратено умножение: колко пъти искахме да напишем?

Но това в крайна сметка не е вярно.

Сила с отрицателна основа

До този момент сме обсъждали само какво трябва да бъде показателят.

Но каква трябва да бъде основата?

В правомощията на естествен показателосновата може да бъде произволен брой. Наистина можем да умножим всякакви числа едно по друго, независимо дали са положителни, отрицателни или четни.

Нека помислим кои знаци ("" или "") ще имат степени на положителни и отрицателни числа?

Например числото положително или отрицателно ли е? А? ? Първото е ясно: колкото и да е положителни числаНе сме се умножавали един по друг, резултатът ще бъде положителен.

Но негативните са малко по-интересни. Спомняме си простото правило от 6 клас: „минус за минус дава плюс“. Тоест, или. Но ако умножим по, работи.

Определете сами какъв знак ще имат следните изрази:

1) 2) 3)
4) 5) 6)

успяхте ли

Ето и отговорите: В първите четири примера, надявам се, всичко е ясно? Просто разглеждаме основата и експонентата и прилагаме съответното правило.

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

В пример 5) всичко също не е толкова страшно, колкото изглежда: в крайна сметка няма значение на какво е равна основата - степента е равна, което означава, че резултатът винаги ще бъде положителен.

Е, освен когато основата е нула. Основата не е равна, нали? Очевидно не, тъй като (защото).

Пример 6) вече не е толкова прост!

6 примера за практикуване

Анализ на решението 6 примера

Ако пренебрегнем осмата сила, какво виждаме тук? Да си припомним програмата за 7 клас. И така, помниш ли? Това е формулата за съкратено умножение, а именно разликата на квадратите! Получаваме:

Нека погледнем внимателно знаменателя. Изглежда много като един от факторите числител, но какво не е наред? Редът на термините е грешен. Ако бяха обърнати, правилото можеше да се приложи.

Но как да стане това? Оказва се, че е много лесно: четната степен на знаменателя ни помага тук.

По магически начин термините смениха местата си. Този „феномен“ се отнася за всеки израз в еднаква степен: можем лесно да променим знаците в скобите.

Но е важно да запомните: всички знаци се променят едновременно!

Да се ​​върнем към примера:

И отново формулата:

Цялнаричаме естествените числа, техните противоположни (т.е. взети със знака " ") и числото.

положително цяло число, и не се различава от естественото, тогава всичко изглежда точно както в предишния раздел.

Сега нека да разгледаме новите случаи. Нека започнем с индикатор, равен на.

Всяко число на нулева степен е равно на едно:

Както винаги, нека се запитаме: защо това е така?

Нека разгледаме някаква степен с основа. Вземете например и умножете по:

И така, умножихме числото по и получихме същото нещо, каквото беше - . По какво число трябва да умножите, за да не се промени нищо? Точно така, на. Средства.

Можем да направим същото с произволно число:

Нека повторим правилото:

Всяко число на нулева степен е равно на едно.

Но има изключения от много правила. И тук също е там - това е число (като основа).

От една страна трябва да е равно на произволна степен - колкото и да умножаваш нулата по себе си, пак ще получиш нула, това е ясно. Но от друга страна, като всяко число на нулева степен, то трябва да е равно. И така, колко от това е вярно? Математиците решиха да не се намесват и отказаха да повдигнат нулата на нулева степен. Тоест сега не можем не само да разделим на нула, но и да го повдигнем на нулева степен.

Да продължим. Освен естествени числа и числа, целите числа включват и отрицателни числа. За да разберем какво е отрицателна степен, нека направим както в последен път: умножете някои нормално числоза същото в отрицателна степен:

От тук е лесно да изразите това, което търсите:

Сега нека разширим полученото правило до произволна степен:

И така, нека формулираме правило:

Число на отрицателна степен е реципрочното на същото число до положителна степен. Но в същото време Базата не може да бъде нула:(тъй като не можете да разделите по).

Нека да обобщим:

I. Изразът не е дефиниран в случая. Ако, тогава.

II. Всяко число на нулева степен е равно на едно: .

III. Номер, не равен на нула, в отрицателна степен е обратното на същото число в положителна степен: .

Задачи за самостоятелно решаване:

Е, както обикновено, примери за независими решения:

Анализ на проблемите за самостоятелно решение:

Знам, знам, цифрите са страшни, но на Единния държавен изпит трябва да сте подготвени за всичко! Решете тези примери или анализирайте техните решения, ако не сте успели да ги решите и ще се научите да се справяте лесно с тях на изпита!

Нека продължим да разширяваме диапазона от числа, „подходящи“ като показател.

Сега нека помислим рационални числа.Кои числа се наричат ​​рационални?

Отговор: всичко, което може да бъде представено като дроб, където и са цели числа и.

За да разбере какво е "дробна степен", разгледайте фракцията:

Нека повдигнем двете страни на уравнението на степен:

Сега нека си припомним правилото за "степен на степен":

Какво число трябва да се повдигне на степен, за да се получи?

Тази формулировка е дефиницията на корена на степен th.

Нека ви напомня: коренът на степен th на число () е число, което, когато е повдигнато на степен, е равно на.

Тоест коренът на та степен е обратната операция на повдигане на степен: .

Оказва се, че. Очевидно това специален случайможе да се разшири: .

Сега добавяме числителя: какво е това? Отговорът е лесен за получаване с помощта на правилото мощност към степен:

Но може ли основата да бъде произволно число? В крайна сметка коренът не може да бъде извлечен от всички числа.

Нито един!

Запомнете правилото: всяко число, повдигнато на четна степен, е положително число. Тоест, невъзможно е да се извлекат четни корени от отрицателни числа!

Това означава, че такива числа не могат да бъдат увеличени дробна мощностс четен знаменател, тоест изразът няма смисъл.

Какво ще кажете за израза?

Но тук възниква проблем.

Едно число може да бъде представено като други, редуцируеми дроби, например, или.

И се оказва, че съществува, но не съществува, но това са само две различни записисъщото число.

Или друг пример: веднъж, след това можете да го запишете. Но ако запишем индикатора по различен начин, отново ще имаме проблеми: (тоест получихме съвсем различен резултат!).

За да избегнем подобни парадокси, смятаме само положителен основен показател с дробен показател.

Така че, ако:

  • - естествено число;
  • - цяло число;

Примери:

Степени с рационален показателмного полезно за конвертиране на изрази с корени, например:

5 примера за практикуване

Анализ на 5 примера за обучение

Е, сега идва най-трудната част. Сега ще го разберем степен с ирационален показател.

Всички правила и свойства на степените тук са точно същите като за степен с рационален показател, с изключение

В края на краищата, по дефиниция ирационалните числа са числа, които не могат да бъдат представени като дроб, където и са цели числа (тоест всички ирационални числа са реални числа, с изключение на рационалните).

Когато изучаваме степени с естествени, цели и рационални показатели, всеки път създаваме определен „образ“, „аналогия“ или описание с по-познати термини.

Например степен с естествен показател е число, умножено по себе си няколко пъти;

...число на нулева степен- това е, така да се каже, число, умножено по себе си веднъж, тоест те все още не са започнали да го умножават, което означава, че самото число дори още не се е появило - следователно резултатът е само определено „празно число“ , а именно число;

...степен с цяло число отрицателен показател - сякаш нещо се е случило " обратен процес“, тоест числото не беше умножено само по себе си, а разделено.

Между другото, по наука степен с комплексен показател, тоест индикаторът дори не е реално число.

Но в училище не мислим за такива трудности; вие ще имате възможност да разберете тези нови концепции в института.

КЪДЕТО СМЕ СИГУРНИ, ЩЕ ОТИДЕТЕ! (ако се научиш да решаваш такива примери :))

Например:

Решете сами:

Анализ на решенията:

1. Да започнем с правилото за повишаване на степен на степен, което вече е обичайно за нас:

Сега погледнете индикатора. Той не ти ли напомня за нищо? Нека си припомним формулата за съкратено умножение на разликата на квадратите:

В такъв случай,

Оказва се, че:

Отговор: .

2. Намаляваме дробите в експоненти до една и съща форма: или двата десетични, или двата обикновени. Получаваме например:

Отговор: 16

3. Нищо специално, използваме обичайните свойства на градусите:

НАПРЕДНАЛО НИВО

Определяне на степен

Степента е израз на формата: , където:

  • образователна степен;
  • - степенен показател.

Степен с натурален показател (n = 1, 2, 3,...)

Повишаването на число на естествена степен n означава умножаване на числото по себе си пъти:

Степен с цяло число (0, ±1, ±2,...)

Ако показателят е положително цяло числономер:

Строителство до нулева степен:

Изразът е неопределен, защото, от една страна, на произволна степен е това, а от друга страна, всяко число на та степен е това.

Ако показателят е отрицателно цяло числономер:

(тъй като не можете да разделите по).

Още веднъж за нули: изразът не е дефиниран в случая. Ако, тогава.

Примери:

Степен с рационален показател

  • - естествено число;
  • - цяло число;

Примери:

Свойства на степените

За да улесним решаването на проблемите, нека се опитаме да разберем: откъде идват тези свойства? Нека ги докажем.

Да видим: какво е и?

A-приори:

И така, от дясната страна на този израз получаваме следния продукт:

Но по дефиниция това е степен на число с показател, тоест:

Q.E.D.

Пример : Опростете израза.

Решение : .

Пример : Опростете израза.

Решение : Важно е да се отбележи, че в нашето правило Задължителнотрябва да има същите причини. Следователно ние комбинираме мощностите с основата, но тя остава отделен фактор:

Друга важна забележка: това правило - само за произведение на мощности!

При никакви обстоятелства не можете да пишете това.

Точно както при предишното свойство, нека се обърнем към определението за степен:

Нека пренаредим тази работа по следния начин:

Оказва се, че изразът се умножава по себе си пъти, тоест според дефиницията това е степента на числото:

По същество това може да се нарече „изваждане на индикатора от скоби“. Но никога не можете да направите това напълно: !

Да си припомним формулите за съкратено умножение: колко пъти искахме да напишем? Но това в крайна сметка не е вярно.

Сила с отрицателна основа.

До този момент сме обсъждали само какво трябва да бъде индексстепени. Но каква трябва да бъде основата? В правомощията на естествено индикатор основата може да бъде произволен брой .

Наистина можем да умножим всякакви числа едно по друго, независимо дали са положителни, отрицателни или четни. Нека помислим кои знаци ("" или "") ще имат степени на положителни и отрицателни числа?

Например числото положително или отрицателно ли е? А? ?

С първото всичко е ясно: без значение колко положителни числа умножаваме едно по друго, резултатът ще бъде положителен.

Но негативните са малко по-интересни. Спомняме си простото правило от 6 клас: „минус за минус дава плюс“. Тоест, или. Но ако умножим по (), получаваме - .

И така до безкрайност: с всяко следващо умножение знакът ще се променя. Можем да формулираме следното прости правила:

  1. дористепен, - номер положителен.
  2. Отрицателното число е повишено до странностепен, - номер отрицателен.
  3. Положително число на каквато и да е степен е положително число.
  4. Нула на произволна степен е равна на нула.

Определете сами какъв знак ще имат следните изрази:

1. 2. 3.
4. 5. 6.

успяхте ли Ето и отговорите:

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

В първите четири примера, надявам се, всичко е ясно? Просто разглеждаме основата и експонентата и прилагаме съответното правило.

В пример 5) всичко също не е толкова страшно, колкото изглежда: в крайна сметка няма значение на какво е равна основата - степента е равна, което означава, че резултатът винаги ще бъде положителен. Е, освен когато основата е нула. Основата не е равна, нали? Очевидно не, тъй като (защото).

Пример 6) вече не е толкова прост. Тук трябва да разберете кое е по-малко: или? Ако си спомним това, става ясно, че, което означава, че основата е по-малка от нула. Тоест прилагаме правило 2: резултатът ще бъде отрицателен.

И отново използваме определението за степен:

Всичко е както обикновено - записваме дефиницията на степените и ги разделяме една на друга, разделяме ги на двойки и получаваме:

Преди да го разглобите последното правило, нека решим няколко примера.

Пресметнете изразите:

Решения :

Ако пренебрегнем осмата сила, какво виждаме тук? Да си припомним програмата за 7 клас. И така, помниш ли? Това е формулата за съкратено умножение, а именно разликата на квадратите!

Получаваме:

Нека погледнем внимателно знаменателя. Изглежда много като един от факторите числител, но какво не е наред? Редът на термините е грешен. Ако бяха обърнати, можеше да се приложи правило 3. Но как? Оказва се, че е много лесно: тук ни помага четната степен на знаменателя.

Ако го умножите по, нищо не се променя, нали? Но сега се оказва така:

По магически начин термините смениха местата си. Този „феномен“ се отнася за всеки израз в еднаква степен: можем лесно да променим знаците в скобите. Но е важно да запомните: Всички знаци се променят едновременно!Не можете да го замените, като промените само един недостатък, който не ни харесва!

Да се ​​върнем към примера:

И отново формулата:

И така, последното правило:

Как ще го докажем? Разбира се, както обикновено: нека разширим концепцията за степен и да я опростим:

Е, сега нека отворим скобите. Колко букви има общо? пъти по множители - на какво ви напомня това? Това не е нищо повече от определение на операция умножение: Там имаше само множители. Тоест, това по дефиниция е степен на число с показател:

Пример:

Степен с ирационален показател

В допълнение към информацията за степените за средно ниво, ще анализираме степента с ирационален показател. Всички правила и свойства на степените тук са точно същите като за степен с рационален показател, с изключение - в края на краищата, по дефиниция ирационалните числа са числа, които не могат да бъдат представени като дроб, където и са цели числа (т.е. , ирационалните числа са всички реални числа, с изключение на рационалните числа).

Когато изучаваме степени с естествени, цели и рационални показатели, всеки път създаваме определен „образ“, „аналогия“ или описание с по-познати термини. Например степен с естествен показател е число, умножено по себе си няколко пъти; число на нулева степен е, така да се каже, число, умножено по себе си веднъж, тоест те все още не са започнали да го умножават, което означава, че самото число дори още не се е появило - следователно резултатът е само определен „празно число“, а именно число; степен с цяло число отрицателен експонент - сякаш е настъпил някакъв „обратен процес“, тоест числото не е умножено само по себе си, а разделено.

Изключително трудно е да си представим степен с ирационален показател (точно както е трудно да си представим 4-измерно пространство). По-скоро е чисто математически обект, който математиците създадоха, за да разширят концепцията за степен до цялото числово пространство.

Между другото, в науката често се използва степен със сложен показател, тоест показателят дори не е реално число. Но в училище не мислим за такива трудности; вие ще имате възможност да разберете тези нови концепции в института.

И така, какво да правим, ако видим ирационален показателстепени? Опитваме се да се отървем от него! :)

Например:

Решете сами:

1) 2) 3)

Отговори:

  1. Нека си спомним формулата за разликата на квадратите. Отговор: .
  2. Привеждаме дробите до една и съща форма: или двете десетични, или и двете обикновени. Получаваме например: .
  3. Нищо специално, използваме обичайните свойства на градусите:

ОБОБЩЕНИЕ НА РАЗДЕЛА И ОСНОВНИ ФОРМУЛИ

Степеннаречен израз от формата: , където:

Степен с цяло число

степен, чийто показател е естествено число (т.е. цяло число и положително).

Степен с рационален показател

степен, чийто показател е отрицателни и дробни числа.

Степен с ирационален показател

степен, чийто показател е безкрайна десетична дроб или корен.

Свойства на степените

Характеристики на степените.

  • Отрицателното число е повишено до дористепен, - номер положителен.
  • Отрицателното число е повишено до странностепен, - номер отрицателен.
  • Положително число на каквато и да е степен е положително число.
  • Нула е равна на всяка степен.
  • Всяко число на нулева степен е равно.

СЕГА ИМАТЕ ДУМАТА...

Как ви харесва статията? Напишете по-долу в коментарите дали ви е харесало или не.

Разкажете ни за вашия опит с използването на свойства на степени.

Може би имате въпроси. Или предложения.

Пишете в коментарите.

И успех на изпитите!

азработа нфактори, всеки от които е равен АНаречен н-та степен на числото Аи е обозначен Ан.

Примери. Запишете продукта като степен.

1) мммм; 2) aaabb; 3) 5 5 5 5 ccc; 4) ppkk+pppk-ppkkk.

Решение.

1) mmmm=m 4, тъй като, по дефиниция на степен, произведението на четири фактора, всеки от които е равен м, ще четвърта степен на m.

2) aaabb=a 3 b 2 ; 3) 5·5·5·5·ccc=5 4 c 3 ; 4) ppkk+pppk-ppkkk=p 2 k 2 +p 3 k-p 2 k 3.

II.Действието, чрез което се намира произведението на няколко равни множителя, се нарича степенуване. Числото, което се повдига на степен, се нарича основа на степента. Числото, което показва на каква степен е повдигната основата, се нарича експонента. Така, Ан- степен, А– основата на степента, н– степенен показател. Например:

2 3 — това е степен. Номер 2 е основата на степента, показателят е равен на 3 . Стойност на степента 2 3 равно на 8, защото 2 3 =2·2·2=8.

Примери. Напишете следните изрази без показателя.

5) 4 3; 6) a 3 b 2 c 3 ; 7) a 3 -b 3; 8) 2a 4 +3b 2 .

Решение.

5) 4 3 = 4·4·4 ; 6) a 3 b 2 c 3 = aaabbccc; 7) a 3 -b 3 = ааа-ббб; 8) 2a 4 +3b 2 = 2аааа+3бб.

III.и 0 =1 Всяко число (с изключение на нула) на нулева степен е равно на единица. Например 25 0 =1.
IV. a 1 =aВсяко число на първа степен е равно на себе си.

V. a ma n= a m + н При умножаване на степени с на същото основаниеосновата се оставя същата, а показателите сгънати

Примери. Опростете:

9) a·a 3 ·a 7 ; 10) b 0 + b 2 b 3 ; 11) c 2 ·c 0 ·c·c 4 .

Решение.

9) a·a 3 ·a 7=a 1+3+7 =a 11; 10) b 0 + b 2 b 3 = 1+b 2+3 =1+b 5 ;

11) c 2 c 0 c c 4 = 1 c 2 c c 4 =c 2+1+4 =c 7 .

VI. a m: a n= a m - нПри деление на степени с една и съща основа, основата остава същата и показателят на делителя се изважда от показателя на делителя.

Примери. Опростете:

12) a 8:a 3 ; 13) m 11:m 4; 14) 5 6:5 4 .

12)a 8:a 3=a 8-3 =a 5; 13)m 11:m 4=m 11-4 =m 7; 14 ) 5 6:5 4 =5 2 =5·5=25.

VII. (a m) н= мн При повишаване на степен на степен, основата остава същата, а показателите се умножават.

Примери. Опростете:

15) (а 3) 4; 16) (c 5) 2.

15) (a 3) 4=a 3·4 =a 12; 16) (c 5) 2=c 5 2 =c 10.

Забележка, което, тъй като продуктът не се променя от пренареждане на факторите, Че:

15) (a 3) 4 = (a 4) 3 ; 16) (c 5) 2 = (c 2) 5 .

Vаз II. (a∙b) n =a n ∙b n При повишаване на продукт на степен, всеки от факторите се повдига на тази степен.

Примери. Опростете:

17) (2а 2) 5; 18) 0,2 6 ·5 6 ; 19) 0,25 2 40 2.

Решение.

17) (2а 2) 5=2 5 ·a 2·5 =32a 10 ; 18) 0,2 6 5 6=(0,2·5) 6 =1 6 =1;

19) 0,25 2 40 2=(0,25·40) 2 =10 2 =100.


IX.При повишаване на дроб на степен, както числителят, така и знаменателят на дробта се повдигат на тази степен.

Примери. Опростете:

Решение.

Страница 1 от 1 1


Веднъж определен степен на, логично е да говорим за степенни свойства. В тази статия ще дадем основните свойства на степента на число, като същевременно ще се докоснем до всички възможни степени. Тук ще предоставим доказателства за всички свойства на степените и ще покажем как тези свойства се използват при решаване на примери.

Навигация в страницата.

Свойства на степените с естествен показател

от определяне на степен с естествен показателстепента на a n е произведението на n фактора, всеки от които е равен на a . Въз основа на това определение, а също и с помощта свойства на умножението реални числа , можем да получим и обосновем следното свойства на степен с естествен показател:

  1. основното свойство на степента a m ·a n =a m+n, нейното обобщение;
  2. свойство на частни степени с еднакви основи a m:a n =a m−n ;
  3. свойство мощност на продукта (a·b) n =a n ·b n, неговото разширение;
  4. свойство на частно в естествена степен(a:b) n =a n:b n;
  5. повдигане на степен на степен (a m) n =a m·n, нейното обобщение (((a n 1) n 2) …) n k =a n 1 ·n 2 ·…·n k;
  6. сравнение на степен с нула:
    • ако a>0, тогава a n>0 за всяко естествено число n;
    • ако a=0, тогава a n =0;
    • ако<0 и показатель степени является четным числом 2·m , то a 2·m >0 ако a<0 и показатель степени есть нечетно число 2 m−1 , след това a 2 m−1<0 ;
  7. ако a и b са положителни числа и a
  8. ако m и n са естествени числа, така че m>n, тогава при 0 0 неравенството a m >a n е вярно.

Нека веднага да отбележим, че всички написани равенства са идентиченпри посочените условия, дясната и лявата им част могат да се сменят. Например основното свойство на дробта a m ·a n =a m+n с опростяване на изразичесто се използва под формата a m+n =a m ·a n .

Сега нека разгледаме подробно всеки от тях.

    Нека започнем със свойството на произведението на две степени с еднакви основи, което се нарича основното свойство на степента: за всяко реално число a и всякакви естествени числа m и n е вярно равенството a m ·a n =a m+n.

    Нека докажем основното свойство на степента. По дефиницията на степен с естествен показател, произведението на степени с еднакви основи от формата a m · a n може да бъде записано като произведение. Поради свойствата на умножението, полученият израз може да бъде записан като , и този продукт е степен на числото a с естествен показател m+n, тоест a m+n. Това завършва доказателството.

    Нека дадем пример, потвърждаващ основното свойство на степента. Нека вземем степени с еднакви основи 2 и естествени степени 2 и 3, като използваме основното свойство на степените, можем да запишем равенството 2 2 ·2 3 =2 2+3 =2 5. Нека проверим неговата валидност, като изчислим стойностите на изразите 2 2 · 2 3 и 2 5 . Извършване степенуване, ние имаме 2 2 ·2 3 =(2·2)·(2·2·2)=4·8=32и 2 5 =2·2·2·2·2=32, тъй като се получават равни стойности, то равенството 2 2 ·2 3 =2 5 е правилно и то потвърждава основното свойство на степента.

    Основното свойство на степента, базирано на свойствата на умножението, може да се обобщи до произведението на три или повече степени с еднакви основи и естествени показатели. Така че за всяко число k от естествените числа n 1, n 2, …, n k е вярно следното равенство: a n 1 ·a n 2 ·…·a n k =a n 1 +n 2 +…+n k.

    Например, (2,1) 3 ·(2,1) 3 ·(2,1) 4 ·(2,1) 7 = (2,1) 3+3+4+7 =(2,1) 17 .

    Можем да преминем към следващото свойство на степените с естествен показател – свойство на частни степени с еднакви бази: за всяко ненулево реално число a и произволни естествени числа m и n, отговарящи на условието m>n, е вярно равенството a m:a n =a m−n.

    Преди да представим доказателството за това свойство, нека обсъдим значението на допълнителните условия във формулировката. Условието a≠0 е необходимо, за да избегнем деленето на нула, тъй като 0 n =0, а когато се запознахме с деленето, се съгласихме, че не можем да делим на нула. Условието m>n е въведено, за да не излизаме извън естествените степени. Наистина, за m>n показателят a m−n е естествено число, в противен случай ще бъде или нула (което се случва за m−n), или отрицателно число (което се случва за m

    Доказателство. Основното свойство на дробта ни позволява да напишем равенството a m−n ·a n =a (m−n)+n =a m. От полученото равенство a m−n ·a n =a m и следва, че a m−n е частно от степените a m и a n . Това доказва свойството на частните степени с еднакви бази.

    Нека дадем пример. Да вземем две степени с еднакви основи π и естествени показатели 5 и 2, равенството π 5:π 2 =π 5−3 =π 3 отговаря на разглежданото свойство на степента.

    Сега нека помислим свойство мощност на продукта: естествената степен n на произведението на произволни две реални числа a и b е равна на произведението на степените a n и b n, тоест (a·b) n =a n ·b n.

    Наистина, по дефиницията на степен с естествен показател имаме . Въз основа на свойствата на умножението, последният продукт може да бъде пренаписан като , което е равно на a n · b n .

    Ето един пример: .

    Това свойство се простира до степента на произведението на три или повече фактора. Това означава, че свойството естествена степен n на произведението от k множители се записва като (a 1 ·a 2 ·…·a k) n =a 1 n ·a 2 n ·…·a k n.

    За по-голяма яснота ще покажем това свойство с пример. За произведението на три множителя на степен 7 имаме .

    Следното свойство е свойство на частно в натура: частното на реалните числа a и b, b≠0 към естествената степен n е равно на частното на степените a n и b n, тоест (a:b) n =a n:b n.

    Доказателството може да се извърши с помощта на предишното свойство. Така (a:b) n b n =((a:b) b) n =a n, а от равенството (a:b) n ·b n =a n следва, че (a:b) n е частното от a n делено на b n .

    Нека напишем това свойство, използвайки конкретни числа като пример: .

    Сега нека го озвучим свойство за повдигане на степен на степен: за всяко реално число a и всякакви естествени числа m и n степента на a m на степен n е равна на степента на числото a с показател m·n, тоест (a m) n =a m·n.

    Например (5 2) 3 =5 2·3 =5 6.

    Доказателството за свойството степен към степен е следната верига от равенства: .

    Разглежданото свойство може да бъде разширено до степен до степен до степен и т.н. Например, за всякакви естествени числа p, q, r и s, равенството . За по-голяма яснота ето пример с конкретни числа: (((5,2) 3) 2) 5 =(5,2) 3+2+5 =(5,2) 10 .

    Остава да се спрем на свойствата на сравняване на степени с естествен показател.

    Нека започнем с доказване на свойството за сравняване на нула и степен с естествен показател.

    Първо, нека докажем, че a n >0 за всяко a>0.

    Произведението на две положителни числа е положително число, както следва от определението за умножение. Този факт и свойствата на умножението предполагат, че резултатът от умножаването на произволен брой положителни числа също ще бъде положително число. А степента на число a с естествен показател n по дефиниция е произведението на n множителя, всеки от които е равен на a. Тези аргументи ни позволяват да твърдим, че за всяка положителна основа a степента a n е положително число. Поради доказаното свойство 3 5 >0, (0.00201) 2 >0 и .

    Съвсем очевидно е, че за всяко естествено число n с a=0 степента на a n е нула. Наистина, 0 n =0·0·…·0=0 . Например 0 3 =0 и 0 762 =0.

    Да преминем към негативни причинистепени.

    Нека започнем със случая, когато показателят е четно число, нека го обозначим като 2·m, където m е естествено число. Тогава . За всяко от произведенията на формата a·a е равно на произведението на модулите на числата a и a, което означава, че е положително число. Следователно продуктът също ще бъде положителен и степен a 2·m. Нека дадем примери: (−6) 4 >0 , (−2,2) 12 >0 и .

    И накрая, когато основата a е отрицателно число и показателят е нечетно число 2 m−1, тогава . Всички продукти a·a са положителни числа, произведението на тези положителни числа също е положително и умножението му по останалите отрицателно число a води до отрицателно число. Поради това свойство (−5) 3<0 , (−0,003) 17 <0 и .

    Нека да преминем към свойството за сравняване на степени с еднакви естествени показатели, което има следната формулировка: от две степени с еднакви естествени показатели n е по-малко от тази, чиято основа е по-малка, а по-голяма е тази, чиято основа е по-голяма . Нека го докажем.

    Неравенство a n свойства на неравенстватадоказуемо неравенство от формата a n също е вярно .

    Остава да докажем и последното от изброените свойства на степените с естествен показател. Нека го формулираме. От две степени с естествени показатели и еднакви положителни основи, по-малки от единица, тази, чийто показател е по-малък, е по-голяма; и от две степени с естествен показател и еднакви основи, по-големи от единица, тази, чийто степен е по-голяма, е по-голяма. Нека преминем към доказателството на това свойство.

    Нека докажем, че за m>n и 0 0 поради първоначалното условие m>n, което означава, че при 0

    Остава да се докаже и втората част от имота. Нека докажем, че за m>n и a>1 a m >a n е вярно. Разликата a m −a n след изваждане на n извън скобите приема формата a n ·(a m−n −1) . Това произведение е положително, тъй като за a>1 степента a n е положително число, а разликата a m−n −1 е положително число, тъй като m−n>0 поради началното условие, а за a>1 степента a m−n е по-голямо от едно. Следователно a m −a n >0 и a m >a n , което трябваше да се докаже. Това свойство се илюстрира от неравенството 3 7 >3 2.

Свойства на степени с цели показатели

Тъй като положителните цели числа са естествени числа, тогава всички свойства на степени с цели положителни показатели съвпадат точно със свойствата на степени с естествени показатели, изброени и доказани в предходния параграф.

Степен с отрицателно цяло число, както и степен с нулев показател, дефинирахме по такъв начин, че всички свойства на степени с естествени показатели, изразени чрез равенства, останаха валидни. Следователно, всички тези свойства са валидни както за нулев показател, така и за отрицателен показател, докато, разбира се, основите на степените са различни от нула.

И така, за всички реални и ненулеви числа a и b, както и за всички цели числа m и n, е вярно следното: свойства на степени с цели показатели:

  1. a m · a n = a m+n ;
  2. a m:a n =a m−n ;
  3. (a·b) n = a n · b n ;
  4. (a:b) n =a n:b n;
  5. (a m) n = a m·n;
  6. ако n е положително цяло число, a и b са положителни числа и a b−n ;
  7. ако m и n са цели числа и m>n, тогава при 0 1 е в сила неравенството a m >a n.

Когато a=0, степените a m и a n имат смисъл само когато и m, и n са цели положителни числа, тоест естествени числа. Така току-що записаните свойства са валидни и за случаите, когато a=0 и числата m и n са цели положителни числа.

Доказването на всяко от тези свойства не е трудно, достатъчно е да се използват дефинициите на степени с естествени и цели числа, както и свойствата на операциите с реални числа. Като пример, нека докажем, че свойството степен към степен е валидно както за положителни цели, така и за неположителни цели числа. За да направите това, трябва да покажете, че ако p е нула или естествено число и q е нула или естествено число, тогава равенствата (a p) q =a p·q, (a −p) q =a (−p) ·q, (a p ) −q =a p·(−q) и (a −p) −q =a (−p)·(−q). Хайде да го направим.

За положителни p и q, равенството (a p) q =a p·q беше доказано в предишния параграф. Ако p=0, тогава имаме (a 0) q =1 q =1 и a 0·q =a 0 =1, откъдето (a 0) q =a 0·q. По същия начин, ако q=0, тогава (a p) 0 =1 и a p·0 =a 0 =1, откъдето (a p) 0 =a p·0. Ако и двете p=0 и q=0, тогава (a 0) 0 =1 0 =1 и a 0·0 =a 0 =1, откъдето (a 0) 0 =a 0·0.

Сега доказваме, че (a −p) q =a (−p)·q . Тогава по дефиниция на степен с отрицателен цяло число . По свойството частни на степени имаме . Тъй като 1 p =1·1·…·1=1 и , тогава . Последният израз по дефиниция е степен от формата a −(p·q), която поради правилата за умножение може да се запише като a (−p)·q.

По същия начин .

И .

Използвайки същия принцип, можете да докажете всички други свойства на степен с цяло число, записани под формата на равенства.

В предпоследното от записаните свойства си струва да се спрем на доказателството на неравенството a −n >b −n, което е валидно за всяко отрицателно цяло число −n и всяко положително a и b, за които е изпълнено условието a . Тъй като по условие а 0 . Произведението a n · b n също е положително като произведението на положителните числа a n и b n . Тогава получената дроб е положителна като частно на положителните числа b n −a n и a n ·b n . Следователно, откъде a −n >b −n , което трябваше да се докаже.

Последното свойство на степени с цели показатели се доказва по същия начин като подобно свойство на степени с естествени показатели.

Свойства на степени с рационални показатели

Дробна степенние определихме чрез разширяване към него на свойствата на степен с цяло число. С други думи, степени с дробни показатели имат същите свойства като степени с цели числа. а именно:

Доказателството за свойствата на степени с дробен показател се основава на дефиницията на степен с дробен показател и върху свойствата на степен с цяло число. Нека предоставим доказателства.

По дефиниция на степен с дробен показател и , тогава . Свойствата на аритметичния корен ни позволяват да напишем следните равенства. Освен това, използвайки свойството на степен с цяло число, получаваме , от което, по дефиницията на степен с дробен показател, имаме , а показателят за получената степен може да се трансформира по следния начин: . Това завършва доказателството.

Второто свойство на степените с дробни показатели се доказва по абсолютно подобен начин:

Останалите равенства се доказват с помощта на подобни принципи:

Да преминем към доказване на следващото свойство. Нека докажем, че за всяко положително a и b, a b p . Нека запишем рационалното число p като m/n, където m е цяло число, а n е естествено число. Условия стр<0 и p>0 в този случай условията m<0 и m>0 съответно. За m>0 и a

По същия начин за m<0 имеем a m >b m , от където, т.е. и a p >b p .

Остава да докажем последното от изброените свойства. Нека докажем, че за рационални числа p и q, p>q при 0 0 – неравенство a p >a q . Винаги можем да сведем рационалните числа p и q до общ знаменател, дори ако получим обикновени дроби и , където m 1 и m 2 са цели числа, а n е естествено число. В този случай условието p>q ще съответства на условието m 1 >m 2, което следва от. След това, чрез свойството за сравняване на степени с еднакви основи и естествени показатели при 0 1 – неравенство a m 1 >a m 2 . Тези неравенства в свойствата на корените могат да бъдат пренаписани съответно като И . А дефиницията на степен с рационален показател ни позволява да преминем към неравенствата и съответно. Оттук правим крайния извод: за p>q и 0 0 – неравенство a p >a q .

Свойства на степени с ирационални показатели

От това как се определя степен с ирационален показател, можем да заключим, че има всички свойства на степени с рационални показатели. Така че за всяко a>0, b>0 и ирационални числа p и q е вярно следното свойства на степени с ирационални показатели:

  1. a p ·a q =a p+q ;
  2. a p:a q =a p−q ;
  3. (a·b) p =a p ·b p ;
  4. (a:b) p =a p:b p ;
  5. (a p) q = a p·q;
  6. за всякакви положителни числа a и b, a 0 неравенството a p b p ;
  7. за ирационални числа p и q, p>q при 0 0 – неравенство a p >a q .

От това можем да заключим, че степени с всякакви реални показатели p и q за a>0 имат същите свойства.

Библиография.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Учебник по математика за 5 клас. образователни институции.
  • Макаричев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник за 7. клас. образователни институции.
  • Макаричев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник за 8. клас. образователни институции.
  • Макаричев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник за 9. клас. образователни институции.
  • Колмогоров A.N., Абрамов A.M., Дудницин Ю.П. и др.. Алгебра и началото на анализа: Учебник за 10 - 11 клас на общообразователните институции.
  • Гусев В.А., Мордкович А.Г. Математика (наръчник за постъпващите в технически училища).

§ 1 Степен с естествен показател

Нека си припомним такава добре позната операция като добавянето на няколко еднакви члена. Например 5 + 5 + 5. Математикът ще замени тази нотация с по-кратка:

5 ∙ 3. Или 7 + 7 + 7 + 7 + 7 + 7 ще бъде записано като 7 ∙ 6

Но писането на a + a + a + …+ a (където n члена a) изобщо няма да работи, но ще напише a ∙ n. По същия начин един математик няма да напише надълго и нашироко произведението на няколко еднакви фактора. Продуктът 2 ∙ 2 ∙ 2 ще бъде записан като 23 (2 на трета степен). И произведението 4 ∙ 4 ∙ 4 ∙ 4 ∙ 4 ∙ 4 е като 46 (4 на шеста степен). Но ако е необходимо, можете да замените кратък запис с по-дълъг. Например 74 (7 на четвърта степен) се записва като 7∙7∙7∙7. Сега нека дадем определение.

Означението an (където n е естествено число) означава произведението на n фактора, всеки от които е равен на a.

Самият запис an се нарича степен на числото a, числото a е основа на степента, а числото n е показател.

Записът an може да се чете като „a на n-та степен“ или като „a на en-та степен“. Записите a2 (a на втора степен) могат да се четат като „a на квадрат“, а записът a3 (a на трета степен) може да се чете като „a на куб“. Друг специален случай е степен с показател 1. Тук трябва да се отбележи следното:

Степента на число a със степен 1 ​​се нарича самото число. Тези. а1 = а.

Всяка степен на 1 е равна на 1.

Сега нека разгледаме някои степени с основа 10.

Забелязали ли сте, че степени на десет са единица, последвана от възможно най-много нули, какъв е показателят? Като цяло 10n = 100..0 (където има n нули в записа).

§ 2 Примери по темата на урока

Пример 1. Запишете произведението (-2)∙(-2)∙(-2)∙(-2) като степен.

Тъй като тук има 4 еднакви фактора, всеки от които е равен на -2, имаме запис (-2)4.

Пример 2. Изчислете 1,52.

Експонента 2 казва, че трябва да намерим произведението на два еднакви множителя, всеки от които е равен на 1,5. Тези. изчислете произведението 1,5∙1,5 = 2,25.

Пример 3. Изчислете произведението 102 ∙ (-1)3.

Първо изчисляваме 102 = 100. След това изчисляваме (-1)3 = -1. И накрая, нека умножим 100 и -1. Получаваме -100.

Списък на използваната литература:

  1. Мордкович А.Г., Алгебра 7 клас в 2 части, Част 1, Учебник за общообразователните институции/А.Г. Мордкович. – 10 изд., преработено – Москва, „Мнемозина”, 2007 г
  2. Мордкович А.Г., Алгебра 7 клас в 2 части, Част 2, Задача за общообразователни институции/[А.Г. Мордкович и др.]; редактиран от A.G. Мордкович - 10 издание, преработено - Москва, “Мнемозина”, 2007 г.
  3. НЕЯ. Тулчинская, Алгебра 7 клас. Блиц анкета: наръчник за ученици от общообразователни институции, 4-то издание, преработено и разширено, Москва, Мнемозина, 2008 г.
  4. Александрова Л.А., Алгебра 7 клас. Тематични тестове в нова форма за ученици от общообразователни институции, редактирани от A.G. Мордкович, Москва, "Мнемозина", 2011 г
  5. Александрова Л.А. Алгебра 7 клас. Самостоятелни работи за ученици от общообразователни институции, под редакцията на A.G. Мордкович - 6-то издание, стереотипно, Москва, "Мнемозина", 2010 г.