Загрязнение почвы тяжелыми металлами связано с использованием. Тяжелые металлы в почвах

Загрязнение почв тяжелыми металлами имеет разные источники:

  • 1. отходы металлообрабатывающей промышленности;
  • 2. промышленные выбросы;
  • 3. продукты сгорания топлива;
  • 4. автомобильные выхлопы отработанных газов;
  • 5. средства химизации сельского хозяйства

Загрязнение почв в результате, как природных факторов, так и главным образом антропогенных источников не только изменяет ход почвообразовательных процессов, что приводит к снижению урожая, ослабляет самоочищение почв от вредных организмов, но и оказывает прямое или косвенное (через растения, растительные или животные продукты питания) влияние. Тяжелые металлы, поступая из почвы в растения, передаваясь по цепям питания, оказывают токсическое действие на растения, животных и на здоровье человека.

Тяжёлые металлы по степени токсического действия на окружающую среду подразделяются на три класса опасности:1. As, Cd, Hg, Pb, Se, Zn, Ti;

  • 2. Co, Ni, Mo, Cu, So, Cr;
  • 3. Bar, V, W, Mn, Sr.

Влияние загрязнения на урожайность сельскохозяйственных культур и качество продукции.

Нарушения, происходящие в растительных организмах под действием избытка тяжёлых металлов, приводят к изменению урожайности и качества растениеводческой продукции (в первую очередь за счёт увеличения содержания самих металлов. Проведение мероприятий по санации загрязнённых тяжелыми металлами почв само по себе не может гарантировать получение высоких урожаев экологически безопасной сельскохозяйственной продукции. Подвижность тяжелых металлов и доступность их для растений в значительной степени контролируются такими свойствами почв как кислотно-щелочные условия, окислительно-восстановительные режимы, содержание гумуса, гранулометрический состав и связанная с ними емкость поглощения. Поэтому прежде чем переходить к разработке конкретных мероприятий по восстановлению плодородия загрязненных почв, необходимо определить критерии их классификации по опасности загрязнения тяжелых металлов, базирующиеся на совокупности физико-химических свойств. При высоких уровнях загрязнения почв тяжелыми металлами урожайность сельскохозяйственных культур резко падает.

В почвах токсичные уровни загрязняющих веществ медленно накапливаются, но зато долго в ней сохраняются, негативно влияя на экологическую обстановку целых регионов. Почвы загрязнённые тяжёлыми металлами и радионуклидами очистить практически невозможно. Пока известен единственный путь: засеять такие почвы быстрорастущими культурами, дающими большую зелёную массу; такие культуры извлекают из почвы токсичные элементы, а затем собранный урожай подлежит уничтожению. Но это довольно длительная и дорогостоящая процедура. Можно снизить подвижность токсичных соединений и поступление их в растения, если повысить рН почв известкованием или добавлять большие дозы органических веществ, например торфа. Неплохой эффект может дать глубокая вспашка, когда верхний загрязнённый слой почвы при вспашке опускают на глубину 50-70 см, а глубокие слои почвы поднимают на поверхность. Для этого можно воспользоваться специальными многоярусными плугами, но при этом глубокие слои всё равно остаются загрязнёнными. Наконец, на загрязнённых тяжёлыми металлами (но не радионуклидами) почвах можно выращивать культуры, не используемые в качестве продовольствия или кормов, например цветы. С 1993 г. на территории РБ осуществляется агроэкологический мониторинг за основными токсикантами окружающей среды - тяжелыми металлами, пестицидами и радионуклидами. На территории района, в котором находится хозяйство, превышение ПДК тяжелыми металлами выявлено не было.

S. Donahue - Загрязнение почв тяжелыми металлами Почво-грунты являются одним из важнейших компонентов сельскохозяйственной и городской среды, и в обоих случаях разумное управление является ключом к качеству почвы. Эта серия технических примечаний рассматривает техногенную деятельность человека, которая вызывает деградацию почв, а также методы управления, которые защищают городские почвы. Данная техническая записка посвящена загрязнению почвы тяжелыми металлами

Металлы в почве

Добыча, производство и использование синтетических веществ (например, пестициды, краски, промышленные отходы, бытовые и промышленные воды) может привести к загрязнению городских и сельскохозяйственных земель тяжелыми металлами. Тяжелые металлы также встречаются в природе, но редко в токсичных количествах. Потенциальное загрязнение почвы могут образоваться на старых свалках (особенно на тех, которые используются для промышленных отходов), в старых садах, на которых использовали пестициды, содержащие мышьяк в качестве активного ингредиента, на полях, которые в прошлом применялись под сточные воды или муниципальные осадки, в районах или вокруг горных отвалов и хвостохранилищ, промышленных районах, где химические вещества, возможно, были сброшены на землю в районах с подветренной стороны промышленных объектов.

Избыточные накопления тяжелых металлов в почвах является токсичным для человека и животных. Накопление тяжелых металлов, как правило, хроническое (воздействие в течение длительного периода времени), вместе с пищей. Острое (немедленное) отравления тяжелыми металлами происходит при проглатывании или кожном контакте. Хроническими проблемами, связанными с долгосрочным воздействием тяжелых металлов являются:

  1. Свинец - психические расстройства.
  2. Кадмий - влияет на почки, печень и желудочно-кишечный тракт.
  3. Мышьяк - кожные заболевания, влияет на почки и центральную нервную систему.

Наиболее распространенными катионными элементами являются ртуть, кадмий, свинец, никель, медь, цинк, хром и марганец. Наиболее распространенными анионными элементами - мышьяк, молибден, селен, бор.

Традиционные способы восстановления загрязненных почв

Методы рекультивации почв и сельскохозяйственных культур может помочь предотвратить попадание загрязняющих веществ в растения, оставляя их в почве. Данные методы рекультивации не приведут к удалению тяжелых металлов загрязняющих веществ, но поможет для иммобилизации их в почву и уменьшить вероятность негативного последствия металлов. Обратите внимание, что вид металла (катион или анион) необходимо учитывать:

  1. Увеличение рН почвы до 6,5 или выше. Катионные металлы более растворимы на более низких уровнях рН, поэтому повышение рН делает их менее доступными для растений и, следовательно, менее вероятно, будут включены в ткани растений и попадут в организм человека. Повышение рН имеет противоположный эффект на анионные элементы.
  2. Слив во влажных почвах. Дренаж улучшает аэрацию почвы и позволит металлам окислятся, что делает их менее растворимыми и доступными. Обратное свойство будет наблюдаться для хрома, который является более доступным в окисленной форме. Активность органического вещества эффективно в снижении доступности хрома.
  3. . Применение фосфатов. Применения фосфатов может привести к снижению доступности катионных металлов, но иметь противоположный эффект на анионных соединениях, таких как мышьяк. Применять фосфаты нужно разумно поскольку высокий уровень фосфора в почве может привести к загрязнению воды.
  4. Тщательный подбор растений для использования на металлически загрязненных почвах Растения перемещают большое количество металлов в листьях, нежели их плоды или семена. Наибольший риск заражения пищевых продуктов в цепочке листовые овощи (салат или шпинат). Другой опасностью является поедание этих растений скотом.

Установки для экологической очистки

Исследования показали, что растения эффективны в очистке загрязненных почвы (Венцель и соавт., 1999). Фиторемедиация это общий термин использования растений для удаления тяжелых металлов или для содержания почвы в чистом состоянии, без загрязняющих веществ, таких как тяжелые металлы, пестициды, растворители, сырая нефть, полициклические ароматические углеводороды. Например, степной травы могут стимулировать распад нефтепродуктов. Полевые цветы были недавно использованы для деградации углеводородов от разлива нефти в Кувейте. Гибридные виды тополей могут удалить химические соединения, такие как TNT, а также как высокое содержание нитратов и пестицидов (Brady и Weil, 1999).

Растения для обработки металлически загрязненных почв

Растения были использованы для стабилизации и удаления металлов из почвы и воды. Используется три механизма: фитоэкстракция, ризофильтрация и фитостабилизация.

Данная статья рассказывает о ризофильтрации и фитостабилизации, но основное внимание уделет фитоэкстракции.

Ризофильтрация - это адсорбция на корнях растений или поглощения корнями растений загрязнителей, которые находятся в окружающих корневую зону растворах (ризосфере).

Ризофильтрация используется для обеззараживания подземных вод. Растения, выращивают в теплицах. Загрязненная вода используется для акклиматизации растений в окружающей среде. Затем, эти растения высаживаются на месте загрязненных грунтовых вод, где корни фильтруют воды и загрязняющие вещества. Как только корни насыщаются загрязненными веществами, растения собирают. В Чернобыле, таким образом был использован подсолнечник, для удаления радиоактивных веществ в подземных водах (EPA, 1998)

Фитостабилизация - это использование многолетних растения для стабилизации или иммобилизации вредных веществ в почве и грунтовых водах. Металлы поглощаются и накапливаются в корнях, адсорбируются на корнях, или осаждаются в ризосфере. Также данные растения могут быть использованы для восстановления растительности, в местах, где не хватает естественной растительности, тем самым уменьшая риск водной и ветровой эрозии и выщелачивания. Фитостабилизация снижает подвижность загрязняющих веществ и предотвращает дальнейшее движение загрязненных веществ в грунтовые воды или воздух, и снижает попадание их в пищевые цепи.

Фитоэкстракция

Фитоэкстракция - это процесс выращивания растений в металлически загрязненной почвы. Корни перемещают металлы в надземные части растений, после чего эти растения собирают и сжигают или компостируют для переработки металлов. Несколько циклов роста сельскохозяйственных культур могут быть необходимы для уменьшения уровня загрязнения в допустимых пределах. Если растения сжигают, золу нужно утилизировать на свалках отходов.

Растения выращивающиеся для фитоэкстракции называют гипераккумуляторами. Они поглощают необычно большое количество металла по сравнению с другими растениями. Гипераккумуляторы могут содержать около 1000 миллиграмм на килограмм кобальта, меди, хрома, свинца, никеля, и даже 10 000 миллиграммов на килограмм (1%) марганца и цинка в сухом веществе (Baker и Брукс, 1989).

Фитоэкстракция проще для таких металлов, как никель, цинк, медь, потому что эти металлов предпочитают большинство из 400 растений гипераккумуляторов. Некоторые растения из рода Thlaspi (pennycress), как известно, содержат около 3% цинка в тканях. Эти растения можно использовать в качестве руды в связи с высокой концентрацией металла (Брэди и Вейля, 1999).

Из всех металлов, свинец является наиболее распространенным загрязнителем почвы (EPA, 1993). К сожалению, растения не накапливают свинец в природных условиях. Такие хелаторы, как ЭДТА (этилендиаминтетрауксусной кислоты) должны быть добавлены к почве. ЭДТА позволяет растениям извлекать свинец. Наиболее распространенным растением, используемым для извлечения свинца является индийская горчица (Brassisa juncea). Phytotech (частная исследовательская компания) сообщила, что они очистили плантации в Нью-Джерси, под промышленными стандартами с 1 по 2, при помощи индийской горчицы (Wantanabe, 1997).

Растения могут удалять цинк, кадмий, свинец, селен и никель из почвы на проектах, которые являются средне и долгосрочно перспективными.

Традиционная очистка на территориях может стоить от $ 10.00 и $ 100.00 за кубический метр (м3), в то время как удаление загрязненных материалов может стоить от $ 30.00 до $ 300 / м 3. Для сравнения, фитоэкстракция может стоить $ 0,05 / м3 (Watanabe, 1997).

Перспективы на будущее

Фиторемедиация была изучена в процессе исследования малых и полномасштабных приложений. Фиторемедиация может переместиться в сферу коммерциализации (Watanabe, 1997). Прогнозируется, что фиторемедиации рынка достигнет $ 214 до $ 370 млн. к 2005 году(Environmental Science & Technology, 1998). Учитывая нынешнюю эффективность фиторемедиации лучше всего подходит для очистки более широких областей, в которой загрязнители присутствуют в низких и средних концентрациях. Перед полной коммерциализацией фиторемедиации, необходимы дальнейшие исследования, чтобы удостоверится, что ткани растений, используемых для фиторемедиации не имеют неблагоприятного воздействия на окружающую среду, дикой природы или на человека (EPA, 1998). Исследования также необходимы, чтобы найти более эффективные биоаккумуляторы, которые производят больше биомассы. Существует необходимость для коммерческого извлечения металлов из растительной биомассы, так они могут быть переработаны. Фиторемедиация медленнее, чем традиционные методы удаления тяжелых металлов из почвы, но гораздо дешевле. Предупреждение загрязнения почвы намного дешевле, нежели исправление катастрофических последствий.

Список использованной литературы

1.Baker, A.J.M., and R.R. Brooks. 1989. Terrestrial plants which hyperaccumulate metallic elements - a review of their distribution, ecology, and phytochemistry. Biorecovery 1:81:126.
2. Brady, N.C., and R.R. Weil. 1999. The nature and properties of soils. 12th ed. Prentice Hall. Upper Saddle River, NJ.
3. Environmental Science & Technology. 1998. Phytoremediation; forecasting. Environmental Science & Technology. Vol. 32, issue 17, p.399A.
4. McGrath, S.P. 1998. Phytoextraction for soil remediation. p. 261-287. In R. Brooks (ed.) Plants that hyperaccumulate heavy metals their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, New York, NY.
5. Phytotech. 2000. Phytoremediation technology.

Тяжелые металлы (ТМ) уже сейчас занимают второе место по степени опасности, уступая пестицидам и значительно опережая такие широко известные загрязнители, как двуокись углерода и серы. В перспективе они могут стать более опасными, чем отходы атомных электростанций и твердые отходы. Загрязнение ТМ связано с их широким использованием в промышленном производстве. В связи с несовершенными системами очистки ТМ попадают в окружающую среду, в том числе и в почву, загрязняя и отравляя ее. ТМ относятся к особым загрязняющим веществам, наблюдения за которыми обязательны во всех средах .

Почва является основной средой, в которую попадают ТМ, в том числе из атмосферы и водной среды. Она же служит источником вторичного загрязнения приземного воздуха и вод, попадающих из нее в Мировой океан.

Из почвы ТМ усваиваются растениями, которые затем попадают в пищу.

Термин «тяжелые металлы», характеризующий широкую группу загрязняющих веществ, получил в последнее время значительное распространение. В различных научных и прикладных работах авторы по-разному трактуют значение этого понятия. В связи с этим количество элементов, относимых к группе тяжелых металлов, изменяется в широких пределах. В качестве критериев принадлежности используются многочисленные характеристики: атомная масса, плотность, токсичность, распространенность в природной среде, степень вовлеченности в природные и техногенные циклы.

В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 элементов периодической системы Д.И. Менделеева с атомной массой свыше 40 атомных единиц: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn, Hg, Pb, Bi и др. По классификации Н. Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см3. При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определение (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов .

Самыми мощными поставщиками отходов, обогащенных металлами, являются предприятия по выплавке цветных металлов (алюминиевые, глиноземные, медно-цинковые, свинцово-плавильные, никелевые, титаномагниевые, ртутные и др.), а также по переработке цветных металлов (радиотехнические, электротехнические, приборостроительные, гальванические и пр.).

В пыли металлургических производств, заводов по переработке руд концентрация Pb, Zn, Bi, Sn может быть повышена по сравнению с литосферой на несколько порядков (до 10-12), концентрация Cd, V, Sb - в десятки тысяч раз, Cd, Mo, Pb, Sn, Zn, Bi, Ag - в сотни раз. Отходы предприятий цветной металлургии, заводов лакокрасочной промышленности и железобетонных конструкций обогащены ртутью. В пыли машиностроительных заводов повышена концентрация W, Cd, Pb (табл. 1).

Таблица 1. Основные техногенные источники тяжелых металлов

Под влиянием обогащенных металлами выбросов формируются ареалы загрязнения ландшафта преимущественно на региональном и локальном уровнях. Влияние предприятий энергетики на загрязнение окружающей среды обусловлено не концентрацией металлов в отходах, а их огромным количеством. Масса отходов, например, в промышленных центрах, превышает их суммарное количество, поступающее от всех других источников загрязнения. С выхлопными газами автомобилей в окружающую среду выбрасывается значительное количество Pb, которое превышает его поступление с отходами металлургических предприятий.

Пахотные почвы загрязняются такими элементами как Hg, As, Pb, Cu, Sn, Bi, которые попадают в почву в составе ядохимикатов, биоцидов, стимуляторов роста растений, структурообразователей. Нетрадиционные удобрения, изготовляемые из различных отходов, часто содержат большой набор загрязняющих веществ с высокими концентрациями. Из традиционных минеральных удобрений фосфорные удобрения содержат примеси Mn, Zn, Ni, Cr, Pb, Cu, Cd .

Распределение в ландшафте металлов, поступивших в атмосферу из техногенных источников, определяется расстоянием от источника загрязнения, климатическими условиями (сила и направление ветров), рельефом местности, технологическими факторами (состояние отходов, способ поступления отходов в окружающую среду, высота труб предприятий).

Рассеивание ТМ зависит от высоты источника выбросов в атмосферу. Согласно расчетам М.Е. Берлянда, при высоких дымовых трубах значительная концентрация выбросов создается в приземном слое атмосферы на расстоянии 10-40 высот трубы. Вокруг таких источников загрязнения выделяются 6 зон (табл. 2). Площадь воздействия отдельных промышленных предприятий на прилегающую территорию может достигать 1000 км2 .

Таблица 2. Зоны загрязнения почв вокруг точечных источников загрязнения

Расстояние от источника загрязнения в км

Превышение содержания ТМ по отношению к фоновому

Охранная зона предприятия

Зоны загрязнения почв и их размер тесно связаны с векторами господствующих ветров. Рельеф, растительность, городские постройки могут изменять направление и скорость движения приземного слоя воздуха. Аналогично зонам загрязнения почв можно выделить и зоны загрязнения растительного покрова.


Загрязнение почв тяжелыми металлами имеет разные источники:

1. отходы металлообрабатывающей промышленности;

2. промышленные выбросы;

3. продукты сгорания топлива;

4. автомобильные выхлопы отработанных газов;

5. средства химизации сельского хозяйства.

Металлургические предприятия ежегодно выбрасывают на поверхность земли более 150 тыс. тонн меди, 120 тыс. тонн цинка, около 90 тыс. тонн свинца, 12 тыс. тонн никеля, 1,5 тыс. тонн молибдена, около 800 тонн кобальта и около 30 тонн ртути. На 1 грамм черновой меди отходы медеплавильной промышленности содержат 2,09 тонн пыли, в составе которой содержится до 15% меди, 60% окиси железа и по 4% мышьяка, ртути, цинка и свинца. Отходы машиностроительных и химических производств содержат до 1 тыс. мг/кг свинца, до 3 тыс. мг/кг меди, до 10 тыс. мг/кг хрома и железа, до 100 г/кг фосфора и до 10 г/кг марганца и никеля. В Силезии вокруг цинковых заводов громоздятся отвалы с содержанием цинка от 2 до 12% и свинца от 0,5 до 3%, а в США эксплуатируют руды с содержанием цинка 1,8%.

С выхлопными газами на поверхность почв попадает более 250 тыс. тонн свинца в год; это главный загрязнитель почв свинцом.

Тяжелые металлы попадают в почву вместе с удобрениями, в состав которых они входят как примесь, а также и с биоцидами.

Л. Г. Бондарев (1976) подсчитал возможные поступления тяжелых металлов на поверхность почвенного покрова в результате производственной деятельности человека при полном исчерпании рудных запасов, в сжигании имеющихся запасов угля и торфа и сравнение их с возможными запасами металлами, аккумулированных в гумосфере к настоящему времени. Полученная картина позволяет составить представление о тех изменениях, которые человек в состоянии вызвать в течение 500-1000 лет, на которые хватит разведанных полезных ископаемых.

Возможное поступление металлов в биосферу при исчерпании достоверных запасов руд, угля, торфа, млн. тонн

Суммарный техногенный выброс металлов

Содержится в гумосфере

Отношение техногенного выброса к содержанию в гумосфере

Отношение этих величин позволяет прогнозировать масштаб влияния деятельности человека на окружающую среду, прежде всего на почвенный покров.

Техногенное поступление металлов в почву, закрепление их в гумусовых горизонтах в почвенном профиле в целом не может быть равномерным. Неравномерность его и контрастность прежде всего связана с плотностью населения. Если считать эту связь пропорциональной, то 37,3% всех металлов будет рассеяно всего лишь в 2% обитаемой суши.

Распределение тяжелых металлов по поверхности почвы определяется многими факторами. Оно зависит от особенностей источников загрязнения, метеорологических особенностей региона, геохимических факторов и ландшафтной обстановке в целом.

Источник загрязнения в целом определяет качество и количество выбрасываемого продукта. При этом степень его рассеивания зависит от высоты выброса. Зона максимального загрязнения распространяется на расстояние, равное 10-40-кратной высоте трубы при высоком и горячем выбросе, 5-20-кратной высоте трубы при низком промышленном выбросе. Длительность нахождения частиц выброса в атмосфере зависит от их массы и физико-химических свойств. Чем тяжелее частицы, тем быстрее они оседают.

Неравномерность техногенного распространения металлов усугубляется неоднородностью геохимической обстановке а природных ландшафтах. В связи с этим, для прогнозирования возможного загрязнения продуктами техногенеза и предотвращения нежелательных последствий деятельности человека необходимо понимание законов геохимии, законов миграции химических элементов в различных природных ландшафтах или геохимической обстановке.

Химические элементы и их соединения попадая в почву претерпевают ряд превращений, рассеиваются или накапливаются в зависимости от характера геохимических барьеров, свойственных данной территории. Понятие о геохимических барьерах было сформулировано А. И. Перельманом (1961) как участках зоны гипергенеза, на которых изменение условий миграции приводит к накоплению химических элементов. В основу классификации барьеров положены виды миграции элементов. На этом основании А. И. Перельман выделяет четыре типа и несколько классов геохимических барьеров:

1. барьеры – для всех элементов, которые биогеохимические перераспределяются и сортируются живыми организмами (кислород, углерод, водород, кальций, калий, азот, кремний, марганец и т.д.);

2. физико-химические барьеры:

1) окислительные – железные или железно-марганцевые (железо, марганец), марганцевые (марганец), серный (сера);

2) восстановительные – сульфидный (железо, цинк, никель, медь, кобальт, свинец, мышьяк и др.), глеевый (ванадий, медь, серебро, селен);

3) сульфатный (барий, кальций, стронций);

4) щелочной (железо, кальций, магний, медь, стронций, никель и др.);

5) кислый (оксид кремния);

6) испарительный (кальций, натрий, магний, сера, фтор и т.д.);

7) адсорбционный (кальций, калий, магний, фосфор, сера, свинец и др.);

8) термодинамический (кальций, сера).

3. механические барьеры (железо, титан, хром, никель и др.);

4. техногенные барьеры.

Геохимические барьеры существуют не изолированно, а в сочетании друг с другом, образуя сложные комплексы. Они регулируют элементный состав потоков веществ, от них в большей мере зависит функционирование экосистем.

Продукты техногенеза в зависимости от их природы и той ландшафтной обстановки, в которую они попадают, могут либо перерабатываться природными процессами, и не вызывать существенных изменений в природе, либо сохраняться и накапливаться, губительно влияя на все живое.

И тот и другой процесс определяются рядом факторов, анализ которых позволяет судить об уровне биохимической устойчивости ландшафта и прогнозировать характер их изменений в природе под влиянием техногенеза. В автономных ландшафтах развиваются процессы самоочищения от техногенного загрязнения, так как продукты техногенеза рассеиваются поверхностными и внутрипочвенными водами. В аккумулятивных ландшафтах накапливаются и консервируются продукты техногенеза.

Промышленные стоки, кг/л

Почва, мг/кг

Растения, мг/кг

Вода питьевая, мг/л

Воздух, мг/м 3

ПДК в крови человека, мг/л

* У автострад в зависимости от интенсивности движения и расстояния до автострады

Всевозрастающее внимание к охране окружающей среды вызвал особый интерес к вопросам воздействия на почву тяжелых металлов.

С исторической точки зрения интерес к этой проблеме появился с исследованием плодородия почв, поскольку такие элементы, как железо, марганец, медь, цинк, молибден и, возможно, кобальт, очень важны для жизни растений и, следовательно, для животных и человека.

Они известны и под названием микроэлементов, потому, что необходимы растениям в малых количествах. К группе микроэлементов относятся также металлы, содержание которых в почве довольно высокое, например, железо, которое входит в состав большинства почв и занимает четвертое место в составе земной коры (5%) после кислорода (46,6%), кремния (27,7%) и алюминия (8,1%).

Все микроэлементы могут оказывать отрицательное влияние на растения, если концентрация их доступных форм превышает определенные пределы. Некоторые тяжелые металлы, например, ртуть, свинец и кадмий, которые, по всей видимости, не очень важны для растений и животных, опасны для здоровья человека даже при низких концентрациях.

Выхлопные газы транспортных средств, вывоз в поле или станции очистки сточных вод, орошение сточными водами, отходы, остатки и выбросы при эксплуатации шахт и промышленных площадок, внесение фосфорных и органических удобрений, применение пестицидов и т.д. привели к увеличению концентраций тяжелых металлов в почве.

До тех пор, пока тяжелые металлы прочно связаны с составными частями почвы и труднодоступны, их отрицательное влияние на почву и окружающую среду будет незначительным. Однако, если почвенные условия позволяют перейти тяжелым металлам в почвенный раствор, появляется прямая опасность загрязнения почв, возникает вероятность проникновения их в растения, а также в организм человека и животных, потребляющие эти растения. Кроме того, тяжелые металлы могут быть загрязнителями растений и водоемов в результате использования сточных ила вод. Опасность загрязнения почв и растений зависит: от вида растений; форм химических соединений в почве; присутствия элементов противодействующих влиянию тяжелых металлов и веществ, образующих с ними комплексные соединения; от процессов адсорбции и десорбции; количества доступных форм этих металлов в почве и почвенно-климатических условий. Следовательно, отрицательное влияние тяжелых металлов зависит, по существу, от их подвижности, т.е. растворимости.

Тяжелые металлы в основном характеризуются переменной валентностью, низкой растворимостью их гидроокисей, высокой способностью образовывать комплексные соединения и, естественно, катионной способностью.

К факторам, способствующим удержанию тяжелых металлов почвой относятся: обменная адсорбция поверхности глин и гумуса, формирование комплексных соединений с гумусом, адсорбция поверхностна и окклюзирование (растворяющие или поглощающие способности газов расплавленными или твердыми металлами) гидратированными окислами алюминия, железа, марганца и т.д., а также формирование нерастворимых соединений, особенно при восстановлении.

Тяжелые металлы в почвенном растворе встречаются как в ионной так и в связанной формах, которые находятся в определенном равновесии (рис. 1).

На рисунке Л р – растворимые лиганды, какими являются органические кислоты с малым молекулярным весом, а Л н – нерастворимые. Реакция металлов (М) с гумусовыми веществами включает частично и ионный обмен.

Конечно, в почве могут присутствовать и другие формы металлов, которые не участвуют непосредственно в этом равновесии, например, металлы из кристаллической решетки первичных и вторичных минералов, а также металлы из живых организмов и их отмерших остатков.

Наблюдение за изменением тяжелых металлов в почве невозможно без знания факторов, определяющих их подвижность. Процессы передвижения удержания, обуславливающие поведение тяжелых металлов в почве, мало чем отличаются от процессов, определяющих поведение других катионов. Хотя тяжелые металлы иногда обнаруживаются в почвах в низких концентрациях, они формируют устойчивые комплексы с органическими соединениями и вступают в специфические реакции адсорбции легче, чем щелочные и щелочноземельные металлы.

Миграция тяжелых металлов в почвах может происходить с жидкостью и суспензией при помощи корней растений или почвенных микроорганизмов. Миграции растворимых соединений происходит вместе с почвенным раствором (диффузия) или путем перемещения самой жидкости. Вымывание глин и органического вещества приводит к миграции всех связанных с ними металлов. Миграция летучих веществ в газообразной форме, например, диметила ртути, носит случайный характер, и этот способ перемещения не имеет особого значения. Миграция в твердой фазе и проникновение в кристаллическую решетку являются больше механизмом связывания, чем перемещения.

Тяжелые металлы могут быть внесены или адсорбированы микроорганизмами, которые в свою очередь, способны участвовать в миграции соответствующих металлов.

Дождевые черви и другие организмы могут содействовать миграции тяжелых металлов механическим или биологическим путями, перемешивая почву или включая металлы в свои ткани.

Из всех видов миграции самая важная – миграция в жидкой фазе, потому что большинство металлов попадает в почву в растворимом виде или в виде водной суспензии и фактически все взаимодействия между тяжелыми металлами и жидкими составными частями почвы происходит на границе жидкой и твердой фаз.

Тяжелые металлы в почве через трофическую цепь поступают в растения, а затем потребляются животными и человеком. В круговороте тяжелых металлов участвуют различные биологические барьеры, вследствие чего происходит выборочное бионакопление, защищающее живые организмы от избытка этих элементов. Все же деятельность биологических барьеров ограничена, и чаще всего тяжелые металлы концентрируются в почве. Устойчивость почв к загрязнению ими различна в зависимости от буферности.

Почвы с высокой адсорбционной способностью соответственно и высоким содержанием глин, а также органического вещества могут удерживать эти элементы, особенно в верхних горизонтах. Это характерно для карбонатных почв и почв с нейтральной реакцией. В этих почвах количество токсических соединений, которые могут быть вымыты в грунтовые воды и поглощены растениями, значительно меньше, чем в песчаных кислых почвах. Однако при этом существует большой риск в увеличении концентрации элементов до токсичной, что вызывает нарушение равновесия физических, химических и биологических процессов в почве. Тяжелые металлы, удерживаемые органической и коллоидной частями почвы, значительно ограничивают биологическую деятельность, ингибируют процессы иттрификации, которые имеют важное значение для плодородия почв.

Песчаные почвы, которые характеризуются низкой поглотительной способностью, как и кислые почвы очень слабо удерживают тяжелые металлы, за исключением молибдена и селена. Поэтому они легко адсорбируются растениями, причем некоторые из них даже в очень малых концентрациях обладают токсичным воздействием.

Содержание цинка в почве колеблется от 10 до 800 мг/кг, хотя чаще всего оно составляет 30-50 мг/кг. Накопление избыточного количества цинка отрицательно влияет на большинство почвенных процессов: вызывает изменение физических и физико-химических свойств почвы, снижает биологическую деятельность. Цинк подавляет жизнедеятельность микроорганизмов, вследствие чего нарушаются процессы образования органического вещества в почвах. Избыток цинка в почвенном покрове затрудняет ферментацию разложения целлюлозы, дыхания, действия уреазы.

Тяжелые металлы, поступая из почвы в растения, передаваясь по цепям питания, оказывают токсическое действие на растения, животных и человека.

Среди наиболее токсичных элементов прежде всего следует назвать ртуть, которая представляет наибольшую опасность в форме сильнотоксичного соединения – метилртути. Ртуть попадает в атмосферу при сжигании каменного угля и при испарении вод из загрязненных водоемов. С воздушными массами она может переноситься и откладываться на почвах в отдельных районах. Исследования показали, что ртуть хорошо сорбируется в верхних сантиметрах перегнойно-аккумулятивного горизонта разных типов почв суглинистого механического состава. Миграция ее по профилю и вымывание за пределы почвенного профиля в таких почвах незначительна. Однако в почвах легкого механического состава, кислых и обедненных гумусом процессы миграции ртути усиливаются. В таких почвах проявляется также процесс испарения органических соединений ртути, которые обладают свойствами летучести.

При внесении ртути на песчаную, глинистую и торфяную почвы из расчета 200 и 100 кг/га урожай на песчаной почве полностью погиб не зависимо от уровня известкования. На торфяной почве урожай понизился. На глинистой почве произошло снижение урожая только при низкой дозе извести.

Свинец также обладает способностью передаваться по цепям питания, накапливаясь в тканях растений, животных и человека. Доза свинца, равная 100 мг/кг сухого веса корма, считается летальной для животных.

Свинцовая пыль оседает на поверхности почв, адсорбируется органическими веществами, передвигается по профилю с почвенными растворами, но выносится за пределы почвенного профиля в небольших количествах.

Благодаря процессам миграции в условиях кислой среды образуются техногенные аномалии свинца в почвах протяженностью 100 м. Свинец из почв поступает в растения и накапливается в них. В зерне пшеницы и ячменя количество его в 5-8 раз превышает фоновое содержание, в ботве, картофеле – более чем в 20 раз, в клубнях – более чем в 26 раз.

Кадмий, подобно ванадию и цинку, аккумулируется гумусовой толще почв. Характер его распределения в почвенном профиле и ландшафте, видимо, имеет много общего с другими металлами, в частности с характером распределения свинца.

Однако, кадмий закрепляется в почвенном профиле менее прочно, чем свинец. Максимальная адсорбция кадмия свойственна нейтральным и щелочным почвам с высоким содержанием гумуса и высокой емкостью поглощения. Содержание его в подзолистых почвах может составлять от сотых долей до 1 мг/кг, в черноземах – до 15-30, а в красноземах – до 60 мг/кг.

Многие почвенные беспозвоночные концентрируют кадмий в своих организмах. Кадмий усваивается дождевыми червями, мокрицами и улитками в 10-15 раз активнее, чем свинец и цинк. Кадмий токсичен для сельскохозяйственных растений, и даже, если высокие концентрации кадмия не оказывают заметного влияния на урожай сельскохозяйственных культур, токсичность его сказывается на изменении качества продукции, так как в растениях происходит повышения содержания кадмия.

Мышьяк попадает в почву с продуктами сгорания угля, с отходами металлургической промышленности, с предприятий по производству удобрений. Наиболее прочно мышьяк удерживается в почах, содержащих активные формы железа, алюминия, кальция. Токсичность мышьяка в почвах всем известна. Загрязнение почв мышьяком вызывает, например, гибель дождевых червей. Фоновое содержание мышьяка в почвах составляет сотые доли миллиграмма на килограмм почвы.

Фтор и его соединения находят широкое применение в атомной, нефтяной, химической и др. видах промышленности. Он попадает в почву с выбросами металлургических предприятий, в частности, алюминиевых заводов, а также как примесь при внесении суперфосфата и некоторых других инсектицидов.

Загрязняя почву, фтор вызывает снижение урожая не только благодаря прямому токсическому действию, но и изменяя соотношение питательных веществ в почве. Наибольшая адсорбция фтора происходит в почвах с хорошо развитым почвенным поглощающим комплексом. Растворимые фтористые соединения перемещаются по почвенному профилю с нисходящим током почвенных растворов и могут попадать в грунтовые воды. Загрязнение почвы фтористыми соединениями разрушает почвенную структуру и снижает водопроницаемость почв.

Цинк и медь менее токсичны, чем названные тяжелые металлы, но избыточное их количество в отходах металлургической промышленности загрязняет почву и угнетающе действует на рост микроорганизмов, понижает ферментативную активность почв, снижает урожай растений.

Следует отметить усиление токсичности тяжелых металлов при их совместном воздействии на живые организмы в почве. Совместное воздействие цинка и кадмия оказывает в несколько раз более сильное ингибирующее действие на микроорганизмы, чем при такой же концентрации каждого элемента в отдельности.

Поскольку тяжелые металлы и в продуктах сгорания топлива, и в выбросах металлургической промышленности встречаются обычно в различных сочетаниях, то действие их на природу, окружающую источники загрязнения, бывает более сильным, чем предполагаемое на основании концентрации отдельных элементов.

Вблизи предприятий естественные фитоценозы предприятий становятся более однообразными по видовому составу, так как многие виды не выдерживают повышения концентрации тяжелых металлов в почве. Количество видов может сокращаться до 2-3, а иногда до образования моноценозов.

В лесных фитоценозах первыми реагируют на загрязнения лишайники и мхи. Наиболее устойчив древесный ярус. Однако длительное или высокоинтенсивное воздействие вызывает в нем сухостойкие явления.



ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ЗАГРЯЗНЕНИЕ ПОЧВ ТЯЖЕЛЫМИ МЕТАЛЛАМИ. СПОСОБЫ КОНТРОЛЯ И НОРМИРОВАНИЯ ЗАГРЯЗНЕННЫХ ПОЧВ

Учебно-методическое пособие для вузов

Составители: Х.А. Джувеликян, Д.И. Щеглов, Н.С. Горбунова

Издательско-полиграфический центр Воронежского государственного университета

Утверждено научно-методическим советом биолого-почвенного факультета 4 июля 2009 г., протокол № 10

Рецензент д-р биол. наук, проф. Л.А. Яблонских

Учебно-методическое пособие подготовлено на кафедре почвоведения и управления земельными ресурсами биолого-почвенного факультета Воронежского государственного университета.

Для специальности 020701 – Почвоведение

Общие сведения о загрязнении............................................................................

Понятие о техногенных аномалиях.....................................................................

Загрязнение почв тяжелыми металлами.............................................................

Миграция тяжелых металлов в почвенном профиле.........................................

Понятие о почвенном экологическом мониторинге........................................

Показатели состояния почв, определяемые при их контроле........................

Экологическое нормирование качества загрязненных почв..........................

Общие требования к классификации почв подверженных загрязнению......

Литература...........................................................................................................

ОБЩИЕ СВЕДЕНИЯ О ЗАГРЯЗНЕНИИ

Загрязняющие вещества – это вещества антропогенного происхождения, поступающие в окружающую среду в количествах, превышающих природный уровень их поступления.Загрязнение почв – вид антропогенной деградации, при которой содержание химических веществ в почвах, подверженных антропогенному воздействию, превышает природный региональный фоновый уровень. Превышение содержания определенных химических веществ в окружающей человека среде (по сравнению с природными уровнями) за счет их поступления из антропогенных источников представляет экологическую опасность.

Использование человеком химических веществ в хозяйственной деятельности и вовлечение их в цикл антропогенных превращений в окружающей среде постоянно растет. Характеристикой интенсивности извлечения и использования химических элементов является технофильность – отношение ежегодной добычи или производства элемента в тоннах к его кларку в литосфере (А.И. Перельман, 1999). Высокая технофильность характерна для элементов, наиболее активно используемых человеком, особенно для тех, естественный уровень которых в литосфере невысок. Высокие уровни технофильности характерны для таких металлов, как Bi, Hg, Sb, Pb, Cu, Se, Ag, As, Mo, Sn, Cr, Zn, потребность в которых различных видов производств велика. При низком содержании этих элементов в породах (10–2 –10–6 %) добыча их значительна. Это ведет к извлечению из недр земли колоссальных количеств руд, содержащих эти элементы, и к последующему глобальному рассеиванию их в окружающей среде.

Помимо технофильности предложены и другие количественные характеристики техногенеза. Так, отношение технофильности элемента к его биофильности (биофильность – кларки концентрации химических элементов в живом веществе) М.А. Глазовская назваладеструктивной активностью элементов техногенеза . Деструктивная активность элементов техногенеза характеризует степень опасности элементов для живых организмов. Другой количественной характеристикой антропогенного вовлечения химических элементов в их глобальные циклы на планете являетсяфактор мобилизации илифактор техногенного обогащения , который рассчитывают как отношение техногенного потока химического элемента к его природному потоку. Уровень фактора техногенного обогащения, как и технофильность элементов, является не только показателем мобилизации их из литосферы в наземные природные среды, но и отражением уровня выбросов химических элементов с отходами производств в окружающую среду.

ПОНЯТИЕ О ТЕХНОГЕННЫХ АНОМАЛИЯХ

Геохимическая аномалия – участок земной коры (или поверхности земли), отличающийся существенно повышенными концентрациями какихлибо химических элементов или их соединений по сравнению с фоновыми значениями и закономерно расположенный относительно скоплений полезных ископаемых. Выявление техногенных аномалий является одной из важнейших эколого-геохимических задач при оценки состояния окружающей среды. Аномалии образуются в компонентах ландшафта в результате поступления различных веществ от техногенных источников и представляют собой некоторый объем, в пределах которого значения аномальных концентраций элементов больше фоновых значений. По распространенности А.И. Перельман и Н.С. Касимов (1999) выделяют следующие техногенные аномалии:

1) глобальные – охватывающие весь земной шар (например, повышен-

2) региональные – формирующиеся в отдельных частях континентов, природных зонах и областях в результате применения ядохимикатов, минеральных удобрений, подкисления атмосферных осадков выбросами соединений серы и др.;

3) локальные – образующиеся в атмосфере, почвах, водах, растениях вокруг местных техногенных источников: заводов, рудников и т.д.

По среде образования техногенные аномалии делятся:

1) на литохимические (в почвах, породах);

2) гидрогеохимические (в водах);

3) атмогеохимические (в атмосфере, снеге);

4) биохимические (в организмах).

По длительности действия источника загрязнения они делятся:

на кратковременные (аварийные выбросы и т.д.);

средневременные (с прекращением воздействия, например, прекращение разработки месторождений полезных ископаемых);

долговременные стационарные (аномалии заводов, городов, агроландшафтов, например КМА, Норильский никель).

При оценке техногенных аномалий фоновые территории выбираются вдали от техногенных источников загрязняющих веществ, как правило, более чем в 30–50 км. Одним из критериев аномальности служит коэффициент техногенной концентрации или аномальности Кс, представляющий собой отношение содержания элемента в рассматриваемом аномальном объекте к его фоновому содержанию в компонентах ландшафта.

Для оценки воздействия количества поллютантов, поступающих в организм, используются также гигиенические нормативы загрязнения – пре-

дельно допустимые концентрации. Это максимальное содержание вредного вещества в природном объекте или продукции (воде, воздухе, почве, пище), которое не влияет на здоровье человека или других организмов.

Загрязняющие вещества по опасности делятся на классы (ГОСТ

17.4.1.0283): I класс (высоко опасные) – As, Cd, Hg, Se, Pb, F, бенз(а)пирен, Zn; II класс (умеренно опасные) – B, Co, Ni, Mo, Cu, Sb, Cr; III класс (мало опасные) – Ba, V, W, Mn, Sr, ацетофенон.

ЗАГРЯЗНЕНИЕ ПОЧВ ТЯЖЕЛЫМИ МЕТАЛЛАМИ

Тяжелые металлы (ТМ) уже сейчас занимают второе место по степени опасности, уступая пестицидам и значительно опережая такие широко известные загрязнители, как двуокись углерода и серы. В перспективе они могут стать более опасными, чем отходы атомных электростанций и твердые отходы. Загрязнение ТМ связано с их широким использованием в промышленном производстве. В связи с несовершенными системами очистки ТМ попадают в окружающую среду, в том числе и в почву, загрязняя и отравляя ее. ТМ относятся к особым загрязняющим веществам, наблюдения за которыми обязательны во всех средах.

Почва является основной средой, в которую попадают ТМ, в том числе из атмосферы и водной среды. Она же служит источником вторичного загрязнения приземного воздуха и вод, попадающих из нее в Мировой океан. Из почвы ТМ усваиваются растениями, которые затем попадают в пищу.

Термин «тяжелые металлы», характеризующий широкую группу загрязняющих веществ, получил в последнее время значительное распространение. В различных научных и прикладных работах авторы по-разному трактуют значение этого понятия. В связи с этим количество элементов, относимых к группе тяжелых металлов, изменяется в широких пределах. В качестве критериев принадлежности используются многочисленные характеристики: атомная масса, плотность, токсичность, распространенность в природной среде, степень вовлеченности в природные и техногенные циклы.

В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 элементов периодической системы Д.И. Менделеева с атомной массой свыше 40 атомных единиц: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn, Hg, Pb, Bi и др. По классификации Н. Реймерса (1990),

тяжелыми следует считать металлы с плотностью более 8 г/см3 . При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определе-

ние (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов.

Самыми мощными поставщиками отходов, обогащенных металлами, являются предприятия по выплавке цветных металлов (алюминиевые, глиноземные, медно-цинковые, свинцово-плавильные, никелевые, титаномагниевые, ртутные и др.), а также по переработке цветных металлов (радиотехнические, электротехнические, приборостроительные, гальванические и пр.).

В пыли металлургических производств, заводов по переработке руд концентрация Pb, Zn, Bi, Sn может быть повышена по сравнению с литосферой на несколько порядков (до 10–12), концентрация Cd, V, Sb – в десятки тысяч раз, Cd, Mo, Pb, Sn, Zn, Bi, Ag – в сотни раз. Отходы предприятий цветной металлургии, заводов лакокрасочной промышленности и железобетонных конструкций обогащены ртутью. В пыли машиностроительных заводов повышена концентрация W, Cd, Pb (табл. 1).

Под влиянием обогащенных металлами выбросов формируются ареалы загрязнения ландшафта преимущественно на региональном и локальном уровнях. Влияние предприятий энергетики на загрязнение окружающей среды обусловлено не концентрацией металлов в отходах, а их огромным количеством. Масса отходов, например, в промышленных центрах, превышает их суммарное количество, поступающее от всех других источников загрязнения. С выхлопными газами автомобилей в окружающую среду выбрасывается значительное количество Pb, которое превышает его поступление с отходами металлургических предприятий.

Пахотные почвы загрязняются такими элементами как Hg, As, Pb, Cu, Sn, Bi, которые попадают в почву в составе ядохимикатов, биоцидов, стимуляторов роста растений, структурообразователей. Нетрадиционные удобрения, изготовляемые из различных отходов, часто содержат большой набор загрязняющих веществ с высокими концентрациями. Из традиционных минеральных удобрений фосфорные удобрения содержат примеси Mn, Zn, Ni, Cr, Pb, Cu, Cd (Гапонюк, 1985).

Распределение в ландшафте металлов, поступивших в атмосферу из техногенных источников, определяется расстоянием от источника загрязнения, климатическими условиями (сила и направление ветров), рельефом местности, технологическими факторами (состояние отходов, способ поступления отходов в окружающую среду, высота труб предприятий).

Рассеивание ТМ зависит от высоты источника выбросов в атмосферу. Согласно расчетам М.Е. Берлянда (1975), при высоких дымовых трубах значительная концентрация выбросов создается в приземном слое атмосферы на расстоянии 10–40 высот трубы. Вокруг таких источников загрязнения выделяются 6 зон (табл. 2). Площадь воздействия отдельных промышленных предприятий на прилегающую территорию может достигать 1000 км2 .

Таблица 2

Зоны загрязнения почв вокруг точечных источников загрязнения

Расстояние от

Превышение содер-

источника за-

жания ТМ по отно-

грязнения в км

шению к фоновому

Охранная зона предприятия

Зоны загрязнения почв и их размер тесно связаны с векторами господствующих ветров. Рельеф, растительность, городские постройки могут изменять направление и скорость движения приземного слоя воздуха. Аналогично зонам загрязнения почв можно выделить и зоны загрязнения растительного покрова.

МИГРАЦИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПОЧВЕННОМ ПРОФИЛЕ

Аккумуляция основной части загрязняющих веществ наблюдается преимущественно в гумусово-аккумулятивном почвенном горизонте, где они связываются алюмосиликатами, несиликатными минералами, органическими веществами за счет различных реакций взаимодействия. Состав и количество удерживаемых в почве элементов зависят от содержания и состава гумуса, кислотно-основных и окислительно-восстановительных условий, сорбционной способности, интенсивности биологического поглощения. Часть тяжелых металлов удерживается этими компонентами прочно и не только не участвует в миграции по почвенному профилю, но и не представляет опасности

для живых организмов. Отрицательные экологические последствия загрязнения почв связаны с подвижными соединениями металлов.

В пределах почвенного профиля техногенный поток веществ встречает ряд почвенно-геохимических барьеров. К ним относятся карбонатные, гипсовые, иллювиальные горизонты (иллювиально-железисто-гумусовые). Часть высокотоксичных элементов может переходить в труднодоступные для растений соединения, другие элементы, мобильные в данной почвенногеохимической обстановке, могут мигрировать в почвенной толще, представляя потенциальную опасность для биоты. Подвижность элементов в значительной степени зависит от кислотно-основных и окислительновосстановительных условий в почвах. В нейтральных почвах подвижны соединения Zn, V, As, Se, которые могут выщелачиваться при сезонном промачивании почв.

Накопление подвижных, особо опасных для организмов соединений элементов зависит от водного и воздушного режимов почв: наименьшая аккумуляция их наблюдается в водопроницаемых почвах промывного режима, увеличивается она в почвах с непромывным режимом и максимальна в почвах с выпотным режимом. При испарительной концентрации и щелочной реакции в почве могут накапливаться Se, As, V в легкодоступной форме, а в условиях восстановительной среды – Hg в виде метилированных соединений.

Однако следует иметь в виду, что в условиях промывного режима потенциальная подвижность металлов реализуется, и они могут быть вынесены за пределы почвенного профиля, являясь источниками вторичного загрязнения подземных вод.

В кислых почвах с преобладанием окислительных условий (почвы подзолистого ряда, хорошо дренированные) такие тяжелые металлы, как Cd и Hg, образуют легкоподвижные формы. Напротив, Pb, As, Se образуют малоподвижные соединения, способные накапливаться в гумусовых и иллювиальных горизонтах и негативно влиять на состояние почвенной биоты. Если в составе загрязняющих веществ присутствует S, в восстановительных условиях создается вторичная сероводородная среда и многие металлы образуют нерастворимые или слаборастворимые сульфиды.

В заболоченных почвах Mo, V, As, Se присутствуют в малоподвижных формах. Значительная часть элементов в кислых заболоченных почвах присутствует в относительно подвижных и опасных для живого вещества формах; таковы соединения Pb, Cr, Ni, Co, Cu, Zn, Cd и Hg. В слабокислых и нейтральных почвах с хорошей аэрацией образуются труднорастворимые соединения Pb, особенно при известковании. В нейтральных почвах подвижны соединения Zn, V, As, Se, а Cd и Hg могут задерживаться в гумусовом и иллювиальных горизонтах. По мере возрастания щелочности опасность загрязнения почв перечисленными элементами увеличивается.

ПОНЯТИЕ О ПОЧВЕННОМ ЭКОЛОГИЧЕСКОМ МОНИТОРИНГЕ

Почвенный экологический мониторинг – система регулярного неогра-

ниченного в пространстве и времени контроля почв, которая дает информацию об их состоянии с целью оценки прошлого, настоящего и прогноза изменения в будущем. Почвенный мониторинг направлен на выявление антропогенных изменений почв, которые могут в конечном итоге нанести вред здоровью человека. Особая роль почвенного мониторинга обусловлена тем, что все изменения состава и свойств почв отражаются на выполнении почвами их экологических функций, следовательно, на состоянии биосферы.

Огромное значение имеет то, что в почве в отличие от воздуха атмосферы и вод поверхностных водоемом экологические последствия антропогенного воздействия обычно проявляются позже, но они более устойчивы и сохраняются дольше. Существует необходимость оценивать и долговременные последствия этого воздействия, например, возможность мобилизации загрязняющих веществ в почвах, вследствие чего почва из «депо» загрязняющих веществ может превращаться в их вторичный источник.

Виды почвенного экологического мониторинга

Выделение видов почвенного экологического мониторинга основано на различиях в сочетании информативных почвенных показателей, соответствующих задачам каждого из них. На основе различий механизмов и масштабов проявления деградации почв выделяется две группы видов монито-

ринга: первая группа – глобальный мониторинг, вторая – локальный и региональный.

Глобальный почвенный мониторинг – составная часть глобального мониторинга биосферы. Проводится он для оценки влияния на состояние почв экологических последствий дальнего атмосферного переноса загрязняющих веществ в связи с опасностью общепланетарного загрязнения биосферы и сопровождающих его процессов глобального уровня. Результаты глобального или биосферного мониторинга характеризуют глобальные изменения состояния живых организмов на планете под влиянием человеческой деятельности.

Назначение локального ирегионального мониторингов заключается в выявлении влияния деградации почв на экосистемы локального и регионального уровней и непосредственно на условия жизни человека в сфере его природопользования.

Локальный мониторинг называют еще санитарно-гигиеническим или импактным. Он направлен на контроль уровня содержания в окружающей среде тех загрязняющих веществ, которые выбрасывает конкретное пред-