Как поддерживать ph в норме. Норма ph мочи: о чем может свидетельствовать кислая или щелочная реакция в анализе? Кислотность pН в норме

Почему полезно знать про рН ?

Почему чистая вода вызывает самую сильную боль?

Почему многие косметические кремы наносят больше вреда, чем пользы?

Как помочь организму справится с дефицитом кальция, и защитить свои кости и зубы от разрушения?

Об этом рассказывается в статье "Что такое pH ?" Выдержки из которой приводятся ниже.

КоррекциюpH можно делать с помощью живой и мертвой воды, которые в отличие от щелочей и кислот имеют соответственно щелочные и и кислотные свойства, но содержат минимальное количество других элементов кроме воды. Наличие других элементов определяется материалом, из которого сделаны электроды. При использовании электродов из угля или графита получаются наилучшие результаты. Хотя, в некоторых, специальных, случаях использование электродов из других материалов может оказаться предпочтительнее.

Для правильного использования живой и мертвой воды, очень полезно знать, что такое показатель рН, и когда его надо корректировать.

Живая вода имеет рН 8,0-9,0

Мертвая вода имеет рН 5,0-6,0
" Что такое pH?

Соотношение кислоты и щелочи в каком-либо растворе называется кислотно-щелочным равновесием (КЩР), хотя физиологи считают, что более правильно называть это соотношение кислотно-щелочным состоянием.
КЩР характеризуется специальным показателем рН (power Hidrogen - "сила водорода"), который показывает число водородных атомов в данном растворе. При рН равном 7,0 говорят о нейтральной среде.

Чем ниже уровень рН - тем среда более кислая (от 6,9 до О). Щелочная среда имеет высокий уровень рН (от 7,1 до 14,0).
Тело человека на 70% состоит из воды, поэтому вода - это одна из наиболее важных его составляющих. Тело человека имеет определенное кислотно-щелочное соотношение, характеризуемое рН (водородным) показателем.
Значение показателя рН зависит от соотношения между положительно заряженными ионами (формирующими кислую среду) и отрицательно заряженными ионами (формирующими щелочную среду).
Организм постоянно стремится уравновесить это соотношение, поддерживая строго определенный уровень рН. При нарушенном балансе могут возникнуть множество серьезных заболеваний.

Соблюдайте правильный рН баланс для сохранения крепкого здоровья.
Организм способен правильно усваивать и накапливать минералы и питательные вещества только при надлежащем уровне кислотно-щелочного равновесия. В ваших силах помочь своему организму получать, а не терять полезные вещества. Например, железо может усваиваться организмом при рН 6,0 - 7,0, а йод - при рН 6,3 - 6,6.
Наш организм использует соляную кислоту для расщепления пищи. В процессе жизнедеятельности организма требуются как кислые, так и щелочные продукты распада, причем первых образуется в 20 раз больше, нежели вторых. Поэтому защитные системы организма, обеспечивающие неизменность его КЩР, "настроены" прежде всего, на нейтрализацию и выведение, прежде всего кислых продуктов распада.

Основными механизмами поддержания этого равновесия являются:

буферные системы крови (карбонатная, фосфатная, белковая, гемоглобиновая);

респираторная (легочная) система регуляции;

почечная (выделительная система).

В Ваших интересах поддерживать правильный рН-баланс.
Даже "самая правильная" программа по подбору лечебных трав не будет эффективно работать, если ваш рН-баланс нарушен.
Как организм управляет уровнем кислотности:

Выделяет кислоты - через желудочно-кишечный тракт, почки, легкие, кожу

Нейтрализует кислоты - с помощью минералов: кальций, магний, калий, натрий

Накапливает кислоты - в тканях, прежде всего в мышцах

1. Слюна - преимущественно щелочная реакция (колебание рН 6,0 - 7,9)

2. Печень - реакция пузырной желчи близка к нейтральной (рН около 7,0), реакция печеночной желчи щелочная (рН 7,5 - 8,0)

3. Желудок - резко кислая среда (на высоте пищеварения рН 1,8 - 3,0)

4. Поджелудочная железа - панкреатический сок слабощелочной

5. Тонкий кишечник - щелочная реакция

6. Толстый кишечник - слабокислая реакция

Таблица 1. Водородные показатели для растворов

Раствор РН
Cl 1,0
H 2 SO 4 1,2
H 2 C 2 O 4 1,3
NaHSO 4 1,4
Н 3 РО 4 1,5
Желудочный сок 1,6
Винная кислота 2,0
Лимонная кислота 2,1
HNO 2 2,2
Лимонный сок 2,3
Молочная кислота 2,4
Салициловая кислота 2,4
Столовый уксус 3,0
Сок грейпфрута 3,2
СО 2 3,7
Яблочный сок 3,8
H 2 S 4,1
Моча 4,8-7,5
Черный кофе 5,0
Слюна 7,4-8
Молоко 6,7
Кровь 7,35-7,45
Желчь 7,8-8,6
Вода океанов 7,9-8,4
Fe(OH) 2 9,5
MgO 10,0
Mg(OH) 2 10,5
Na 2 CO 3 11
Ca(OH) 2 11,5
NaOH 13,0

Таблица позволяет сделать ряд интересных наблюдений. Значения рН, например, сразу показывают сравнительную силу кислот и оснований. Хорошо видно также сильное изменение нейтральной среды в результате гидролиза солей, образованных слабыми кислотами и основаниями, а также при диссоциации кислых солей.

Особенно чувствительны к изменению рН среды икра рыб и мальки.

Буферные растворы.

Поддержать нужное значение рН, не дать ему заметно отклониться в ту или другую сторону при изменении условий возможно при использовании так называемых буферных (от англ. buff - смягчать толчки) растворов. Такие растворы часто представляют собой смесь слабой кислоты и ее соли или слабого основания и его соли. Подобные растворы «сопротивляются» в определенных пределах (которые называются емкостью буфера) попыткам изменить их рН. Например, если попытаться немного подкислить смесь уксусной кислоты и ацетата натрия, то ацетат-ионы свяжут избыточные ионы Н + в малодиссоциированную уксусную кислоту, и рН раствора почти не изменится (ацетат-ионов в буферном растворе много, так как они образуются в результате полной диссоциации ацетата натрия). С другой стороны, если ввести в такой раствор немного щелочи, избыток ионов ОН - будет нейтрализован уксусной кислотой с сохранением значения рН. Аналогичным образом действуют и другие буферные растворы, причем каждый из них поддерживает определенное значение рН. Буферным действием обладают также растворы кислых солей фосфорной кислоты и слабых органических кислот - щавелевой, винной, лимонной, фталевой и др. Конкретное значение рН буферного раствора зависит от концентрации компонентов буфера. Так, ацетатный буфер позволяет поддерживать рН раствора в интервале 3,8-6,3; фосфатный (смесь КН 2 РО 4 и Na 2 HPO 4) - в интервале 4,8 - 7,0, боратный (смесь Na 2 B 4 O 7 и NaOH) - в интервале 9,2-11 и т.д.

Многие природные жидкости обладают буферными свойствами. Примером может служить вода в океане, буферные свойства которой во многом обусловлены растворенным углекислым газом и гидрокарбонат-ионами НСО 3 -. Источником последних, помимо СО 2 , являются огромные количества карбоната кальция в виде раковин, меловых и известняковых отложений в океане. Интересно, что фотосинтетическая деятельность планктона - одного из основных поставщиков кислорода в атмосферу, приводит к повышению рН среды. Происходит это в соответствии с принципом Ле Шателье, в результате смещения равновесия при поглощении растворенного углекислого газа: 2Н + +СО 3 2- = Н + + НСО 3 - , Н 2 СО 3 = Н 2 О + СО 2 . Когда в ходе фотосинтеза CO 2 + H 2 O + hv = 1/n(CH 2 O) n + O 2 из раствора удаляется СО 2 , равновесие смещается вправо и среда становится более щелочной. В клетках организма гидратация СО 2 катализируется ферментом карбоангидразой.

Клеточная жидкость, кровь также являются примерами природных буферных растворов. Так, кровь содержит около 0,025 моль/л углекислого газа, причем его содержание у мужчин примерно на 5% выше, чем у женщин. Примерно такая же в крови концентрация гидрокарбонат-ионов (их тоже больше у мужчин).

При исследовании почвы рН является одной из наиболее важных характеристик. Разные почвы могут иметь рН от 4,5 до 10. По значению рН, в частности, можно судить о содержании в почве питательных веществ, а также о том, какие растения могут успешно расти на данной почве. Например, рост фасоли, салата, черной смородины затрудняется при рН почвы ниже 6,0; капусты - ниже 5,4; яблони - ниже 5,0; картофеля - ниже 4,9. Кислые почвы обычно менее богаты питательными веществами, поскольку хуже удерживают в себе катионы металлов, необходимые растениям. Например, попавшие в почву ионы водорода вытесняют из нее связанные ионы Са 2+ . А вытесненные из глинистых (алюмосиликатных) пород ионы алюминия в больших концентрациях токсичны для сельскохозяйственных культур.

Для раскисления кислых почв используют их известкование - внесение веществ, постепенно связывающих избыток кислоты. Таким веществом могут служить природные минералы - мел, известняк, доломит, а также известь, шлак с металлургических заводов. Количество внесенного раскислителя зависит от буферной емкости почвы. Например, для известкования глинистой почвы требуется больше раскисляющих веществ, чем для песчаной.

Большое значение имеют измерения рН дождевой воды, которая может оказаться довольно кислой из-за присутствия в ней серной и азотной кислот. Эти кислоты образуются в атмосфере из оксидов азота и серы (IV), которые выбрасываются с отходами многочисленных производств, транспорта, котельных и ТЭЦ. Известно, что кислотные дожди с низким значением рН (менее 5,6) губят растительность, живой мир водоемов. Поэтому постоянно ведется контроль рН дождевой воды.

Кожа

Для различных типов кожи pH достаточно сильно отличается: от 3,5(кислая среда) - для сухой кожи, 5,5 -нормальной, до 6(щелочная среда) для жирной кожи. Кроме этого существует комбинированный тип коже, когда тип кожи различен на разных участках кожи. Поэтому очень важен правильный подбор косметических средств именно для Вашего типа кожи.

Моча

Очень важно вовремя обратить внимание на изменение уровня рН внутренней среды организма и, при необходимости, принять неотложные меры. С помощью рН тест-полосок можно легко, быстро и точно определить уровень рН, не выходя из дома. Если уровень рН мочи колеблется в пределах 6,0 - 6,4 по утрам и 6,4 - 7,0 вечером, то ваш организм функционирует нормально.

Значение рН мочи

Результаты рН тестов мочи показывают, насколько хорошо организм усваивает минералы, такие как кальций, натрий, калий и магний. Эти минералы называют "кислотными демпферами", так как они регулируют уровень кислотности в организме.

Если кислотность слишком высокая, организм не продуцирует кислоту. Он должен нейтрализовать кислоту. Для этого организм начинает заимствовать минералы из различных органов, костей и проч. для того, чтобы нейтрализовать излишки кислоты, которая начинает накапливаться в тканях. Таким образом, происходит регулирование уровня кислотности.

Слюна

Если в слюне отметка уровня рН остается между 6,4 - 6,8 в течение всего дня - это также свидетельствует о здоровье вашего организма.

Значение рН слюны

Рационально также знать уровень рН слюны. Результаты тестирования показывают активность ферментов пищеварительного тракта, особенно печени и желудка. Этот показатель дает представление о работе как всего организма в целом, так и отдельных его систем. Некоторые люди могут иметь повышенную кислотность, как мочи, так и слюны - в таком случае мы имеем дело с "двойной кислотностью".

Кровь Значение рН крови

рН крови одна из самых жестких физиологических констант организма. В норме этот показатель может меняться в пределах 7,36 - 7,42. Сдвиг этого показателя хотя бы на 0,1 может привести к тяжелой патологии. При сдвиге рН крови на 0,2 развивается коматозное состояние, на 0,3 - человек погибает.

После выполнения работы субмаксимальной мощности у высококвалифицированных спортсменов pH крови может снизиться до 7.0, то есть кровь из слабощелочной превращается в нейтральную (!).

Если здоровому нетренированному человеку перелить такую кровь, это вызовет его смерть. Организм же спортсменов натренирован выдерживать такую степень закисления крови, и даже выполнять интенсивную работу в этих условиях.

Некоторыми авторами получены данные о снижении pH крови у высококвалифицированных спортсменов до 6.9 и даже ниже, то есть реакция крови вместо щелочной - становится кислой (!). Правда, недоверие к этим данным очень велико, и в учебниках они не всегда приводятся. Если такую кровь ввести здоровому нетренированному человеку, это неизбежно вызовет денатурацию белков и, как следствие, смерть организма

Одной из важных причин, позволяющих спортсменам выдерживать высокую степень закисления крови, является появление у них видоизмененных белков (изомеров обычных белков), имеющих несколько иные физико-химические свойства. В частности, эти изомеры-белки не разрушаются в условиях снижения pH.

Снижение pH крови изменяет свойства белков и является угрозой их разрушения. Именно поэтому в организме человека существуют мощные механизмы поддержания pH крови на строго определенном уровне. Эти механизмы называются буферными системами крови.

Однако скорость образования кислот при работе субмаксимальной мощности настолько высока, что буферные системы крови не успевают нейтрализовать закисление. Поэтому закисление крови имеет место, и это закисление очень велико.

У спортсменов высокого класса (мастера спорта и выше) закисление крови, возникающее вследствие выполнения работы субмаксимальной мощности на ответственных соревнованиях, может быть несовместимо с жизнью. Организм не спортсменов или спортсменов младших и средних разрядов не способен выдержать работу, приводящую к смерти в результате закисления крови.

Кости

В 1968 г. в «Ланцете» появилась статья, в которой утверждалось, что люди, приверженные диете, при которой вырабатывается слишком много кислоты, подвергают риску свои кости. Дело в том, что в организме обычно поддерживается уровень кислотности порядка 7,4. Почки избавляются от избытка кислоты, удаляя ее с мочой, когда pH уменьшается до 7,38, организм, чтобы нейтрализовать излишнюю кислоту, извлекает из костей и мышц карбонаты, фосфаты и аммоний. Таким образом, кости не только представляют собой каркас, не позволяющий нам расплываться как медуза, но и являются своего рода складом минералов, нейтрализующих кислоту. Два профессора из Гарварда подсчитали, что диета, в которой кислоты столько, что требуется 60 миллилитров бикарбоната из скелета ежедневно, за десять лет лишит нас 15% костной массы!

В течение 7 лет, проводилось исследование в Калифорнийском Университете (штат Сан-Франциско), где были обследованы 9 тыс. женщин.

Результаты показали, что при постоянном повышенном уровне кислотности кости становятся ломкими. Специалисты, проводившие этот эксперимент, уверены, что большинство проблем женщин среднего возраста связано с излишним употреблением мясной и недостатком употребления овощной пищи. Поэтому организму ничего не остается, как забирать кальций из собственных костей, и с его помощью регулировать уровень рН. (Американский Журнал Клинического Питания).

Кожа

Общепринятым считается, что косметические препараты должны иметь определенную кислотность, характеризующуюся величиной рН от 5.0 до 6.0. Какие факты заставляют косметологов из поколения в поколение из одного пособия в другое повторять "прописную" истину о том, что косметические препараты должны иметь кислотный характер?

Единственным доводом в пользу такого утверждения является то обстоятельство, что верхний слой эпидермиса (кератиновые чешуйки) имеет кислотность с величиной рН от 5.0 до 6.0. Действительно, в процессе кератинизации клетка, образовавшаяся в нижнем (базальном) слое эпидермиса, постепенно перемещается в верхние слои кожи. Теряя связь с питательными веществами плазмы крови и способность к делению, одновременно под действием кислорода воздуха, любых видов радиации, экологических воздействий ионов тяжелых металлов и превращается в кератиновую чешуйку, строение которой и определяет ее кислотный характер. Также имеется информация о том, что кислотность поверхности кожи может определяться кислотным характером секрета сальных желез. Однако эти рассуждения касаются (и справедливо) только наружного слоя эпидермиса. В свою очередь, чем глубже расположена клетка, тем в большей степени она подобна исходной полноценной клетке, способной к делению. А для таких клеток зависимость уже иная. Для делящихся клеток известно, что оптимальное значения рН может меняться от 6.7 до 7.3, то есть среднее значение рН равно 7,0 +/- 0,3.

Половые органы

pH цервикальной слизи оценивается с помощью специальной тест-полоски сразу после сбора или непосредственно в цервикальном канале. В норме pH составляет 6.4-8.0. На подвижность сперматозоидов изменения pH цервикальной слизи оказывают большое влияние. Кислая среда делает сперматозоиды неподвижными, в то время как щелочная увеличивает их подвижность. Оптимальное pH 7.0-8.0 наблюдается в периовуляторный период менструального цикла. Значительное снижение pH цервикальной слизи зачастую связано с бактериальными инфекциями.

Большую часть эякулята составляет сперма. Её нормальный объем на эякуляцию составляет от 2 до 6 мл. Нормальная сперма имеет желтоватый или палевый цвет и терпкий запах (все сильные или неприятные запахи не являются нормальным явлением). При температуре человеческого тела сперма сжиживается за час. Её кислотность составляет от 7,2 до 8.

Желудочный сок

Биологические катализаторы - ферменты способны работать только в определенных пределах рН, а при выходе за эти пределы их активность может резко снижаться. Например, активность фермента пепсина, который катализирует гидролиз белков, и способствует, таким образом, перевариванию белковой пищи в желудке, максимальна при значениях рН около 2. Поэтому для нормального пищеварения необходимо, чтобы желудочный сок имел довольно низкие значения рН: в норме 1,53-1,67. При язвенной болезни желудка рН понижается в среднем до 1,48, а при язве двенадцатиперстной кишки может доходить даже до 1.05. Точное значение рН желудочного сока определяют путем внутрижелудочного исследования (рН-зонд). Если у человека понижена кислотность, врач может назначить прием с пищей слабого раствора соляной кислоты, а при повышенной кислотности - принимать противокислотные средства, например, гидроксиды магния или алюминия. Интересно, что если выпить лимонный сок, кислотность желудочного сока... понизится! Действительно, раствор лимонной кислоты лишь разбавит более сильную соляную кислоту, содержащуюся в желудочном соке.

Клетки и межклеточная жидкость

В клетках организма рН имеет значение около 7, во внеклеточной жидкости - 7,4. Нервные окончания, которые находятся вне клеток, очень чувствительны к изменению рН. При механических или термических повреждениях тканей стенки клеток разрушаются, и их содержимое попадает на нервные окончания. В результате человек чувствует боль. Скандинавский исследователь Олаф Линдал проделал такой эксперимент: с помощью специального безыгольного инъектора человеку впрыскивали сквозь кожу очень тонкую струйку раствора, которая не повреждала клетки, но действовала на нервные окончания. Было показано, что боль вызывают именно катионы водорода, причем с уменьшением рН раствора боль усиливается. Аналогично непосредственно «действует на нервы» и раствор муравьиной кислоты, который жалящие насекомые или крапива впрыскивают под кожу. Разным значением рН тканей объясняется также, почему при некоторых воспалениях человек чувствует боль, а при некоторых - нет.

Интересно, что впрыскивание под кожу чистой воды дало особенно сильную боль. Объясняется это, странное на первый взгляд, явление так: клетки при контакте с чистой водой в результате осмотического давления разрываются, и их содержимое воздействует на нервные окончания.

Кишечник

Пристеночная микрофлора кишечника препятствует проницаемости через слизистую оболочку болезнетворных микробов. Ее антибактериальная активность создается за счет синтеза органических кислот, в результате чего кислотность (рН) окружающей среды падает до значений 4,0-3,8. Такая низкая кислотность тормозит рост и размножение болезнетворных и гнилостных микроорганизмов, чувствующих себя прекрасно в щелочной среде, возникающей при гниении и брожении в кишечном тракте.

Болезни

Незнание уровня своего рН может привести к печальным последствиям

А) Повышенная кислотность в организме .

Дисбаланс рН организма у большинства людей проявляется в виде повышенной кислотности (состояние ацидоза). В этом состоянии организм плохо усваивает минералы, такие как кальций, натрий, калий и магний, которые, благодаря избыточной кислотности, выводятся из организма. От недостатка минералов страдают жизненно важные органы.

Не выявленный вовремя ацидоз может вредить организму незаметно, но постоянно в течение нескольких месяцев и даже лет. Злоупотребление алкоголем часто приводит к ацидозу. Ацидоз может возникать, как осложнение диабета.

При ацидозе могут появиться следующие проблемы:

· Заболевания сердечнососудистой системы, включая стойкий спазм сосудов и уменьшение концентрации кислорода в крови.

· Прибавление в весе и диабет.

· Заболевания почек и мочевого пузыря, образование камней.

· Снижение иммунитета.

· Увеличение вредного воздействия свободных радикалов, которые могут способствовать онкогенезу.

· Хрупкость костей вплоть, до перелома шейки бедра, а также других нарушениях опорно-двигательного аппарата, как например, образование остеофитов (шпор).

· Появление суставных болей и болевых ощущений в мышцах, связанных с накоплением молочной кислоты.

· Общая слабость.

Б) Повышенное содержание щелочи в организме.

При повышенном содержании щелочи в организме, а это состояние называется алкалоз, также как при ацидозе, нарушается усвоение минералов. Пища усваивается гораздо медленнее, что позволяет токсинам проникать из желудочно-кишечного тракта в кровь. Повышенное содержание щелочи в организме опасно и трудно поддается корректировке. Как правило, оно является результатом употребления лекарств, содержащих щелочь.

Повышенное содержание щелочи может спровоцировать:

· Проблемы с кожей и печенью.

· Сильный и неприятный запах изо рта и тела.

· Разнообразные аллергические проявления, связанные с пищей и загрязнением окружающей среды.

· Обострение хронических заболеваний.

· Запоры и другие проблемы с кишечником.

Также этим заболеванием могут страдать и рыбы.

Ацидоз возникает при содержании рыб в воде с кислой реакцией. Для предупреждения заболевания надо наблюдать за показаниями pH воды, не допуская снижения кислотности (pH) ниже 5,5.

При создании коллекции рыб, обитающих в мягких, кислых водах, необходимо следить за тем, чтобы в аквариум не попали виды, для содержания которых требуется вода с нейтральным или слабощелочным показателем, так как они могут заболеть ацидозом в первую очередь. Чтобы предохранить рыб от заболевания алкалозом, значение pH воды не должно превышать 8,5. Этому заболеванию наиболее подвержены представители подотряда Хараковидные в условиях, когда pH больше 7.

Опыт, накопленный при диагностике методом биолокации, показал, что у 90 % лиц, имеющих скрытую инфекцию вируса гепатита , количество злокачественных клеток в крови, лимфе находилось на пределе или выше предела, при котором организм в состоянии справляться с ростом онкологических клеток. Таким образом, вирус гепатита провоцирует онкологическую болезнь организма.

Опасность состоит ещё и в том, что данный вирус устойчив в кислой среде, которую создаёт иммунная система в крови, желудочно-кишечном тракте, на слизистой оболочке органов. Эта среда губительна для многих инфекций, но только не для вирусов гепатита.

Бог создал человека, как уникальную автоматизированную систему, способную изменять свои функции в определённых пределах. Так вот, при попадании вируса гепатита, организм меняет кислую среду крови в сторону щёлочной, т. е. увеличивает pH-крови, так как для этого вируса более опасной средой является щелочная. Однако более чем pH=7,47 он сделать не может, ибо это его запрограммированный предел (pH-крови у человека бывает в диапазоне 7,15 - 7,47). А прямым следствием сдвига pH-крови в сторону щелочной среды является возбуждение других инфекций!.. Так и получается состояние иммунодефицита, при котором организм может погибнуть от воспаления лёгких, гриппа и других болезней, с которыми при нормальном PH-крови он бы успешно справился. Именно поэтому вирус гепатита можно считать одним из основных компонентов так называемой Вич-инфекции .

Некоторые напитки с низким pH усиливают симптомы рефлекса при эзофагите. К таким напиткам относятся кока-кола и пепси-кола (pH=2,5), красное вино (pH=3,25) и апельсиновый сок (pH=3,5).

Уменьшение частоты и интенсивности контакта с кислотой. Очевидно, что оптимальной профилактической мерой было бы устранение источника кислоты или устранение его контакта с зубами .

Если эрозия «диетической» (пищевой) этиологии , необходимо уменьшить частоту потребления кислой пищи и исключить ее из основных приемов пищи. Исследования, проведенные Amaechi B. T. at al., показали, что степень эрозирования тканей зуба находится в прямой зависимости от времени контакта зубов с кислотой, поэтому кислотосодержащие напитки, например, соки и газированные напитки, нужно пить быстро, а не медленно потягивать, или пить через соломку. Витамины должны приниматься в виде капсул внутрь.

Известно, что pH фруктовых соков и газированных напитков очень низок, что способствует распространению эрозий. Потребление этих напитков значительно увеличилось в последние годы, поэтому необходимо информировать пациентов о способности этих напитков вызывать эрозии зубов. При сравнении эрозивного потенциала различных напитков их буферная активность расположилась в следующем порядке: натуральный фруктовый сок - газированный напиток на фруктовой основе - газированные напитки не на фруктовой основе - шипучие минеральные воды - натуральные минеральные воды. Среди натуральных соков, наибольшим эрозивным потенциалом обладает черносмородиновый сок, а наименьшим - яблочный. Таким образом, необходимо рекомендовать пациентам при выборе напитков отдавать предпочтение натуральным негазированным минеральным водам.

Перспективным направлением в профилактике эрозий является создание напитков с низким эрозивным потенциалом. Т.к. эрозия- это последствие кислотной атаки на зуб, очевидно, что одним из путей профилактики является снижение содержания кислоты в напитках, вызывающих эрозии. Однако это повышает трудность создания рецептуры, т.к. вкус напитка зависит от его кислотности. Безалкогольные напитки могут содержать кислоты в 2 различных вариантах: а) фруктовые кислоты и кислоты, отвечающие за вкус и б) карбоновые кислоты для создания газов.

А) Фруктовые соки варьируют по уровню кислотности, и, следовательно, возможно повысить содержание потенциально низко эрозивных кислот за счет более эрозивных. Например, в результате исследования, проведенного Meurman at al., было доказано, что лимонная кислота более эрозивная, чем малеиновая и ортофосфорная. На основании этих данных, малеиновая кислота является лучшим выбором при производстве напитков, нежели лимонная или ортофосфорная.

Б) Газированные напитки имеют более низкую pH и большую титруемую кислотность. В опытах газированные напитки приводят к более высокой степени эрозирования эмали по сравнению с негазированными напитками, а поражение дентина происходит даже сильнее, чем при контакте зубов с апельсиновым соком. Следовательно, эрозивность напитка может быть снижена за счет уменьшения степени газирования.

Курение. Поглощение никотина в организме зависит от уровней pH при его поступлении. Поглощение никотина из кислотного дыма сигарет происходит в легких. Щелочной дым от табака из трубок и сигар позволяет никотину абсорбироваться через слизистую оболочку во рту.

Распространено заблуждение, что основная проблема для человека - это повышенная кислотность желудка. От нее изжога и язва.На самом деле, гораздо большую проблему представляет пониженная кислотность желудка, которая встречается во много раз чаще.

Недостаток соляной кислоты создает идеальные условия для колонизации кишечного тракта различными бактериями, простейшими и червями . Коварство ситуации в том, что пониженная кислотность желудка "ведет себя тихо" и протекает незаметно для человека.

Вот перечень признаков, которые позволяют заподозрить снижение кислотности желудка.

· Дискомфорт в желудке после еды.

· Тошнота после приема лекарств.

· Метеоризм в тонком кишечнике.

· Послабления стула или запор.

· Непереваренные частицы пищи в стуле.

· Зуд вокруг ануса.

· Множественные пищевые аллергии.

· Дисбактериоз или кандидоз.

· Расширенные кровеносные сосуды на щеках и носе.

· Угри.

· Слабые, расслаивающиеся ногти.

· Анемии из-за плохого всасывания железа.

Разумеется, точный диагноз пониженной кислотности требует определения рН желудочного сока (для этого необходимо обратиться к гастроэнтерологу).

Когда кислотность повышена - существует масса препаратов для ее снижения.

В случае же пониженной кислотности эффективных средств очень мало.Как правило, используются препараты соляной кислоты или растительные горечи, стимулирующие отделение желудочного сока (полынь, аир, мята перечная, фенхель и др.).

Косметическая продукция.

Научный сотрудник Института иммунологии СО РАМН Е.А.Вязова провела специальные эксперименты по выдерживанию и выращиванию клеток в средах с различными значениями рН. Результаты показывают, что при воздействии рН=5.5 в течение 8 часов более 30 клеток оказались погибшими. Если же довести рН до 4.5, то погибает уже более 90 клеток. Примерно та же картина наблюдается при изменении рН в щелочную сторону.

Таким образом, повышенная кислотность и повышенная щелочность среды, взаимодействующей с живыми клетками, является неблагоприятным фактором. Нижние (базальные) клетки эпидермиса омываются плазмой крови, величина рН которой составляет 7,2 +/- 0,1 и которая обладает определенной буферной емкостью. Буферная емкость плазмы крови и является причиной того, что мы с Вами, уважаемый читатель, еще не "облезли" применяя косметические композиции кислого характера с величиной рН, равной 5.5. Мы, образно говоря, живы благодаря реализации защитного механизма, связанного с буферной емкостью плазмы крови, которая обеспечивает поддержание величины рН на оптимальном уровне даже при воздействии достаточно сильных кислотных или щелочных агентов.

Теперь, попробуем ответить на простой вопрос. Если оптимальная величина рН для существования клеточных систем в организме и вне его составляет 7.2 +/- 0.3, то какая необходимость в том, чтобы постоянно "нагружать" клеточную систему кислотными косметическими препаратами с рН=5.5? И сколько это может продолжаться?

Вряд ли это можно оправдать тем, что тонкий чешуйчатый кератиновый слой имеет аналогичную кислотность. Ведь, когда мы имеем дело с питательными, витаминизирующими или регенерирующими кремами и масками, то предполагается, что их активные вещества должны проникать в глубокие слои кожи и благоприятно воздействовать на живые клеточные системы. А какая же это "благоприятность" - закисленная кремовая композиция?

Продукты

Наши предки-охотники ели много мяса, но их кислотная нагрузка уравновешивалась углеводами из фруктов и овощей. Сегодня хлеб и макароны - основа западной диеты - производят много кислоты, так как в них содержится много фосфора, который организм превращает в фосфорную кислоту. За последние 40 лет потребление нами белков, превращающихся в кислоту, увеличилось на 50%. И если не нейтрализовать мясо зеленью, производящей основания, то нам не в силах помочь белок из наших собственных тканей.

Но наибольшую угрозу нашим костям несут твердые сыры : нашпигованные кальцием и потому рекомендуемые для защиты костей, они являются основным источником кислоты в организме и главным виновником «коррозии» костей! Заметьте, что молоко пока что вне подозрений, потому что в нем содержится примерно одинаковое количество ингредиентов, превращающихся в кислоты и основания, а в процессе приготовления твердых сыров вместе с жидкостью удаляются компоненты, превращающиеся в организме в основания.

Природная вода всегда имеет кислую реакцию (рН < 7) из-за того, что в ней растворен углекислый газ; при его реакции с водой образуется кислота: СО 2 + Н 2 О = Н + + НСО 3 2- . Если насытить воду углекислым газом при атмосферном давлении, рН полученной «газировки» будет равен 3,7; такую кислотность имеет примерно 0,0007%-ный раствор соляной кислоты - желудочный сок намного кислее! Но даже если повысить давление CO 2 над раствором до 20 атм., значение pH не опускается ниже 3,3. Это значит, что газированную воду (в умеренных количествах, конечно) можно пить без вреда для здоровья, даже если она насыщена углекислым газом.

Консервирование . Различные микроорганизмы также весьма чувствительны к кислотности среды. Так, патогенные микробы быстро развиваются в слабощелочной среде, тогда как кислую среду, они не выдерживают. Поэтому для консервирования (маринование, соление) продуктов используют, как правило, кислые растворы, добавляя в них уксус или пищевые кислоты.

Вода. Обычно уровень рН находится в пределах, при которых он непосредственно не влияет на потребительские качества воды. Так, в речных водах pH обычно находится в пределах 6.5-8.5, в атмосферных осадках 4.6-6.1, в болотах 5.5-6.0, в морских водах 7.9-8.3. Поэтому ВОЗ не предлагает какой-либо рекомендуемой по медицинским показателям величины для рН. Вместе с тем известно, что при низком рН вода обладает высокой коррозионной активностью, а при высоких уровнях (рН>11), вода приобретает характерную мылкость, неприятный запах, способна вызывать раздражение глаз и кожи. Именно поэтому для питьевой и хозяйственно-бытовой воды оптимальным считается уровень рН в диапазоне от 6 до 9.

Потребление большого количества животных жиров, сладкого, алкоголя, кофе и никотина, а также частые стрессы приводят к нарушению этого равновесия, а именно - "переокисляют" организм. Из тканей кислые продукты обмена полностью не выводятся, а задерживаются в межклеточной жидкости в виде солей, провоцируя развитие многих болезней. Кстати, пресловутый целлюлит - тоже следствие нарушения кислотно-щелочного равновесия организма. Поправить баланс, а значит, и защитить себя от недугов помогут правильное питание и специальные очистительные процедуры.
Эти пищевые продукты восстанавливают кислотно-щелочной баланс, поэтому их следует чаше включать в рацион питания:
- стовые салаты;

Проросшие злаки;
- почти все виды овощей;
- картофель;
- сухофрукты;
- орехи, миндаль;
- вода без газа.

Картофель образует в организме избыток щелочи, что делает его незаменимым продуктом при "переокислении". Щелочные напитки (такие, как молочная сыворотка, зеленый чай, щелочная минеральная вода) также очень полезны.
Эти пищевые продукты не следует слишком часто включать в меню, так как они "переокисляют" организм:
- мясо и рыба;
- изделия из белой муки;
- кофе, черный чай;
- лимонад, содержащий сахар;
- кондитерские изделия.

Кстати, не все, что имеет кислый вкус, превращается в организме в кислоту! Например, при переваривании кислого яблока образуются главным образом щелочные соединения!
Как определить избыток кислоты в организме? Для этого в аптеках продаются специальные полоски, которые определяют кислотно-щелочной показатель мочи. Цифра ниже 7 говорит о том, что в вашем организме имеется избыточная кислота. Показатель выше 7 свидетельствует о том, что у вас все в порядке. Процедура измерения проводится утром после сна и затем несколько раз в течение дня. Это позволяет проследить тенденцию кислотно-щелочного состояния вашего организма.

Исключительно эффективно влияние кофе на желудочно-кишечный тракт. Здесь в полной мере проявляется возбуждающее, стимулирующее действие не только кофеина, но и кислот, ароматических и вкусовых веществ, образующихся в процессе обжарки кофе. Желудочная секреция, вызываемая кофе, равносильна действию всеми признанного активатора секреторной реакции - мясного бульона. Через 20-30 минут после принятия черного кофе кислотность в желудке достигает максимума. С увеличением концентрации напитка в желудочном содержимом увеличивается содержание свободной соляной кислоты, возрастает общая кислотность, что ускоряет переваривание и эвакуацию пищи из желудка.
Кофе, увеличивая выделение желудочного сока, способствует повышению усвояемости пищи. Недаром у многих народов принято подавать черный кофе после завтрака и обеда.
Черный кофе как сильный возбудитель желудочной секреции должен быть исключен из рациона больных язвенной болезнью и гиперацидным гастритом. Любителям кофе при этих заболеваниях можно рекомендовать употребление кофе с молоком, сливками и сахаром, так как при этом возбуждающее влияние кофе на желудочную секрецию значительно уменьшается.
Практически все растительные соки обладают свойствами исправлять кислотно-щелочное равновесие крови, нарушенное при утомительной работе. Это связано с преобладанием в них щелочных остатков. Соки повышают активность ферментов и обмен веществ, обеспечивают обезвреживание "токсинов усталости" и их выведение из организма. В овощных соках меньше органических кислот, именно поэтому они более пресные на вкус, но зато богаче минеральными веществами (такими, как: калий, натрий, кальций, железо и др.). Помимо этого, именно овощные соки очень эффективно восстанавливают наш организм в кризисных ситуациях. Фруктовые, как правило, имеют более высокую калорийность, поскольку в них больше сахара, но они и великолепно очищают наш организм.

Единственное, чем консервированные соки не уступают свежим сокам - это содержанием минеральных веществ. Поэтому, покупая консервированный сок, вы должны обратить внимание на название напитка. Если на нем написано слово "drink" , то в нем содержание самого сока не превышает 10-15 процентов, остальное - это вода, лимонная аскорбиновая кислота, а также различные красители и консерванты.
В "нектаре" содержится 50 процентов сока, а все остальное - вышеперечисленные ингредиенты. Встречаются и надписи на упаковке, гласящие о "100-процентном соке". Однако и здесь не следует обольщаться, потому как, такой сок тоже приготовлен из концентрированного продукта с добавлением воды и сахара, что уже никак не говорит об его стопроцентности."

Как видно из статьи, помочь организму скорректировать pH можно разными способами, но один из самых эффективных, это использование Живой и мертвой воды.

Когда что лучше применять понятно из статьи.

Из книги: Randy Holmes-Farley: Рифовая алхимия

Величина pH в рифовом аквариуме серьёзным образом влияет на жизнеспособность и состояние организмов, считающих этот аквариум своим домом. К сожалению, есть много факторов, которые выводят pH за пределы диапазона, оптимального для многих совместно содержащихся в морских аквариумах организмов. К примеру, слишком низкое значение pH затрудняет формирование скелета из карбоната кальция у кальцинируемых организмов. При достаточно низком pH эти скелеты, фактически, начинают растворяться. По этой причине аквариумисты должны следить за данным параметром. Подобное наблюдение, очень часто, является первым шагом на пути к решению различных вопросов, связанных с рН. Многие рифовые аквариумисты относят низкое значение pH к числу самых досадных проблем, связанных с поддержанием подходящих условий в аквариуме. В настоящей статье будут подробно рассмотрены причины, которые могут привести к низким значениям pH во многих аквариумах, и описаны лучшие способы его повышения. Проблемы, связанные с высоким значением pH были вкратце рассмотрены в моей предыдущей статье .


Что такое pH?

Данная глава должна помочь аквариумистам понять, что означает термин “pH”. Те, кто хочет только решить проблему низкого pH, может сразу перейти к выделенному жирным шрифтом тексту в конце данного раздела.

Есть множество различных определений понятия pH применительно к морской воде. В системе, используемой большинством аквариумистов (система Национального Бюро Стандартов - NBS) pH определяется согласно уравнению 1:

1. pH = -log a H


где a H это «активность» ионов водорода (H + , также называемых протонами) в растворе. Активность – это способ, которым химики измеряют “свободные” концентрации, и pH является мерой числа ионов водорода в растворе. Ионы водорода в морской воде частью находится в свободном состоянии (в действительности они не свободны, а присоединяются к молекулам воды, образуя комплексы - например, H 3 O + ), а частью составляют комплексы с другими ионами (поэтому химики используют термин "активность" вместо концентрации). В частности, ионы H + в обычной морской воде присутствуют в виде свободных ионов H + (около 73% от общего количества), в виде пар ионов H + /SO4 -- (около 25% от общего содержания H + ), и виде пар ионов H + /F - (небольшая доля от общего числа H + ). Вопросы активности также влияют на калибровочные буферные растворы, и это одна из причин, по которой к морской воде применяют различные шкалы измерения pH и калибровочные буферные растворы. Нас, аквариумистов, однако, все эти прочие стандарты мало касаются: в среде аквариумистики принято иметь дело исключительно со стандартной системой NBS (Национального Бюро Стандартов США).

Для понимания основных проблем, связанных со значением pH в морских аквариумах, можно представить, что значение pH непосредственно связано с концентрацией H + :

2. pH = -g H log

где g H – константа (коэффициент активности), которую, в большинстве случаев, можно игнорировать (g H = 1 в чистой пресной воде и ~0.72 в морской воде). По сути, аквариумистам достаточно понимать, что pH является мерой числа ионов водорода в растворе, и что шкала pH логарифмическая. Это означает, что при pH 6 имеется в 10 раз больше ионов H + , чем при pH 7, и что при pH 6 имеется в 100 раз больше ионов H+, чем при pH 8. Следовательно, небольшое изменение величины pH может быть связано с существенным изменением концентрации ионов H + в воде.


Зачем контролировать pH?

Есть несколько причин, по которым аквариумисты хотели бы контролировать pH в морских аквариумах. Одна из них в том, что водные организмы активно растут только в определённом диапазоне pH. Естественно, этот диапазон различен для разных организмов, и понятие «оптимального» диапазона может быть не совсем корректным для аквариума, в котором содержится много различных видов. Даже натуральная морская вода (pH = 8.0-8.3) не будет оптимальной для всех существ, живущих в ней. Тем не менее, более восьмидесяти лет назад было установлено, что сильное расхождение pH от показателя, свойственного натуральной морской воде (например, ниже значения pH 7.3), является источником стресса для рыб 1 . Теперь мы обладаем дополнительной информацией об оптимальных диапазонах величины pH для многих организмов, но, к сожалению, эти данные недостаточны для того, чтобы аквариумисты могли найти оптимальное значение pH для большинства организмов, которые их интересуют. 2-6 Кроме того, вдияние pH может быть косвенным. Например, известно, что токсичность меди и никеля для некоторых организмов, присутствующих в наших аквариумах (таких как мизиды и разноногие ракообразные) зависит от величины pH 7 . Как следствие, диапазоны pH, которые будут приемлемы для одного аквариума, могут отличаться от величин, приемлемых для другого, даже если в этих аквариумах будут жить одиаковые организмы.

Тем не менее, имеются фундаментальные процессы, происходящие во многих морских организмах, на которые серьёзно влияют изменения pH. Одним из них является кальцификация (отвердение). Известно, что кальцификация в кораллах зависит от значения pH, и она падает по мере падения pH. 8-9 Используя такие факторы в совокупности с опытом, накопленным многочисленными любителями, мы можем разработать некоторые основные положения относительно приемлемого диапазона и предельно допустимых значений pH для рифовых аквариумов.


Каков приемлемый диапазон значений pH для рифового аквариума?

Приемлемый диапазон значений pH для рифовых аквариумов – это скорее мнение, а не конкретно определённый факт, и естественно, он будет варьироваться в зависимости от того, кто высказывает это мнение. И этот диапазон может довольно сильно отличаться от «оптимального» диапазона. При этом, по сравнению с приемлемым диапазоном, гораздо трудее обосновать, что же является «оптимальным диапазоном». Я предлагаю считать подходящим значение pH натуральной морской воды, равное примерно 8.2, но рифовый аквариум может жить в более широком диапазоне значений pH. Я считаю, что диапазон значений pH от 7.8 до 8.5 является приемлемым для рифовых аквариумов, с некоторыми допущениями, а именно:

  • Буферность (KH) должна составлять, как минимум, 2.5 мэкв/л, и предпочтительно выше, особенно ближе к нижнему пределу диапазона pH. Данное положение частично основывается на том факте, что многие рифовые аквариумы довольно эффективно содержатся в диапазоне pH 7.8-8.0. При этом большая часть лучших из этих аквариумов содержит кальциевый реактор, который, хотя и имеет тенденцию к снижению pH, при этом поддерживает достаточно высокий уровень KH (3 мэкв/л и выше). В этом случае, любые проблемы, связанные с кальцинированием при низких значениях pH , могут быть компенсированы повышением щёлочности. Низкое значение pH в первую очередь поражает кальцифицируемые организмы, затрудняя получение достаточного количества карбоната для образования скелетов. Увеличение буферности сглаживает это затруднение по причинам, которые будут подробно рассмотрены далее в данной статье.
  • Уровень кальция должен составлять, как минимум, 400 ppm. При понижении pH кальцификация становится затруднительной; она также становится затруднительной, поскольку снижается уровень содержания кальция . Крайне нежелательно одновременно иметь предельно допустимые низкие значения pH, щёлочности и содержания кальция. Таким образом, если pH будет в области низких значений, и будет нелегко изменить его значение (как например, в аквариуме с кальциевым реактором CaCO3/CO2), следует, по крайней мере, обеспечить приемлемое содержание кальция (~400-450 ppm). Более того, одна из проблем, возникающих при высоких значениях pH (свыше 8.2), является абиотическое осаждение карбоната кальция, приводящее к падению содержания кальция и щёлочности и к засорению нагревателей и импеллеров насосов. Если величина pH в аквариуме составляет 8.4 или выше (что часто имеет место в аквариумах, при применении известковой воды Ca(OH) 2 - кальквассера), следует обратить должное внимание поддержанию надлежащего уровеня содержания кальция и буферности. Это означает, что эти уровни не должны быть ни слишком низкими, вызывающими биологическую кальцификацию, ни слишком высокими, вызывающими избыточное абиотическое осаждение на оборудовании.


Углекислый газ и pH

Величина pH в аквариуме с морской водой тесно связана с количеством растворенной в воде двуокиси углерода. Она также связана и с буферностью. Действительно, если вода будет полностью аэрированной (т.е. в полном равновесии с обычным воздухом), то величина pH точно определяется щёлочностью карбоната. Чем выше щёлочность, тем выше pH. Рисунок 1 показывает соотношение для морской воды, в состоянии равновесия с обычным воздухом (350 ppm двуокиси углерода), и воды, находящейся в состоянии равновесия с воздухом, содержащим избыточное количество двуокиси углерода, который может присутствовать в доме (1000 ppm). Очевидно, что при любой буферности, при повышении содержания двуокиси углерода величина pH понизится. Именно избыток двуокиси углерода и бывает причиной низкого pH в рифовых аквариумах.


Рисунок 1. Соотношение между буферностью и pH в морской воде, находящейся в равновесии с воздухом, содержащим обычное и повышенное количество двуокиси углерода.

Зелёная точка соответствует естественной морской воде в равновесии с обычным воздухом, а кривые отражают результат, который был бы получен при повышенной или пониженной буферности.



Упрощенно данное соотношение можно понимать следующим образом: Двуокись углерода присутствует в воздухе в виде CO 2 . При растворении в воде он превращается в угольную кислоту H 2 CO 3 :

3. CO 2 + H 2 O -> H 2 CO 3

Количество H 2 CO 3 в воде (когда она хорошо аэрирована) не зависит от pH, а только от содержания углекислого газа в воздухе (и, в некоторой степени, от других факторов, таких, как температура и солёность). В системах, не уравновешенных воздухом, к которым можно отнести многие рифовые аквариумы, эти аквариумы можно рассматривать «как если бы» они находились в равновесии с неким количеством CO 2 в воздухе, которое эффективно определяется количеством H 2 CO 3 в воде. Следовательно, если в аквариуме (или в воздухе, с которым он уравновешен) имеется «избыток CO 2 », это означает, что в аквариуме присутствует избыток H 2 CO 3 , что, в свою очередь, означает что величина pH должна упасть, как это показано ниже.


Морская вода содержит смесь угольной кислоты, бикарбоната и карбоната, которые всегда находятся в равновесии:

4. H 2 CO 3 -> H + + HCO 3 - -> 2H + + CO 3 --


Уравнение 4 показывает, что если в аквариуме имеется избыток H 2 CO 3 , часть его диссоциирует (разбивается на части), превращаясь в ионы H + , HCO 3 - и CO 3 -- . В результате избытка H + , величина pH будет ниже, чем, если бы в нём было меньше CO 2 /H 2 CO 3 . При большом избытке CO 2 в морской воде величина pH может упасть до очень низких значений (pH 4-6). Уравновешивание воды в моём аквариуме с двуокисью углерода при давлении в 1 атмосферу привело к снижению pH до 5.0, хотя маловероятно, что такое низкое значение было бы достигнуто в рифовом аквариуме, поскольку находящиеся в нём грунт и остовы кораллов будут играть роль буфера при растворении. В моём аквариуме вода, уравновешенная двуокисью углерода при давлении в 1 атмосферу, в присутствии избытка твёрдого арагонита (кристаллическая форма карбоната кальция, т.е. в той же форме, что и в остовах кораллов), привела к величине pH, равной 5.8.

Если буферность составляет 3 мэкв/л (8.4 dKH), а pH - 7.93, это означает, что в аквариуме имеется избыток CO 2 (в противном случае значение pH должно было быть чуть выше 8.3).

Рисунки 2-5 графически показывают некоторые способы повышения pH в аквариумах. К способам увеличения pH относятся:

  • Насыщение воды «обычным воздухом», вытесняя избыток двуокиси углерода приведет к смещению характеристик аквариума по зелёной линии (Рисунок 3), в результате чего значение pH поднимется чуть выше pH 8.3. Такой же результат имел бы место, если бы для избытока двуокиси углерода был поглощен в результате роста макро водорослей. Однако редко случается, чтобы такое явление могло привести к смещению характеристики вдоль зелёной линии, до значения выше pH 8.3.
  • Увеличение буферности: даже если в аквариуме продолжает сохраняться избыток CO 2 , увеличение буферности приведет к увеличению pH вдоль зелёной линии (Рисунок 4) до значения 8.1 при буферности 4.5 мэкв/л (12.6 dKH).
  • Применение известковой воды (kalkwasser) для снижения избыточного содержания CO 2 до нормального уровня, а также для увеличения буферности (до 4 мэкв/л), может привести к смещению кривой вдоль зелёной линии (Рисунок 5), что приведёт к увеличению pH свыше 8.4 и буферности до 4 мэкв/л (11.2 dKH).

Рисунок 2. Те же кривые, что и на Рисунке 1. Красные линии показывают величину pH,

которая получается при буферности 3 мэкв/л (8.4 dKH). Ясно видно, что величина pH значительно выше

при обычных уровнях содержания двуокиси углерода, чем при его повышенном содержании.

Рисунок 3. Те же кривые, иллюстрирующие влияние аэрации на pH,

при избыточном начальном содержании двуокиси углерода

Рисунок 4. Те же кривые, иллюстрирующие влияние увеличения буферности на pH,

при сохранении высокого содержание двуокиси углерода

Рисунок 5. Те же кривые, иллюстрирующие влияние известковой воды (kalkwasser) на pH путём сокращения избытка двуокиси углерода (гидроокись вступает в реакцию с двуокисью углерода, образуя
бикарбонат и карбонат), одновременно с увеличением буферности.


Почему значение pH изменяется в дневное и в ночное время?

Суточные изменения pH в рифовых аквариумах возникают из-за биологических процессов фотосинтеза и дыхания. Фотоситнез – это процесс, при котором организмы преобразуют двуокись углерода и воду в углеводы и кислород:


5. 6CO 2 + 6H 2 O + свет -> C 6 H 12 O 6 (углеводы) + 6O 2

Таким образом, в дневное время суток происходит потребление двуокиси углерода. В результате этого потребления многие аквариумы испытывают нехватку CO 2 в дневное время, и pH растет.

Кроме этого, организмы, обитающие в аквариуме также осуществляют процесс дыхания, во время которого углеводы преобразуются обратно в энергию, которая будет использоваться для других целей. По сути, этот процесс противоположен фотосинтезу:


6. C 6 H 12 O 6 (углеводы) + 6O 2 -> 6CO 2 + 6H 2 O + энергия

Данный процесс происходит в рифовом аквариуме постоянно, и он приводит к понижению pH в связи с образованием двуокиси углерода.

В результате совокупного действия этих процессов в большинстве рифовых аквариумов в дневное время pH возрастает, а в ночное время падает. Для типичного аквариума это изменение pH варьирует в диапазоне от менее, чем 0.1, до более чем 0.5. Как уже обсуждалось в других частях данной статьи, активная аэрация аквариумной воды для вытеснения избыточной двуокиси углерода или привлечения двуокиси углерода при её дефиците полностью нивелирует суточные колебания pН. На практике, однако, трудно достичь полной компенсации, величина pH различна в дневное и ночное время.

Помимо аэрации, на изменение pH влияет присутствие буферных растворов. Высокая карбонатная буферность приводит к меньшим колебаниям в pH, поскольку сочетание карбоната с бикарбонатом создаёт буфер, смягчая изменения pH. Борная кислота и ее соли также образуют буфер, смягчающий изменения pH. Емкость обех этих буферных систем выше при высоких значениях pH (8.5), чем при низких (7.8). Таким образом, аквариумисты, у которых значение pH в аквариуме низкое, могут столкнуться по этой причине с бОльшими колебаниями в значениях pH. Я детально обсуждал буферные эффекты и проблемы суточных колебаний pH в предыдущей статье .


Решение проблем с pH

Ниже приводятся конкретные советы по решению проблем с низким pH. Эти советы могут также помочь при поправке уровней pH ближе к природным значениям, даже если эти уровни уже находятся в пределах «приемлемого диапазона», как было описано выше, но всё ещё не столь высоки, как хотелось бы. Тем не менее, прежде чем приступить к реализации стратегии по изменению pH, ознакомьтесь с некоторыми общими положениями:

Убедитесь что у вас действительно есть проблема с уровнем pH. Зачастую, в результате некорректно произведенных измерений, вам может казаться, что есть проблема. Эта ситуация наиболее типична для случаев, когда аквариумист пользуется набором тестов (капельным тестом или тест-полосками) для измерения pH, а не пользуется электронным pH-метром. Тем не менее, ошибки возможны при любых измерениях, и будет досадно, если вы сделаете аквариуму хуже только из-за того, что pH-метр был неправильно откалиброван. Поэтому, прежде чеи начать коррективные меры, убедитесь, что значения pH были измерены правильно. Ниже приводятся ссылки на две статьи, которые стоит прочитать для того, чтобы быть уверенными, что измерение pH производится верно:

  • Калибровка pH-метра при помощи буры из хозяйственного магазина .

Прежде чем приступить к поиску решения, попытайтесь определить причину, по которой возникла проблема. Например, если низкое значение pH вызвано избытком углекислого газа в воздухе помещения, усиление аэрации этим же воздухом вряд ли поможет в решении этой проблемы. Гораздо лучшим решением будет если вы адресуете саму суть проблемы.


Причины низкого pH

Как уже описывалось выше, когда значение pH опускается ниже 7.8, возникают проблемы. Это значит, что в течение дня нижнее значение pH опускается ниже 7.8. Конечно, если нижнее значение pH опустится до 7.9, все равно, будет нужно поднять значение pH, но уже не так срочно. Как правило, есть несколько причин, которые могут приводить к низкому значению pH, и по каждому случаю нужны различные действия. Нет универсального способа, позволяющего предохранить аквариум от всех этих проблем одновременно!

Первым шагом в решении проблемы низкого pH является выяснение причины его возникновения. Возможные причины могут быть следующие:

  1. В аквариуме используется кальциевый реактор (реактор карбоната кальция с двуокисью углерода: CaCO 3 /CO 2 ).
  2. Аквариум имеет низкую буферность.
  3. В связи с недостаточной аэрацией в аквариуме имеется больше CO 2 , чем в окружающем воздухе. Не заблуждайтесь, думая, что аквариум будет в достаточной степени насыщен кислородом, поскольку вода в нём очень турбулентна. ГОРАЗДО труднее привести содержание двуокиси углерода к равновесию, чем просто обеспечить достаточное количество кислорода. Если бы двуокись углерода находилась в идеальном равновесии, НЕ было бы разницы между величинами pH в дневное и в ночное время. Поскольку в большинстве аквариумов ночью значение pH ниже, это говорит об их неполной насыщенности воздухом.
  4. В аквариуме имеется избыток CO 2 , поскольку воздух в помещении содержит избыток CO 2 .
  5. Аквариум находится в процессе запуска, и в нем содержится избыток кислоты, образующейся в результате азотного цикла и разложения органических веществ до CO 2 .

Тест аэрацией

Некоторые из перечисленных выше вариантов требуют определённых усилий для диагностики. Проблемы 3 и 4 являются довольно распространёнными, и есть простой способ их выявления. Наберите стакан воды из аквариума и измерьте pH. Затем интенсивно аэрируйте эту воду в течение часа, используя наружный воздух. Значение pH возрастет, если pH был слишком низким для имеющегося значения буферности, в соответствии с Рисунком 3 (если pH вырастет, вероятно, одно из измерений - pH или буферность – было ошибочным). В этом случае повторите эксперимент с новым стаканом воды, используя для аэрации воздух из помещения. Если pH снова вырастет, значит pH в аквариуме также будет расти в результате аэрации, потому что вода в аквариуме содержит избыточную дозу двуокиси углерода. Если pH в стакане не вырастет (или будет расти очень медленно), это означает, что воздух в помещении содержит избыток CO 2 , и увеличение насыщенности этим воздухом не решит проблему низкого pH (при этом, проблема может быть решена, если для насыщения использовать свежий воздух).


Решение проблем с низким значением pH

Некоторые решения пригодны только при определённых причинах, и о них подробно говорится ниже. Тем не менее, есть и общие решения, которые часто бывают эффективными. К таким решениям относится применение добавок для повышения pH. Их применяют в случаях, когда требуется повышение буферности. В этомо случае лучше всего использовать известковую воду (kalkwasser), после чего можно использовать двухкомпонентные добавки для повышения pH. Преимущество этих методов в том, что они увеличивают pH без нарушения баланса с кальцием.

Использование одних только буферных растворов не всегда является хорошим методом, поскольку они лишь немного увеличивают значение pH, в то время, как буферность растет существенно. К сожалению, этикетки на многих имеющихся на рынке буферных растворах пишутся так, чтобы убедить аквариумистов, что pH будет в порядке, если они просто добавят некоторое количество этого раствора. В большинстве же случаев улучшение pH происходит только на один день, при этом щёлочность увеличивается сверх желаемых пределов.

Два других полезных метода заключаются в выращивании макро водорослей, которые в процессе роста поглощают некоторое количество CO 2 из воды (зачастую водоросли освещаются в противофазе с основным аквариумом - свет в емкости в макроводорослями включается ночью, когда свет в основном аквариуме выключен, чтобы минимизировать уменьшение pH), и насыщении воды свежим воздухом, забираемым снаружи помещения.

Низкое значение pH, вызванное кальциевым реактором

Общей причиной низкого значения pH в рифовом аквариуме является использование кальциевого реактора. Эти реакторы применяют двуокись углерода, имеющую кислую реакцию, для растворения карбоната кальция, в результате чего в аквариум, хоть и временно, поступает значительное количество кислоты. В идеале двуокись углерода должна выветриваться из реактора, после того, как часть ее была израсходована на растворение CaCO 3 . Но в реальности данный процесс проходит не полностью, и аквариумы, в которых применяется кальциевый реактор, обычно действуют при значениях pH, близких к нижнему краю допустимого диапазона.

Предлагаемые решения предполагают, что реактор был должным образом отрегулирован. Плохо настроенный реактор может привести к понижению pH ниже обычного значения, поэтому первым шагом должно быть поведение соответствующей настройки. Вопрос настройки кальциевого реактора выходит за рамки данной статьи, отметим только, что значения pH и буферность вытекающей из реактора воды не должны быть слишком низкими.

Для минимизации проблемы низкого pH, возникающей в результате использования кальциевых реакторов, предлагалось много разных подходов, с различной степенью успеха. Одним из таких подходов является использование двухкамерного реактора, в котором вытекающая вода проходит через вторую камеру с CaCO 3 до того, как будет сброшена в аквариум. Растворение дополнительного CaCO 3 приводит к увеличению pH, а также вызывает повышение уровней содержания кальция и буферности в растворе. Такой подход выглядит успешным для повышении pH вытекающей из реактора воды, но не на всем пути до аквариума, и проблема низкого pH полностью не исчезает.

Другим подходом является аэрация воды на выходе из кальциевого реактора, до того, как она попадёт в аквариум. Целью этого метода является выдувание избытка CO 2 до того, как вода попадет в аквариум. Этот подход хорош в теории, но не на практике, поскольку до попадания в аквариум на дегазацию отводится недостаточно времени. Другой проблемой при этом подходе является тот факт, что в случае успешного повышения pH раствор может оказаться пересыщен CaCO 3 , что может привести ко вторичному осаждению CaCO 3 в реакторе, тем самым загрязняя его и снижая эффективность.

И, наконец, последний подход, возможно, самый успешный, заключается в комбинировании кальциевого реактора с другой системой повышения буферности, повышающей также значение pH. Самым удачным, наверное, является использование известковой воды (гидроксида кальция). В этом случае известковая вода применяется не столько для увеличения растворенного кальция или повышения буферности, а для того, чтобы поглотить избыток CO 2 , и, тем самым, поднять pH. Необходимое для этого количество известковой воды не так велико, как в случае ее использования в качестве основного источника для поддержания высоких уровней кальция и буферности. Добавление известковой воды может проводиться по таймеру, в ночные часы или рано утром, когда низкие значения pH наболее вероятны. Добавка известковой воды может проводиться исходя из показаний контроллера pH, т.е. она может добавляться только, когда значение pH упадет ниже определенного значения (например, ниже pH 7.8).


Низкое значение pH, вызванное высоким уровне м содержания углекислого газа в помещении

Высокие уровни содержания углекислого газа в помещении также могут привести к понижению pH в аквариумах. Дыхание людей и домашних животных, использование систем отопления, сжигающих природный газ (например, печи и плитки) при ненадлежащей вентиляции, и применение кальциевых реакторов могут привести к высоким уровням содержания углекислого газа в помещении. Уровень содержания углекислого газа в помещении легко может превысить его содержание в наружном воздухе вдвое, а такой избыток может привести к значительному понижению pH в аквариуме. Данная проблема особенно насущна в новых, более герметично закрываемых помещениях. Эта проблема вряд ли будет иметь место в старых домах, где ветер может «гулять» через оконные рамы.

Многие аквариумисты обнаружили, что открытое окно рядом с аквариумом может значительно повысить pH за один или два дня. К сожалению, аквариумисты, живущие в холодном климате, не могут комфортно открывать окна зимой. Некоторые из них выяснили, что в такой ситуации полезно провести трубку снаружи к месту забора воздуха флотатора, в котором свежий наружный воздух быстро смешивается с аквариумной водой. Имейте в виду, что если аквариумист проживает в зоне, где периодически распрыскиваются инсектициды для борьбы с комарами (например, в пригородных районах на юге), на забор воздуха необходимо устанавливать фильтр с активированным углем, чтобы предотвратить попадание ядохимикатов в аквариум.

Наконец, хорошим решением для многих случаев будет использование известковой воды (гидроксида кальция). Известковая вода может быть особенно эффективна, поскольку в данной ситуации маловероятно, чтобы pH в аквариуме поднялся до нежелательно высокого уровня - опасности, которая может сопровождать применение известковой воды в качестве основного источника кальция и буферности. Несмотря на то, что гидроксид кальция является самой распространённой и общепризнанной добавкой для обеспечения необходимой буферности в аквариуме, одновременно с повышением pH, можно воспользоваться и другими добавками для повышения pH. Например, в данной ситуации добавки на основе карбоната будут очень полезны, а на основе бикарбоната – нет. Если рассмотреть коммерческие продукты, B-ionic компании ESV будет лучше, чем более новая версия (Bicarbonate B-ionic) того же производителя. Стиральная сода (карбонат натрия) или прокаленная пищевая сода будут лучше, чем обычная пищевая сода (бикарбонат натрия).


Низкий pH, вызванный низкой буферностью

Низкая буферность также может привести к низкому уровню pH. Например, если понижение буферности по мере кальцификации ничем не компенсируется, это может привести к падению pH. Такое падение возможно при всех методах компенсации буферности, но больше всего будет наблюдаться при применении тех систем, которые сами не увеличивают значение pH (например, кальциевый реактор или использование бикарбонатов). В этом случае очевидное решение состоит в увеличении буферности каким-либо образом, в соответствии с Рисунком 4.


Резкое падение pH

Все описанные выше случаи относятся к хронически низким значениям pH. Ни один из рассмотренных вариантов не касается случаев резкого или временного сдвига pH. Однако, в некоторых ситуациях такое может произойти, и будет полезно знать, как поступать в подобных случаях. Большинство аквариумистов вряд ли будут делать, то, что сделал я: например, бросать в самп кусочек сухого льда только для того, чтобы посмотреть, что произойдёт. Сделав это, я увидел, что pH стал резко падать. Подобным образом легко можно убедиться в том, что значение pH равное 5 может убить всё живое в аквариуме (в моём случае этого не произошло, но я бы не рекомендовал вам пытаться повторить этот эксперимент ради развлечения).

С большей степенью вероятности, могут возникнуть проблемы с выбросом большого количества углекислого газа в результате сбоя в системе подачи углекислого газа в реактор. В большинстве этих случаев я бы посоветовал ничего не предпринимать до тех пор, пока с помощью сильной аэрации не будет удалён избыток CO 2 . Возможно, стоит открыть окно, чтобы участвующий в газообмене воздух сам по себе не содержал избытка CO 2 . Примерно за сутки состояние аквариума должно вернуться к норме. Если аквариумист решит добавить какое-либо средство для увеличения pH, он рискует поднять его значение до слишком высокого уровня через сутки, после того, как из аквариума был выведен избыток CO 2 .

Если причиной падения pH является минеральная кислота (например, соляная), карбонатная буферность (а также общая буферность) обвалится. В эьтом случае я бы советовал измерить буферность, и воспользоваться добавками для повышения карбонатной буферности (не на основе бора), для того, чтобы поднять буферность, вернув её к нормальному уровню (в диапазоне 2.5- 4 мэкв/л или 7-11 dKH). Конечным результатом этих действий должно быть увеличение pH. С помощью некоторых щелочных добавок (известковая вода или обычный B-ionic) значение pH можно увосстановить быстро, а при применении других (как, например, пищевая сода) увеличение pH будет происходить медленно, поскольку аквариуму потребуется время на выведение образующегося CO 2 .

Если причиной падения pH является уксус или другая органическая кислота, я бы посоветовал такие же меры, что и для соляной кислоты, о чём говорилось выше. Надо только иметь в виду, что с течением времени (от нескольких часов до суток) ацетат, образовавшийся из уксуса (уксусной кислоты) будет окислен до CO 2 и OH-. Результатом этого будет возможное увеличении значения pH и щёлочности. Поэтому, этом случае лучше ограничить или воздержаться от иных действий, приводящих к увеличению буферности. Если для стабилизации образовавшейся кислоты будет применяться большое количество добавок для повышения буферности, величина pH и /или буфрность впоследствии могут вырости до более высоких значений, чем хотелось бы.


Заключение

pH является важным показателем морского аквариума, хорошо знакомым большинству аквариумистов. Он оказывает серьёзное влияние на здоровье и самочувствие жителей наших систем, и мы обязаны сделать всё возможное для того, чтобы этот показатель лежал в допустимых пределах. В данной статье приводятся советы по решению часто встречающихся проблем, связанных с низким значением pH в аквариумах, позволяя аквариумистам диагностировать и решать проблемы низкого pH, которые могут возникнуть в аквариумах.

Счастливого «рифования»!


Если у вас появятся вопросы по данной статье, пожалуйста, посетите мой авторский форум на ReefCentral.

1. Hydrogen-ion concentration of sea water in its biological relations. Atkins, W. R. G. J. Marine Biol. Assoc. (1922), 12 717-71.
2. Water quality requirements for first-feeding in marine fish larvae. II. pH, oxygen, and carbon dioxide. Brownell, Charles L. Dep. Zool., Univ. Cape Town, Rondebosch, S. Afr. J. Exp. Mar. Biol. Ecol. (1980), 44(2-3), 285-8.
3. Chondrus crispus (Gigartinaceae, Rhodophyta) tank cultivation: optimizing carbon input by a fixed pH and use of a salt water well. Braud, Jean-Paul; Amat, Mireille A. Sanofi Bio-Industries, Polder du Dain, Bouin, Fr. Hydrobiologia (1996), 326/327 335-340.
4. Physiological ecology of Gelidiella acerosa. Rao, P. Sreenivasa; Mehta, V. B. Dep. Biosci., Saurashtra Univ., Rajkot, India. J. Phycol. (1973), 9(3), 333-
5. Studies on marine biological filters. Model filters. Wickins, J. F. Fish. Exp. Stn., Minist. Agric. Fish. Food, Conwy/Gwynedd, UK. Water Res. (1983), 17(12), 1769-80.
6. Physiological characteristics of Mycosphaerella ascophylli, a fungal endophyte of the marine brown alga Ascophyllum nodosum. Fries, Nils. Inst. Physiol. Bot., Univ. Uppsala, Uppsala, Swed. Physiol. Plant. (1979), 45(1), 117-21.
7. pH dependent toxicity of five metals to three marine organisms. Ho, Kay T.; Kuhn, Anne; Pelletier, Marguerite C.; Hendricks, Tracey L.; Helmstetter, Andrea. National Health and Ecological Effects Research Laboratory, U.S. Environmental Protection Agency, Narragansett, RI, USA. Environmental Toxicology (1999), 14(2), 235-240.
8. Effects of lowered pH and elevated nitrate on coral calcification. Marubini, F.; Atkinson, M. J. Biosphere 2 Center, Columbia Univ., Oracle, AZ, USA. Mar. Ecol.: Prog. Ser. (1999), 188 117-121.
9. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Langdon, Chris; Takahashi, Taro; Sweeney, Colm; Chipman, Dave; Goddard, John; Marubini, Francesca; Aceves, Heather; Barnett, Heidi; Atkinson, Marlin J. Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA. Global Biogeochem. Cycles (2000), 14(2), 639-654.

Водородный показатель , pH (лат. p ondus Hydrogenii — «вес водорода», произносится «пэ аш» ) — мера активности (в сильно разбавленных растворах эквивалентна концентрации) ионов водорода в растворе, которая количественно выражает его кислотность. Равен по модулю и противоположен по знаку десятичному логарифму активности водородных ионов, которая выражена в молях на один литр:

История водородного показателя pH .

Понятие водородного показателя введено датским химиком Сёренсеном в 1909 году. Показатель называется pH (по первым буквам латинских слов potentia hydrogeni — сила водорода, либо pondus hydrogeni — вес водорода). В химии сочетанием pX обычно обозначают величину, которая равна lg X , а буквой H в этом случае обозначают концентрацию ионов водорода (H + ), либо, вернее, термодинамическую активность гидроксоний-ионов.

Уравнения, связывающие pH и pOH .

Вывод значения pH .

В чистой воде при 25 °C концентрации ионов водорода ([H + ]) и гидроксид-ионов ([OH − ]) оказываются одинаковыми и равняются 10 −7 моль/л, это четко следует из определения ионного произведения воды, равное [H + ] · [OH − ] и равно 10 −14 моль²/л² (при 25 °C).

Если концентрации двух видов ионов в растворе окажутся одинаковыми, в таком случае говорится, что у раствора нейтральная реакция. При добавлении кислоты к воде, концентрация ионов водорода возрастает, а концентрация гидроксид-ионов понижается, при добавлении основания — напротив, увеличивается содержание гидроксид-ионов, а концентрация ионов водорода уменьшается. Когда [H + ] > [OH − ] говорится, что раствор оказывается кислым, а при [OH − ] > [H + ] — щелочным.

Чтоб было удобнее представлять, для избавления от отрицательного показателя степени, вместо концентраций ионов водорода используют их десятичный логарифм, который берется с противоположным знаком, являющийся водородным показателем — pH .

Показатель основности раствора pOH .

Немного меньшую популяризацию имеет обратная pH величина — показатель основности раствора , pOH , которая равняется десятичному логарифму (отрицательному) концентрации в растворе ионов OH − :

как во всяком водном растворе при 25 °C , значит, при этой температуре:

Значения pH в растворах различной кислотности.

  • Вразрез с распространённым мнением, pH может изменяться кроме интервала 0 - 14, также может и выходить за эти пределы. Например, при концентрации ионов водорода [H + ] = 10 −15 моль/л, pH = 15, при концентрации ионов гидроксида 10 моль /л pOH = −1 .

Т.к. при 25 °C (стандартных условиях) [H + ] [OH − ] = 10 14 , то ясно, что при такой температуре pH + pOH = 14 .

Т.к. в кислых растворах [H + ] > 10 −7 , значит, у кислых растворов pH < 7, соответственно, у щелочных растворов pH > 7 , pH нейтральных растворов равняется 7. При более высоких температурах константа электролитической диссоциации воды увеличивается, значит, увеличивается ионное произведение воды, тогда нейтральной будет pH = 7 (что соответствует одновременно возросшим концентрациям как H + , так и OH −); с понижением температуры, наоборот, нейтральная pH увеличивается.

Методы определения значения pH .

Существует несколько методов определения значения pH растворов. Водородный показатель приблизительно оценивают при помощи индикаторов, точно измерять при помощи pH -метра либо определять аналитическим путём, проводя кислотно-основное титрование.

  1. Для грубой оценки концентрации водородных ионов часто используют кислотно-основные индикаторы — органические вещества-красители, цвет которых зависит от pH среды. Самые популярные индикаторы: лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и др. Индикаторы могут быть в 2х по-разному окрашенных формах — или в кислотной, или в основной. Изменение цвета всех индикаторов происходит в своём интервале кислотности, зачастую составляющем 1-2 единицы.
  2. Для увеличения рабочего интервала измерения pH применяют универсальный индикатор , который является смесью из нескольких индикаторов. Универсальный индикатор последовательно изменяет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислой области в щелочную. Определения pH индикаторным способом затруднено для мутных либо окрашенных растворов.
  3. Применение специального прибора — pH -метра — дает возможность измерять pH в более широком диапазоне и более точно (до 0,01 единицы pH ), чем при помощи индикаторов. Ионометрический метод определения pH основывается на измерении милливольтметром-ионометром ЭДС гальванической цепи, которая включает стеклянный электрод, потенциал которого зависим от концентрации ионов H + в окружающем растворе. Способ обладает высокой точностью и удобством, особенно после калибровки индикаторного электрода в избранном диапазоне рН , что дает измерять pH непрозрачных и цветных растворов и поэтому часто применяется.
  4. Аналитический объёмный метод кислотно-основное титрование — тоже даёт точные результаты определения кислотности растворов. Раствор известной концентрации (титрант) каплями добавляют к раствору, который исследуется. При их смешивании происходит химическая реакция. Точка эквивалентности — момент, когда титранта точно хватает, для полного завершения реакции, — фиксируется при помощи индикатора. После этого, если известна концентрация и объём добавленного раствора титранта, определяется кислотность раствора.
  5. pH :

0,001 моль/Л HCl при 20 °C имеет pH=3 , при 30 °C pH=3,

0,001 моль/Л NaOH при 20 °C имеет pH=11,73 , при 30 °C pH=10,83,

Влияние температуры на значения pH объясняют разчной диссоциацией ионов водорода (H +) и не есть ошибкой эксперимента. Температурный эффект нельзя компенсировать за счет электроники pH -метра.

Роль pH в химии и биологии.

Кислотность среды имеет важное значение для большинства химических процессов, и возможность протекания либо результат той или иной реакции зачастую зависит от pH среды. Для поддержания определённого значения pH в реакционной системе при проведении лабораторных исследований либо на производстве применяют буферные растворы, позволяющие сохранять почти постоянное значение pH при разбавлении либо при добавлении в раствор маленьких количеств кислоты либо щёлочи.

Водородный показатель pH часто применяют для характеристики кислотно-основных свойств разных биологических сред.

Для биохимических реакций сильное значение имеет кислотность реакционной среды, протекающих в живых системах. Концентрация в растворе ионов водорода зачастую оказывает влияние на физико-химические свойства и биологическую активность белков и нуклеиновых кислот, поэтому для нормального функционирования организма поддержание кислотно-основного гомеостаза является задачей исключительной важности. Динамическое поддержание оптимального pH биологических жидкостей достигается под действием буферных систем организма.

В человеческом организме в разных органах водородный показатель оказывается разным.

Некоторые значения pH.

Вещество

Электролит в свинцовых аккумуляторах

Желудочный сок

Лимонный сок (5% р-р лимонной кислоты)

Пищевой уксус

Кока-кола

Яблочный сок

Кожа здорового человека

Кислотный дождь

Питьевая вода

Чистая вода при 25 °C

Морская вода

Мыло (жировое) для рук

Нашатырный спирт

Отбеливатель (хлорная известь)

Концентрированные растворы щелочей

Показатель pH и его влияние на качество питьевой воды.

Что такое pH?

pH («potentia hydrogeni» - сила водорода, или «pondus hydrogenii» - вес водорода) - это единица измерения активности ионов водорода в любом веществе, количественно выражающая его кислотность.

Данный термин появился в начале ХХ века в Дании. Показатель pH ввел датский химик Сорен Петр Лауриц Соренсен (1868-1939), хотя утверждения о некой «силе воды» встречаются и у его предшественников.

Активность водорода определяется как отрицательный десятичный логарифм концентрации водородных ионов, выраженной в молях на литр:

pH = -log

Для простоты и удобства при вычислениях был введен показатель pH. рН определяется количественным соотношением в воде ионов Н+ и ОН-, образующихся при диссоциации воды. Принято измерять уровень pH по 14-цифровой шкале.

Если в воде пониженное содержание свободных ионов водорода (рН больше 7) по сравнению с ионами гидроксида [ОН-], то вода будет иметь щелочную реакцию , а при повышенном содержании ионов Н+ (рН меньше 7) — кислую реакцию . В идеально чистой дистиллированной воде эти ионы будут уравновешивать друг друга.

кислая среда: >
нейтральная среда: =
щелочная среда: >

Когда концентрации обоих видов ионов в растворе одинаковы, говорят, что раствор имеет нейтральную реакцию. В нейтральной воде показатель рН равен 7.

При растворении в воде различных химических веществ этот баланс изменяется, что приводит к изменению значения рН. При добавлении к воде кислоты концентрация ионов водорода увеличивается, а концентрация гидроксид-ионов соответственно уменьшается, при добавлении щелочи - наоборот, повышается содержание гидроксид-ионов, а концентрация ионов водорода падает.

рН показатель отражает степень кислотности или щелочности среды, в то время как «кислотность» и «щелочность» характеризуют количественное содержание в воде веществ, способных нейтрализовывать соответственно щелочи и кислоты. В качестве аналогии можно привести пример с температурой, которая характеризует степень нагрева вещества, но не количество тепла. Опустив руку в воду, мы можем сказать какая вода — прохладная или теплая, но при этом не сможем определить сколько в ней тепла (т.е. условно говоря, как долго эта вода будет остывать).

pH считается одним из важнейших показателей качества питьевой воды. Он показывает кислотно-щелочное равновесие и влияет на то, как будут протекать химические и биологические процессы. В зависимости от величины pH может изменяться скорость протекания химических реакций, степень коррозионной агрессивности воды, токсичность загрязняющих веществ и т.д. От кислотно-щелочного равновесия среды нашего организма напрямую зависит наше самочувствие, настроение и здоровье.

Современный человек живет в загрязненной окружающей среде. Многие приобретают и употребляют пищу, изготовленную из полуфабрикатов. Кроме этого практически каждый человек ежедневно подвергается стрессовому воздействию. Все это оказывает влияние на кислотно-щелочное равновесие среды организма, смещая его в сторону кислот. Чай, кофе, пиво, газированные напитки снижают показатель pH в организме.

Считается, что кислая среда является одной из основных причин разрушения клеток и повреждения тканей, развития заболеваний и процессов старения, росту болезнетворных организмов. В кислой среде до клеток не доходит строительный материал, разрушается мембрана.

Внешне о состоянии кислотно-щелочного равновесия крови человека можно судить по цвету его конъюнктивы в уголках глаз. При оптимальном кислотно-щелочном балансе цвет конъюнктивы ярко-розовый, если же у человека повышается щелочность крови, конъюнктива приобретает темно-розовый окрас, а при повышении кислотности окрас конъюнктивы становится бледно-розовым. При чем цвет конъюнктивы изменяется уже через 80 секунд после употребления веществ, влияющих на кислотно-щелочное равновесие.

Организм регулирует рН внутренних жидкостей, поддерживая значения на определенном уровне. Кислотно-щелочной баланс организма — это определенное соотношение кислот и щелочей, способствующее его нормальному функционированию. Кислотно-щелочной баланс зависит от сохранения относительно постоянных пропорций между межклеточными и внутриклеточными водами в тканях организма. Если кислотно-щелочное равновесие жидкостей в организме не будет поддерживаться постоянно, нормальное функционирование и сохранение жизни окажутся невозможными. Поэтому важно контролировать то, что вы потребляете.

Кислотно-щелочной баланс – это наш индикатор здоровья. Чем мы «кислее», тем скорее стареем и больше болеем. Для нормальной работы всех внутренних органов уровень рН в организме должен быть щелочным, в интервале от 7 до 9.

pH внутри нашего тела не всегда одинаков - некоторые его части более щелочные, а некоторые кислотные. Организм регулирует и поддерживает гомеостаз уровня pH лишь в отдельных случаях, например pH крови. На уровень pH почек и других органов, кислотно-щелочное равновесие которых не регулируются организмом, влияют пища и напитки, которые мы употребляем.

pH крови

Уровень pH крови поддерживается организмом в диапазоне 7.35-7.45. Нормальным показателем pH крови человека считается 7,4-7,45. Даже незначительное отклонение этого показателя влияет на способность крови переносить кислород. Если pH крови повышается до 7,5, она переносит на 75% кислорода больше. При снижении показателя pH крови до 7,3 человеку уже сложно подняться с постели. При 7,29 он может впасть в кому, если показатель pH крови снизится ниже 7,1 — человек умирает.

Уровень pH крови должен поддерживаться в здоровом диапазоне, поэтому организм использует органы и ткани для поддержания его постоянства. Вследствие этого, уровень pH крови не меняется из-за употребления щелочной или кислотной воды, но ткани и органы тела, используемые для регулировки pH крови, меняют свой pH.

pH почек

На параметр pH почек оказывает влияние вода, пища, метаболические процессы в организме. Кислотная еда (например мясные продукты, молочные продукты и др.) и напитки (сладкие газированные напитки, алкогольные напитки, кофе и пр.) приводят к низкому уровню pH в почках, потому что организм выводит излишнюю кислотность через мочу. Чем ниже уровень pH мочи, тем тяжелее приходится работать почкам. Поэтому кислотная нагрузка, приходящаяся от такой еды и напитков на почки, называется потенциальной кислотно-почечной нагрузкой.

Употребление щелочной воды приносит почкам пользу - происходит повышение уровня pH мочи, снижается кислотная нагрузка на организм. Увеличение pH мочи повышает pH организма в целом и избавляет почки от кислотных токсинов.

pH желудка

В пустом желудке содержится не больше чайной ложки желудочной кислоты, выработанной в последний прием пищи. Желудок производит кислоту по мере необходимости при употреблении пищи. Желудок не выделяет кислоту, когда человек пьет воду.

Очень полезно - пить воду на пустой желудок. Показатель pH увеличивается при этом до уровня 5-6. Увеличенный pH будет иметь мягкий антацидный эффект и приведет к увеличению количества полезных пробиотиков (благотворных бактерий). Увеличение pH желудка повышает pH организма, что ведет к здоровому пищеварению и освобождает от симптомов расстройства желудка.

pH подкожного жира

Жировые ткани организма имеют кислотный pH, поскольку в них откладываются излишние кислоты. Организму приходится хранить кислоту в жировых тканях, когда она не может быть выведена или нейтрализована иными способами. Поэтому смещение pH организма в кислую сторону - это один из факторов лишнего веса.

Позитивное влияние щелочной воды на массу тела состоит в том, что щелочная вода помогает выводить из тканей излишнюю кислоту, поскольку помогает почкам работать более рационально. Это помогает контролировать вес, поскольку многократно снижается количество кислоты, которое тело должно «хранить». Щелочная вода также улучшает результаты здоровой диеты и упражнений, помогая организму справиться с излишней кислотностью, выделяемой жировыми тканями в процессе потери веса.

Кости

У костей щелочной pH, так как они в основном состоят из кальция. Их pH постоянен, но если кровь нуждается в регулировке pH, кальций забирается из костей.

Польза, приносимая щелочной водой костям, состоит в их защите, путем снижения количества кислоты, с которым организму приходится бороться. Исследования показали, что употребление щелочной воды снижает рассасывание костей - остеопороз.

pH печени

У печени слабощелочной pH, на уровень которого влияет и пища, и напитки. Сахар и алкоголь должны быть расщеплены в печени, а это приводит к излишкам кислоты.

Польза, приносимая щелочной водой печени, состоит в наличии в такой воде антиоксидантов; установлено, что щелочная вода усиливает работу двух антиоксидантов, находящихся в печени, способствующих более эффективному очищению крови.

pH организма и щелочная вода

Щелочная вода позволяет частям тела, сохраняющим pH крови, работать с большей производительностью. Повышение уровня pH в частях тела, отвечающих за поддержание pH крови, поможет этим органам оставаться здоровыми и работать оперативно.

Между приемами пищи Вы можете помочь Вашему организму нормализовать показатель pH, употребляя щелочную воду. Даже небольшое увеличение pH может оказать огромное влияние на состояние здоровья.

По данным исследований японских ученых, показатель pH питьевой воды, находящийся в диапазоне 7-8, повышает продолжительность жизни населения на 20-30%.

В зависимости от уровня рН воды можно условно разделить на несколько групп:

Сильнокислые воды < 3
кислые воды 3 — 5
слабокислые воды 5 — 6.5
нейтральные воды 6.5 — 7.5
слабощелочные воды 7.5 — 8.5
щелочные воды 8.5 — 9.5
сильнощелочные воды > 9.5

Обычно уровень рН питьевой водопроводной воды находится в пределах, при которых он непосредственно не влияет на потребительские качества воды. В речных водах pH обычно находится в пределах 6.5-8.5, в атмосферных осадках 4.6-6.1, в болотах 5.5-6.0, в морских водах 7.9-8.3.

ВОЗ не предлагает какой-либо рекомендуемой по медицинским показателям величины для рН. Известно, что при низком рН вода обладает высокой коррозионной активностью, а при высоких уровнях (рН>11) вода приобретает характерную мылкость, неприятный запах, способна вызывать раздражение глаз и кожи. Именно поэтому для питьевой и хозяйственно-бытовой воды оптимальным считается уровень рН в диапазоне от 6 до 9.

Примеры значений pH

Вещество

Электролит в свинцовых аккумуляторах <1.0

кислые
вещества

Желудочный сок 1,0-2,0
Лимонный сок 2,5±0,5
Лимонад, Кола 2,5
Яблочный сок 3,5±1,0
Пиво 4,5
Кофе 5,0
Шампунь 5,5
Чай 5,5
Кожа здорового человека ~6,5
Слюна 6,35-6,85
Молоко 6,6-6,9
Дистиллированная вода 7,0

нейтральные
вещества

Кровь 7,36-7,44

щелочные
вещества

Морская вода 8,0
Мыло (жировое) для рук 9,0-10,0
Нашатырный спирт 11,5
Отбеливатель (хлорка) 12,5
Раствор соды 13,5

Интересно знать: Немецкий биохимик ОТТО ВАРБУРГ, удостоенный в 1931 Нобелевской премии по физиологии и медицине доказал, что недостаток кислорода (кислая среда pH<7.0) в тканях приводит к изменению нормальных клеток в злокачественные.

Ученый обнаружил, что раковые клетки теряют способность к развитию в среде, насыщенной свободным кислородом с показателем pH=7,5 и выше! Это означает, что когда жидкости в организме становятся кислыми, стимулируется развитие рака.

Его последователи в 60-х годах прошлого столетия доказали, что любая патогенная флора теряет способность размножаться при pH=7,5 и выше, и наша иммунная система легко справляется с любыми агрессорами!

Для сохранения и поддержания здоровья нам необходима правильная щелочная вода (рН=7.5 и выше). Это позволит лучше сохранять кислотно-щелочное равновесие жидкостей организма, так как основные жизненные среды имеют слабощелочную реакцию.

Уже при нейтральной биологической среде организм может обладать удивительной способностью к самоисцелению.

Не знаете где можно взять правильную воду ? Я подскажу!

Обратите внимание:

Нажатие на кнопку «Узнать » не ведет к каким-либо финансовым тратам и обязательствам.

Вы лишь получите информацию о доступности правильной воды в Вашем регионе ,

а так же получите уникальную возможность бесплатно стать членом клуба здоровых людей

и получить скидку 20% на все предложения + накопительный бонус.

Вступи в международный клуб здоровья Coral Club , получи БЕСПЛАТНО дисконтную карту, возможность участия в акциях, накопительный бонус и другие привилегии!

Обычно такой показатель, как pH или кислотность крови (водородный показатель, параметр кислотно-щелочного равновесия, рН), как привыкли называть пациенты, не отмечен в направлении на гематологические анализы с целью обследования пациента. Являясь величиной постоянной, pH крови человека, может изменять свои значения только в строго обозначенных пределах – от 7,36 до 7,44 (в среднем – 7,4). Повышенная кислотность крови (ацидоз) или сдвиг водородного показателя в щелочную сторону (алкалоз) – состояния, которые развивается отнюдь не в результате воздействия благоприятных факторов и в большинстве случаев требуют незамедлительных терапевтических мероприятий.

Кровь не может выдерживать падения водородного показателя ниже 7 и повышения до 7,8, поэтому такие крайние значения pH, как 6,8 или 7,8 считаются недопустимыми и с жизнью не совместимыми. В некоторых источниках высокий предел совместимости с жизнью может отличаться от перечисленных значений, то есть, равняться 8,0.

Буферные системы крови

В кровь человека постоянно поступают продукты кислого или основного характера, но почему-то ничего не происходит? Оказывается, в организме все предусмотрено, на страже постоянства pH круглые сутки «дежурят» буферные системы, которые противостоят любым изменениям и не допускают сдвиг кислотно-щелочного равновесия в опасную сторону. Итак, по порядку:

  • Открывает список буферных систем бикарбонатная система , ее еще называют гидрокарбонатной. Она считается наиболее мощной, поскольку забирает на себя чуть больше 50% всех буферных способностей крови;
  • Второе место берет гемоглобиновая буферная система , она обеспечивает 35% всей буферной емкости;
  • Третье место принадлежит буферной системе белков крови – до 10%;
  • На четвертой позиции находится фосфатная система , на долю которой попадает около 6% всех буферных возможностей.

Данные буферные системы в поддержании постоянства pH первыми противостоят возможному сдвигу водородного показателя в ту или иную сторону, ведь процессы, поддерживающие жизнедеятельность организма, идут постоянно и при этом в кровь все время выбрасываются продукты либо кислого, либо основного характера. Между тем, буферная емкость почему-то не истощается. Это происходит потому, что на помощь приходит выделительная система (легкие, почки), которая рефлекторно включается всякий раз, когда в этом есть необходимость – она и выводит все накопившиеся метаболиты.

Как работают системы?

Главная буферная система

В основе деятельности бикарбонатной буферной системы, включающей в себя два компонента (H2CO3 и NaHCO3), лежит реакция между ними и поступающими в кровь основаниями или кислотами. Если в крови оказывается сильная щелочь , то реакция пойдет по такому пути:

NaOH + H2CO3 → NaHCO3 + H2O

Образованный в результате взаимодействия бикарбонат натрия, надолго в организме не задержится и, не оказав особого влияния, удалится почками.

На присутствие сильной кислоты отреагирует второй компонент бикарбонатной буферной системы – NaHCO3, который нейтрализует кислоту следующим образом:

HCl + NaHCO3 → NaCl + H2CO3

Продукт этой реакции (СО2) быстро покинет организм через легкие.

Гидрокарбонатная буферная система первой «чувствует» изменение водородного показателя, поэтому первой и начинает свою работу.

Гемоглобиновая и другие буферные системы

Основным компонентом гемоглобиновой системы является красный пигмент крови – Hb, pH которого меняется на 0,15 в зависимости от того, связывает он в данный момент кислород (сдвиг pH в кислую сторону) или отдает его тканям (сдвиг в щелочную сторону). Подстраиваясь под обстоятельства, гемоглобин играет роль или слабой кислоты, или нейтральной соли.

При поступлении оснований от гемоглобиновой буферной системы можно ожидать такого реакции:

NaOH + HHb → NaHb + H2O (рН почти не изменяется)

А с кислотой , лишь только она появится, гемоглобин начнет взаимодействовать следующим образом:

HCl + NaHb → NaCl + HHb (сдвиг pH не особо заметен)

Буферная емкость белков зависит от их основных характеристик (концентрация, структура и т. д.), поэтому буферная система белков крови не настолько участвует в поддержании кислотно-основного равновесия, как две предыдущие.

Фосфатная буферная система или натрий-фосфатный буфер в своей работе особого сдвига водородного показателя крови не дает. Она поддерживает значения pH на должном уровне в жидкостях, заполняющих клетки, и в моче.

pH в крови артериальной и венозной, плазме и сыворотке

Несколько отличается основной параметр кислотно-щелочного равновесия – pH в артериальной и венозной крови? Артериальная кровь более стабильна по показателям кислотности. Но, в принципе, норма pH на 0, 01 – 0,02 в насыщенной кислородом артериальной крови выше, нежели в крови, текущей по венам (показатели pH в венозной крови ниже за счет избыточного содержания СО2).

Что касается pH плазмы крови, то, опять-таки, в плазме баланс водородных и гидроксильных ионов, в общем-то, соответствует pH цельной крови.

Разниться показатели pH могут в других биологических средах, например, в сыворотке, однако плазма, покинувшая организм и лишенная фибриногена, уже не участвует в поддержании процессов жизнедеятельности, поэтому ее кислотность больше важна для других целей, например, для изготовления наборов стандартных гемагглютинирующих сывороток, которыми определяют групповую принадлежность человека.

Ацидоз и алкалоз

Сдвиг показателей pH в ту или иную сторону (кислая → ацидоз, щелочная → алкалоз) может быть компенсированным и некомпенсированным. Определяется он по щелочному резерву, представленному преимущественно бикарбонатами. Щелочной резерв (ЩР) – это количество углекислого газа в миллилитрах, вытесняемого сильной кислотой из 100 мл плазмы. Норма ЩР находится в границах 50 – 70 мл СО2. Отклонение от данных значений говорит о некомпенсированном ацидозе (менее 45 мл СО2) или алкалозе (более 70 мл СО2).

Различают такие виды ацидоза и алкалоза:

Ацидоз:

  • Газовый ацидоз – развивается при замедлении выведения углекислого газа легкими, создавая состояние ;
  • Негазовый ацидоз – имеет причиной накопление продуктов метаболизма или поступление их из желудочно-кишечного тракта (алиментарный ацидоз);
  • Первичный ренальный ацидоз – представляет собой нарушение реабсорбции в почечных канальцах с потерей большого количества щелочей.

Алкалоз:

  • Газовый алкалоз – возникает при повышенной отдаче СО2 легкими (высотная болезнь, гипервентиляция), формирует состояние гипокапнии ;
  • Негазовый алкалоз – развивается при увеличении щелочных резервов за счет поступления оснований с пищей (алиментарный) или в связи с изменением обмена (метаболический).

Разумеется, восстановить кислотно-щелочное равновесие при острых состояниях самостоятельно, вероятнее всего, не получится, однако в другие времена, когда pH находится почти на пределе, а у человека вроде ничего и не болит, вся ответственность ложится на самого пациента.

Продукты, которые считаются вредными, а также сигареты и алкоголь, как правило, являются главной причиной изменения кислотности крови, хотя человек об этом и не знает, если дело не доходит до острых патологических состояний.

Понизить или повысить pH крови можно с помощью диеты, но не следует забывать: лишь только человек снова перейдет на любимый образ жизни, значения водородного показателя займут прежние уровни.

Таким образом, поддержание кислотно-основного баланса требует постоянной работы над собой, оздоровительных мероприятий, сбалансированного питания и правильного режима, иначе все краткосрочные труды пропадут даром.