Теория юнга-гельмгольца. История создания трехцветной теории зрения

Теории цветового зрения - концепции, объясняющие способность человека различатьцвета, основанные на наблюдаемыхфактах, предположениях, ихэкспериментальнойпроверке.

Существует ряд различных теорий цветового зрения , такие как:

Теория света и цвета Ньютона Теория Т. Юнга

"Теория цвета" И. В. Гёт

Теория цветовосприятия Иоганнеса Мюллера Теория Э. Геринга

Психофизическая теория цветоощущения Г. Э. Мюллера Теории цветового зрения в ХХ веке

Трёхкомпонентная теория цветовосприятия Трехкомпонентная теория Юнга-Гельмгольца. и т.д.

Небольшим признанием пользуется трехкомпонентная теория . Она допускает существование в сетчатке трех типов различных цветовоспринимающих фоторецепторов - колбочек. О существовании трехкомпонентного механизма восприятия цветов говорил еще М. В. Ломоносов. В дальнейшем эта теория была сформулирована Т. Юнгом и Г. Гельмгольцем. Согласно этой теории колбочки содержат различные светочувствительные вещества. Одни колбочки содержат вещество, чувствительное к красному цвету, другие - к зеленому, третьи- к фиолетовому. Всякий цвет оказывает действие на все три вида цветоощущающих элементов, но в различной степени. Разложение светочувствительных веществ вызывает раздражение нервных окончаний. Возбуждения, дошедшие до коры мозга, суммируются и дают ощущение одного однородного цвета.

49. Слуховые ощущения

Особое значение слуха у человека связано с восприятием речи и музыки. Слуховые ощущения являются отражением воздействующих на слуховой рецептор звуковых волн, которые порождаются звучащим телом и представляют собой переменное сгущение и разрежение воздуха. Звуковые волны обладают, во - первых, различной амплитудой колебания. во - вторых, по частоте или продолжительности колебаний. в - третьих, формой колебаний, т. е. формой той периодической кривой, в которой абсциссы пропорциональны времени, а ординаты - удалениям колеблющейся точки от своего положения равновесия. Слуховые ощущения могут вызываться как периодическими колебательными процессами, так и непериодическими с нерегулярно изменяющейся неустойчивой частотой и амплитудой колебаний. Первые отражаются в музыкальных звуках, вторые - в шумах.

Возникновение слуховых ощущений возможно лишь тогда, когда интенсивность звука достигнет определенного минимума, зависящего от индивидуальной чувствительности уха к данному тону. Существует и верх ний предел интенсивности звука, выше которого в ухе возникает сначала осязание звука, а при дальнейшем повышении интенсивности - болевые ощущения.

50. ПАРАМЕТРЫ СЛУХОВЫХ ОЩУЩЕНИЙ И ИХ ФИЗИЧЕСКИЕ КОРРЕЛЯТЫ: ГРОМКОСТЬ, ВЫСОТА, ТЕМБР .

Слуховое ощущение устанавливается не сразу. Любые звуки, длительность которых короче 5 мс, воспринимаются лишь как шум, щелчок. Слух не ощущает и нелинейных искажений, если их длительность не превышает 10 мс. Поэтому измерительный прибор должен регистрировать не все максимальные уровни сигнала, а лишь те из них, длительность которых превышает 5 - 10 мс. Для выполнения поставленной задачи вещательный сигнал выпрямляют и усредняют (интегрируют) за указанный - промежуток времени.

Слуховое ощущение продолжается еще некоторое время (50 - 60 мкс) после прекращения возбуждения. Поэтому звуки, разделенные промежутками во времени менее 60 - 70 мкс, слышатся без пауз. Слуховые ощущения, которые у нас вызывают различные звуки, во многом зависят от амплитуды звуковой волны и ее частоты. Амплитуда и частота являются физическими характеристиками звуковой волны. Этим физическим характеристикам соответствуют определенные физиологические характеристики, связанные с нашим восприятием звука. Такими физиологическими характеристиками являются громкость и высота звука.

Слуховой анализатор осуществляет очень дифференцированный анализ звуковых раздражителей. С помощью него мы получаем слуховые ощущения, которые позволяют различать высоту, громкость и тембр.

Громкость . Громкость зависит от силы, или амплитуды, колебаний звуковой волны. Сила звука и громкость - понятия неравнозначные. Сила звука объективно характеризует физический процесс независимо от того, воспринимается он слушателем или нет; громкость - качество воспринимаемого звука. Если расположить громкости одного и того же звука в виде ряда, возрастающего в том же направлении, что и сила звука, и руководствоваться воспринимаемыми ухом ступенями прироста громкости (при непрерывном увеличении силы звука), то окажется, что громкость вырастает значительно медленнее силы звука.

Высота. Высота звука отражает частоту колебаний звуковой волны. Далеко не все звуки воспринимаются нашим ухом. Как ультразвуки (звуки с большой частотой), так и инфразвуки (звуки с очень медленными колебаниями) остаются вне пределов нашей слышимости. Нижняя граница слуха у человека составляет примерно 15 - 19 колебаний; верхняя - приблизительно 20000, причем у отдельных людей чувствительность уха может давать различные индивидуальные отклонения. Обе границы изменчивы, верхняя в особенности в зависимости от возраста; у пожилых людей чувствительность к высоким тонам постепенно падает. Область слухового восприятия охватывает свыше 10 октав и ограничена сверху порогом осязания, снизу порогом слышимости. Внутри этой области лежат все воспринимаемые ухом звуки различной силы и высоты. Высота звука, как она обычно воспринимается в шумах и звуках речи, включает два различных компонента - собственно высоту и тембровую характеристику.

Тембр. Под тембром понимают особый характер или окраску звука, зависящую от взаимоотношения его частичных тонов. Тембр отражает акустический состав сложного звука, т. е. число, порядок и относительную силу входящих в его состав частичных тонов (гармонических и негармонических). ембр, как и гармония, отражает звук, который в акустическом своем составе является созвучием. Поскольку это созвучие воспринимается как единый звук без выделения в нем слухом акустически в него входящих частичных тонов, звуковой состав отражается в виде тембра звука. Поскольку же слух выделяет частичные тоны сложного звука, возникает восприятие гармонии.

В 1863 г. Гельмгольц обосновал свою резонансную теорию, исходя из предположения, что улитка при помощи явлений физического резонанса может разложить сложные звуки на простые тоны. Ввиду того что основная мембрана благодаря эластическим волокнам натянута в поперечном направлении и так как она имеет разную ширину у основания и верхушки улитки, Гельмгольц считал, что она представляет собой подходящее образование, которое разными участками резонирует на звуки разной высоты

Особенно много возражений против резонансной теории имеется со стороны физиков, и в настоящее время резонансная теория в старой трактовке должна быть оставлена. Новые наблюдения и теоретические соображения говорят против того, что в улитке при прохождении звука имеет место механический резонанс наподобие резонанса струн. Так как основная мембрана составляет одну цельную натянутую перепонку, любая деформация будет более или менее сильно сказываться на широкой полосе или даже на всей мембране, но с максимумом в определенном месте.

Указывалось также на то, что под влиянием звуков в лимфе улитки происходят сложные гидродинамические процессы, от которых деформации в мембранах зависят не в меньшей степени, чем от физических свойств самой основной перепонки. Поэтому большинство из последующих исследователей высказывается за большую протяженность деформации основной мембраны. Многие из авторов предлагали теорию, в основе которой лежит признавание механизма «пробегающей волны», наподобие той, какая наблюдается при сотрясении конца натянутой веревки.

Согласно этой теории , деформация основной перепонки, вызванная толчком стремени, движется с определенной быстротой в виде передвигающейся волны деформации по основной мембране.

Различие во взглядах отдельных авторов состоит лишь в том, что одни считают, что волна деформации быстро затухает, пройдя известное пространство по мембране, другие же считают, что бегущая волна проходит по всей длине перепонки, и третьи, наконец, допускают, что путем отражения образуются стоячие волны наподобие фигур Хладни (теория Эвальда).

Применяя современные достижения акустики , Бекеши (1928) изучил на модельных опытах, а также путем наблюдений за основной мембраной у морской свинки, произведенных при помощи оптических приборов и микроманипуляторов, характер изменений, которым подвергается основная мембрана при звуковом раздражении.

На весьма совершенных моделях , подбирая правильную упругость и толщину специальной резиновой пленки, он мог показать, что картины, полученные Эвальдом, являлись артефактом. В его опытах на мембране под влиянием звука возникала бегущая волна с быстро затухающей амплитудой. На месте максимальной амплитуды наблюдались вихри, скорость вращения которых пропорциональна величине амплитуды.

При сильных звуках получались точечные прорывы мембран, которые вызывались действием двух вихрей по обе стороны мембраны. Локализация этих перфораций зависела от частоты колебаний: чем выше звук, тем ближе к основанию образуется отверстие.

На препаратах улитки морской свинки Бекеши наблюдал, что экскурсии основной мембраны имеют более широкую зону при низких звуках и колебание перепонки заметно только у верхушки улитки. При помощи микроманипулятора он смог даже измерить величину прогиба основной мембраны.

Из современных теорий особенного внимания заслуживает теория Флетчера-Роафа, так как она расширяет наши понятия о резонансе-общепринятом в физике явлении, которое наилучшим образом объясняет анализ сложпого звука на его оставные. Эти авторы воспользовались данными Луца (Lutz), который показал, что в резонансе могут участвовать не только струны и мембраны, но и столбики жидкостей. Луц наполнял U-образные трубки разными порциями воды и вызывал колебания жидкости при помощи вибраторов. Оказалось, что интенсивность колебания столба жидкости зависит от частоты колебания вибратора.

При медленных вибрациях наибольший размах колебаний столба жидкости наблюдался в трубках, содержащих большое количество воды, наоборот, при частых колебаниях наиболее энергичные соколебания совершала жидкость небольшого объема.

Свойства спектральных смесей цветов позволяют предположить, что для сетчатки характерны определенные структурные, функциональные и нейронные механизмы. Поскольку все цвета видимого спектра могут быть получены простым смешением в определенном соотношении всего лишь трех цветов с определенными длинами волн, можно предположить, что в сетчатке человеческого глаза присутствуют рецепторы трех соответствующих типов, каждый из которых характеризуется определенной, отличной от других, спектральной чувствительностью.

Основы трехкомпонентной теории цветовосприятия были изложены в 1802 г. английским ученым Томасом Юнгом, известным также участием в расшифровке египетских иероглифов. Дальнейшее развитие эта теория получила в трудах Германа фон Гельмгольца, который высказал предположение о существовании рецепторов трех типов, отличающихся максимальной чувствительностью к синему, зеленому и красному цветам. По мнению Гельмгольца, рецепторы каждого из этих трех типов наиболее чувствительны к определенным длинам волн и соответствующие этим длинам волн цвета воспринимаются глазом как синий, зеленый или красный. Однако избирательность этих рецепторов относительна, ибо все они в той или иной степени способны к восприятию и других компонентов видимого спектра. Иными словами, в известной мере имеет место взаимное перекрывание чув- ствительностей рецепторов всех трех типов.

Суть трехкомпонентной теории цветового зрения, нередко называемой теорией Юнга-Гельмгольца, заключается в следующем: для восприятия всех цветов, присущих лучам видимой части спектра, достаточно рецепторов трех типов. В соответствии с этим наши цветоощущения - результат функционирования трехкомпонентной системы, или рецепторов трех типов, каждый из которых вносит в них свой определенный вклад. (Заметим в скобках, что хотя эта теория в первую очередь связана с именами Юнга и Гельмгольца, не менее существенный вклад в нее внесли ученые, жившие и работавшие до них. Вассерман (Wasserman, 1978) особо подчеркивает роль Исаака Ньютона и физика Джеймса Клерка Максвелла.)

S-, М- и L-колбочки. Тот факт, что на уровне сетчатки существует трехкомпонентная рецепторная система, имеет неопровержимые психологические доказательства. В сетчатке содержатся колбочки трех видов, каждый из которых обладает максимальной чувствительностью к свету с определенной длиной волны. Подобная избирательность связана с тем, что в этих колбочках содержатся фотопигменты трех видов. Маркс и его коллеги изучили абсорбционные свойства фотопигментов, содержащихся в колбочках сетчатки обезьяны и человека, для чего их
выделили из отдельных колбочек и измерили абсорбцию световых лучей с разной длиной волны (Marks, Dobelle, MacNichol, 1964). Чем активнее пигмент колбочки поглощал свет с определенной длиной волны, тем избирательнее колбочка вела себя по отношению к данной длине волны. Результаты этого исследования, графически представленные на рис. 5.9, показывают, что по характеру поглощения спектральных лучей колбочки делятся на три группы: колбочки одной из них лучше всего поглощают коротковолновый свет с длиной волны примерно 445 нм (они обозначены буквой 5, от short)] колбочки второй группы - средневолновый свет с длиной волны примерно 535 нм (они обозначены буквой М, от medium) и, наконец, колбочки третьего типа - длинноволновый свет с длиной волны примерно 570 нм (они обозначены буквой I, от long).

Более поздние исследования подтвердили существование трех фоточувствительных пигментов, каждый из которых был обнаружен в колбочках определенного типа. Эти пигменты максимально адсорбировали световые лучи с теми же длинами волн, что и колбочки, результаты изучения которых представлены на рис. 5,9 (Brown & Wald, 1964; Merbs & Nathans, 1992; Schnapf, Kraft & Baylor, 1987),

Обратите внимание на то, что колбочки всех трех типов поглащают световые лучи с длинами волн, лежащими в весьма широком диапазоне, и что их абсорбционные кривые накладываются друг на друга. Иными словами, многие длины волн активируют колбочки разных видов

Однако рассмотрим взаимное перекрывание абсорбционных кривых, представленных на рис. 5.9. Это перекрывание свидетельствует о том, что каждый фотопигмент поглощает относительно широкую часть видимого спектра. Колбочковце фотопигменты, максимально поглощающие средне- и длинноволновый свет (фотопигменты М- и Z-колбочек), чувствительны по отношению к большей части BI^ димого спектра, а колбочковый пигмент, чувствительный к коротковолновому свету (пигмент 5-колбочек), реагирует меньше чем на половину волн, входящих в спектр. Следствием этого является способность волн разной длины стимулировать более одного вида колбочек. Иными словами, световые лучи с разными длинам» волн активируют колбочки разных видов по-разному. Например, из рис. 5.9 следует, что свет с длиной волны 450 нм, попадая на сетчатку, оказывает сильное влияние
на колбочки, способные абсорбировать коротковолновый свет, и значительно меньшее - на колбочки, селективно абсорбирующие средне- и длинноволновый свет (вызывая ощущение синего цвета), а свет с длиной волны, равной 560 нм, активирует только колбочки, избирательно абсорбирующие средне- и длинноволновый свет, и вызывает ощущение зеленовато-желтого цвета. На рисунке это не показано, но белый луч, спроецированный на сетчатку, одинаково стимулирует колбочки всех трех типов, в результате чего возникает ощущение белого цвета.

Связав все цветоощущения с активностью всего лишь трех не зависящих друг от друга типов колбочек, мы тем самым должны будем признать, что зрительная система основана на том же трехкомпонентном принципе, что и описанное в разделе, посвященном аддитивному смешению цветов, цветное телевидение, но в «обратном» варианте: вместо того, чтобы предъявлять цвета, она их анализирует.

Дальнейшее подтверждение существования трех различных фотопигментов получено из исследований Раштона, использовавшего другой подход (Rushton, 1962; Baker & Rushton, 1965). Он доказал существование зеленого фотопигмента, названного им chlorolabe (что в переводе с греческого означает «ловец зеленого»), красного фотопигмента, названного им erythrolabe («ловец красного»), и высказал предположение о возможности существования третьего - синего - фотопигмента, cyanolabe («ловца синего»). (Обратите внимание на то, что в сетчатке человека есть только три колбочковых фотопигмента, чувствительных к трем разным интервалам длин волн. Многие птицы имеют фотопигменты четырех или пяти видов, что, без сомнения, и объясняет исключительно высокий уровень развития их цветового зрения. Некоторые птицы способны даже видеть коротковолновый ультрафиолетовый свет, недоступный человеку. См., например, Chen et al., 1984.)

Три разных вида колбочек, для каждого из которых характерен свой определенный фотопигмент, отличаются друг от друга и по количеству, и по местоположению в центральной ямке. Колбочек, содержащих синий пигмент и чувствительных к коротковолновому свету, значительно меньше, чем колбочек, чувствительных к средним и длинным волнам: от 5 до 10% всех колбочек, общее количество которых равно 6-8 миллионам (Dacey et al., 1996; Roorda & Williams, 1999). Около двух третей остальных колбочек чувствительны к длинноволновому свету и одна треть - к средневолновому; короче говоря, складывается такое впечатление, что колбочек с пигментом, чувствительным к длинноволновому свету, в два раза больше, чем колбочек, содержащих пигмент, чувствительный к волнам средней длины (Cicerone & Nerger, 1989; Nerger & Cicerone, 1992). Помимо того что в центральной ямке содержится неравное количество колбочек с разной чувствительностью, они еще и распределены в ней неравномерно. Колбочки, содержащие фотопигменты, чувствительные к средне- и длинноволновому свету, сконцентрированы в середине центральной ямки, а колбочки, чувствительные к коротковолновому свету, - на ее периферии, и в центре их очень мало.

Резюмируя все изложенное выше, можно сказать, что колбочки трех типов избирательно чувствительны к определенной части видимого спектра - свету с определенной длиной волны - и что для каждого типа характерен свой абсорбционный пик, т. е. максимально поглощаемая длина волны. Благодаря тому что фотопигменты колбочек этих трех типов избирательно абсорбируют короткие, средние и длинные волны, сами колбочки нередко называются 5,- М- и L-колбочками соответственно.

Упомянутые выше и другие многочисленные исследования наряду со многими результатами изучения смешения цветов подтверждают правильность трехкомяо- нентной теории цветовосприятия, по крайней мере в том, что касается процессов, происходящих на уровне сетчатки. Кроме того, трехкомпонентная теория цветового зрения позволяет нам понять те явления, о которых было рассказано в разделе, посвященном смешению цветов: например, то, что монохроматический луч с длиной волны, равной 580 нм, вызывает то же самое цветоощущение, что и смесь средневолнового зеленого и длинноволнового красного лучей, т. е. и луч, и смесь воспринимаются нами как желтый цвет (аналогичная картина характерна и для экрана цветного телевизора). М- и I-колбочки воспринимают смесь средне- и длинноволнового света так же, как они воспринимают свет с длиной волны 580 нм, вследствие чего эта смесь и оказывает на зрительную систему аналогичное влияние. В этом смысле и монохроматический желтый луч, и смесь средневолнового зеленого и длинноволнового красного лучей одинаково желтые, ни тот, ни другая не могут быть названы «более желтыми». Они одинаково воздействуют на рецептивные пигменты колбочек.

Трехкомпонентная теория цветовосприятия объясняет также и такое явление, как комплементарные последовательные образы. Если принять, что существуют S-, М- и I-колбочки (назовем их для простоты соответственно синими, зелеными и красными), то становится понятно, что при непродолжительном пристальном рассматривании синего квадрата, изображенного на цветной вклейке 10, происходит избирательная адаптация синих колбочек (их пигмент «истощается»). Когда после этого на центральную ямку проецируется изображение хроматически нейтральной белой или серой поверхности, активными оказываются только неистощенные пигменты зеленых и красных колбочек, которые и вызывают дополнительный последовательный образ. Короче говоря, аддитивная «смесь» L- и М-колбочек (красных и зеленых) воздействует на зрительную систему таким образом, что вызывает ощущение комплементарного синему желтого цвета. Аналогичным образом пристальное всматривание в желтую поверхность вызывает адаптацию колбочек, «ответственных» за ощущение желтого цвета, а именно красных и зеленых, при этом активными, неадаптировавшимися остаются синие колбочки, которые и вызывают соответствующий, т. е. синий, комплементарный последовательный образ. Наконец, на основе трехкомпонентной теории цветовосприятия можно объяснить и то, почему при одинаковой стимуляции всех фотопигментов мы видим белый цвет.

Теория цветоощущения Гельмгольца (теория цветоощущения Юнга-Гельмгольца, трёхкомпонентная теория цветоощущения) теория цветоощущения, предполагающая существование в глазу особых элементов для восприятия красного, зелёного и синего цветов. Восприятие других цветов обусловлено взаимодействием этих элементов. Сформулирована Томасом Юнгом и Германом Гельмгольцем. Чувствительность палочек (пунктирная линия) и трёх типов колбочек к излучению с разной длиной волны.

В 1959 году теория была экспериментально подтверждена Джорджом Уолдом и Полом Брауном из Гарвардского университета и Эдвардом Мак-Николом и Уильямом Марксом из Университета Джонса Гопкинса, которые обнаружили, что в сетчатке существует три (и только три) типа колбочек, которые чувствительны к свету с длиной волны 430, 530 и 560 нм, т. е. к фиолетовому, зелёному и жёлто-зелёному цвету.

Теория Юнга Гельмгольца объясняет восприятие цвета только на уровне колбочек сетчатки, и не может объяснить все феномены цветоощущения, такие как цветовой контраст, цветовая память, цветовые последовательные образы, константность цвета и др., а также некоторые нарушения цветового зрения, например, цветовую агнозию. теория цветоощущения, предполагающая существование в глазу особых элементов для восприятия красного, зеленого и фиолетового цветов; восприятие других цветов обусловлено взаимодействием этих элементов.

15. Теория Эвальта Геринга

Эвальд Геринг предложил теорию оппонентных процессов. Он предположил, что три первичных цвета обрабатываются зрительной системой как антагонистические или оппонентные пары: красный/зеленый, желтый/синий и белый/черный. Стимуляция одного из оппонентов вызывает возбуждение (или торможение), тогда как стимуляция другого - противоположные эффекты (торможение или возбуждение, соответственно). Следовательно, когда стимулы сбалансированы (например, поступает соответствующее количество красного и зеленого цветов), разные компоненты такого канала отключаются, и система формирует ощущение желтого цвета. Такая обработка информации начинается, по-видимому, еще в сетчатке, но затем продолжается в НКТ (наружном коленчатом теле) и зрительной коре. Ограничиваясь пока сетчаткой, заметим, что доказано присутствие ганглиозных клеток с оппонентными свойствами в сетчатке кошки. В случае, приведенном на рис. 16.22 , показаны две ганглиозные клетки, одна из которых имеет концентрическое РП с центром ON-типа для красного и окружением, дающим OFF-ответ на зеленый, а другая - ON-ответ в центре на зеленый и OFF-ответ на красный на периферии. Клетки такого типа не дают мозгу слишком точной информации - рис. 16.22 показывает, что мозгу трудно будет различить маленькое яркое белое пятнышко в центре РП и большое зеленое пятно, покрывающее все поле. Связи в сетчатке, ответственные за цветовую оппонентность того типа, что показана на рис. 16.22 , продолжают изучаться. Понятно, однако, что субъективное ощущение цвета, которое представляется столь непосредственным и очевидным, возникает в результате сложных взаимодействий не только в сетчатке, но и на более высоких уровнях зрительной системы.

Герман Людвиг Фердинанд фон Гельмгольц (нем. Hermann von Helmholtz; 31 августа 1821, Потсдам - 8 сентября 1894, Шарлоттенбург) - немецкий физик, физиолог и психолог. В Москве именем Гельмгольца назван НИИ Глазных болезней на Садово-Черногрязской улице.

Родился в семье учителя. Изучал медицину в королевском медицинско-хирургическом институте в Берлине. Обязательной для выпускников этого института была восьмилетняя военная служба, которую Гельмгольц начал в 1843 году в Потсдаме, в качестве военного врача. По рекомендации Александра Гумбольдта ему было разрешено преждевременно оставить военную службу и начать преподавать в 1848 году анатомию в берлинской академии. В 1849 году Гельмгольца приглашают в Кёнигсберг, где он получает звание профессора физиологии и патологии. С 1855 он руководит кафедрой анатомии и физиологии в Бонне, с 1858 - кафедрой физиологии в Гейдельберге. В 1870 году он становится членом Прусской академии наук .

С 1871 года получает звание профессора физики и работает в Берлине. В 1888 году Гельмгольц становится первым президентом Физико-Технического имперского ведомства в Шарлоттенбурге.

В своих первых научных работах при изучении процессов брожения и теплообразования в живых организмах Гельмгольц приходит к формулировке закона сохранения энергии. В его книге "О сохранении силы" (1847) он формулирует закон сохранения энергии строже и детальнее, чем Роберт Майер в 1842 году, и тем самым вносит существенный вклад в признание этого оспариваемого тогда закона. Позже Гельмгольц формулирует законы сохранения энергии в химических процессах и вводит в 1881 году понятие свободной энергии - энергии, которую необходимо сообщить телу для приведения его в термодинамическое равновесие с окружающей средой (F = U - TS, где U есть внутренняя энергия, S - энтропия, T - температура).

С 1842 по 1852 занимается изучением роста нервных волокон. Параллельно Гельмгольц активно изучает физиологию зрения и слуха . Также Гельмгольц создает концепцию "бессознательных умозаключений" , согласно которой актуальное восприятие определяется уже имеющимися у индивида "привычными способами" , за счёт чего сохраняется постоянство видимого мира, при этом существенную роль играют мышечные ощущения и движения. Он разрабатывает математическую теорию для объяснения оттенков звука с помощью обертонов.

Гельмгольц способствует признанию теории трёхцветового зрения Томаса Юнга , изобретает в 1850 году офтальмоскоп для изучения глазного дна, в 1851 году - офтальмометр для определения радиуса кривизны глазной роговицы. Сотрудниками и учениками Гельмгольца были В. Вундт, И. М. Сеченов и Д. А. Лачинов .

Установлением законов поведения вихрей для невязких жидкостей Гельмгольц закладывает основы гидродинамики. Математическими исследованиями таких явлений как атмосферные вихри, грозы и глетчеры Гельмгольц закладывает основы научной метеорологии.

Ряд технических изобретений Гельмгольца носит его имя. Катушка Гельмгольца состоит из двух соосных соленоидов, удалённых на расстояние их радиуса и служит для создания открытого однородного магнитного поля. Резонатор Гельмгольца представляет собой полый шар с узким отверстием и служит для анализа акустических сигналов, а также при строительстве низкочастотных звуковых колонок для усиления низких частот или наоборот используется для подавления нежелательных частот в помещениях.

Много работ посвятил Гельмгольц обоснованию всеобщности принципа наименьшего действия.

Дополнения по работе Гельмгольца в области цвета

Герман фон Гельмгольц (1821-1894) был абсолютным мастером естественных наук своего времени. Он ими владел и понимал. Его первым научным достижением в 1847 году в возрасте 26 лет была формулировка принципов сохранения энергии. Гельмгольц также продемонстрирoвал свой великий практический талант - изобрёл офтальмоскоп и теорию звуковой чувствительности (1862) ; также предложил теорию комбинации тонов и анализ тембра музыкальных инструментов, даже углубляясь в сторону теории гармонии.

Его знаменитый "Учебник физиологической оптики" вышел между 1856 и 1867, который стал всемирно признанным спустя 60 лет в английском переводе. В нём Гельмгольц представляет 3 переменных, которые до сих пор используются для характеристики цвета: тон, насыщенность и яркость . Он первым безошибочно продемонстрировал, что цвета, которые видел Ньютон в спектре отличаются от цветов, наложенных на белую основу с помощью пигментов. Спектральные цвета светят более интенсивно и обладают большей насыщенностью. Они смешиваются аддитивно, в то время как пигменты смешиваются субтрактивно. В любом случае, их сочетания происходят по разным правилам.

Исследования Гельмгольца производились по всегда существующей аналогии между глазом и ухом. Три вышеупомянутые характеристики цветовых ощущений были выбраны с целью соответствовать трём параметрам звука: силе, высоте и тембру. Единственная разница между звуковым явлением и цветовосприятием состоит в том, что глаз не может различать компоненты смешанного цвета , в то время как ухо может легко разделять элементы сложного звука. Как сказал сам Гельмгольц в 1857 году: "Глаз не может разделять комбинированные цвета друг от друга; он видит их как неразрешимое, простое ощущение одного смешанного цвета. Поэтому глазу неважно, какие основные цвета скомбинированны в смешанном цвете: простых или сложных условий вибраций. Нет гармонии в том же значении, как с ухом; нет музыки."

Как и Томас Юнг, Гельмгольц отстаивал трёхцветную систему и продемонстрировал, что каждый цвет может быть составлен как смесь трёх базовых цветов - например, красного, зелёного и сине-фиолетового в качестве таких "простых цветов" . В своём учебнике великий физиолог представляет несколько предложений по расположению этих простых, или чистых, цветов - таким образом охватывающих весь спектр. Он также пытался вмешаться - довольно вскользь, но однако живо сформулированно - между Ньютоном и Максвеллом . Для Гельмгольца треугольник Максвелла слишком мал, чтобы разместить насыщенные спектральные цвета, и круг Ньютона не относится точно к трихроматической теории, которая глубоко проникает в суть вопроса.

Гельмгольц первым располагает спектральные цвета на кривой с целью достичь лучшего понимания их смешивания. Он представляет род силового поля цветов - цветовое поле - с белым посредине , соответствующему ньютоновскому гравитационному центру. Гельмгольц заметил, что для того, чтобы получить белый, ему не нужны были равные части фиолетово-синего и жёлтого, например. Таким образом, он расположил свои цвета таким образом, чтобы те дополнительные цвета, которые требовались в большем количестве, имели больший "рычаг".

Круг Ньютона служит основой для второй конструкции Гельмгольца , в которой два треугольника построены после того, как пропущена та часть, которая пересекается с линией между красным (R) и фиолетовым (V). Это усечение возможно без ущерба только потому, что два рассматриваемых цвета обозначают оба конца спектра (в системе CIE мы вновь встретим эту линию в качестве пурпурного). На рисунке мы видим два треугольника, углы которых определены в каждом случае двумя возможными комбинациями базовых цветов, между которыми колебался Томас Юнг в начале 19 века. Треугольник с фиолетовым, красным и зелёным (VRG) углами таким образом содержит все цвета, которые образуются от смешивания фиолетового, красного и зелёного, то же самое относится к треугольнику с углами красного, жёлтого и циана (RYC). Из рисунка, а также из треугольника Максвелла становится очевидным, что не все цвета могут быть записаны таким образом, и что огромная порция цветового круга остаётся удалённой.

Безусловно, во времена Гельмгольца не было сомнений в правильности трихроматической теории, и это укрепляло веру в то, что должен существовать идеальный треугольник, в котором будет место всем цветам спектра. Со своей оставшейся конструкцией Гельмгольц вернулся к той первой кривой простых цветов, которую он начертил в предположении, что количество света в различных цветах может считаться одинаковым тогда, когда при заданной силе света они кажутся глазу одинаково яркими. На основе чистых базовых цветов красного и фиолетового, без дальнейших пояснений, Гельмгольц сдвигает точку, характеризующую наше восприятие чистого зелёного к точке А, чтобы составить треугольник AVR, который сейчас включает все ощущения цвета.

Впоследствии Гельмгольц приходит к выводу, что, по его мнению, чистый красный и чистый фиолетовый цвета спектра не являются простыми ощущениями базового цвета, и по этой причине нижняя линия должна быть смещена до значений V1 и R1. Цвета, которые могут быть прямо достигнуты посредством света, входящего в нормальный глаз, будут лежать на близкой кривой V1ICGrGR1 (аббревиатура относится к индиго, циану, зелёному и жёлтому). Треугольник иным образом содержит цвета, которые расположены на большем расстоянии от белого, и таким образом более насыщенны, чем все обычные цвета.

Гельмгольц и Максвелл сконцентрировались на выборе наиболее подходящей диаграммы, чтобы объяснить наблюдаемые в отношении цветовых смесей явления. Поскольку трихроматическая теория была действующая и общепринятая, их внимание было направлено на геометрию треугольника, совершенно не принимая во внимание феноменологические аспекты. Вопрос, рассматривающий положение спектральных цветов в каждом треугольнике был окончательно решён в конце 19 века, когда А. Кёниг и К. Дитеричи изучили "основные ощущения в нормальных и аномальных цветовых системах и распределение их интенсивности в спектре" и обозначили направление линии, которую мы построили в треугольнике Максвелла . Это будет научно верным, только если мы представим идеальный треугольник, цвета которого более насыщенны, чем спектральные цвета (Е означает точку равной энергии, и это также может быть интерпретированно как белый цвет). Результаты спектральных смесей иллюстрируют, как Ньютон упростил факты, когда он предположил, что насыщенность смешанных цветов будет меньше, если в порядке следования цветов, их компоненты расположены дальше друг от друга.

Работа Кёнига и Дитеричи появилась в "Журнале о психологии" в 1892 году, и было очевидно, что преимущество цветов было потеряно для современных физиков. Но сила восприятия в итоге будет преобладать; без неё техническая игра с цветами будет слишком загнана в рамки геометрических конструкций, даже если эта игра практикуется такими гениями как Гельмгольц или Максвелл .