Связи – отношения между элементами систем. Рыбкин Прямолинейная тригонометрия

Теснота связи элементов в системе определяется физическими, а вернее, природными отношениями между ними, либо другими основополагающими свойствами системы, например, экономическими, социальными, характеризующими развитие человеческого общества.

Глубина таких связей зависит от уровня системы в иерархии систем, относящихся к предметной области существования изучаемого сложного объекта. К связям относятся как всеобщие отношения между составляющими систему элементами природы и общества, так и частные, касающиеся некоторого ограниченного круга ее элементов. В связи со сказанным эти связи называются либо общими законами природы (фундаментальными), либо частными , относящимися к ограниченному набору явлений (эмпирическими законами) или к тенденциям, проявляющимся в виде каких – то повторений в массовых явлениях и именуемых закономерностями .

Фундаментальные связи называются законами. Закон - это философская категория, обладающая свойствами всеобщности по отношению ко всем природным предметам, явлениям, событиям. В связи с этим определение закона звучит так: закон – это существенное, устойчивое, повторяющееся отношение между любыми явлениями.

Закон выражает определенную связь между самими системами, составными элементами объединений предметов и явлений, а также внутри самих предметов и явлений.

Не всякая связь является законом. Она может быть необходимой и случайной, Закон – необходимая связь. Он выражает существенную связь между сосуществующими в пространстве вещами (материальнымиобразованиями, в общем смысле).

Все, что сказано выше, относится к законам функционирования (существования природной среды или искусственно созданной человеком). Существуют и законы развития , выражающие тенденцию, направленность или порядок следования событий во времени. Все природные законы - нерукотворны, они существуют в мире объективно и выражают отношения вещей, а также отражаются в сознании человека.



Как уже говорилось, законы делятся по степени общности. Всеобщими законами являются философские законы. Фундаментальные законы природы по своей общности тоже разделяются на два больших класса. На более общие, изучаемые рядом, а то и абсолютным множеством наук (к ним относятся, к примеру, законы сохранения энергии и информации и др.). И менее общие законы, которые распространяются на ограниченные области, изучаемые конкретными науками (физикой, химией, биологией).

Эмпирические законы изучаются частными науками, к которым относятся все технические науки. В качестве примера можно взять такую дисциплину, как сопротивление материалов. В ней изучаются предметы и системы, в которых действуют все фундаментальные законы и законы эмпирические, основанные на опытных данных, относящих к предметам дисциплины только те механические тела, которые подчиняются закону Гука: деформация тела прямо пропорциональна действующей на тело силе (и наоборот).

В технических науках имеются разделы, которые основываются на более частных эмпирических связях, принятых в качестве аксиом.

Одни законы выражают строгую количественную зависимость и фиксируются математическими формулами, а другие пока не поддаются формализации, указывая обязательность одного вида события за счет появления другого, например.

Одни законы - детерминированы, то – есть устанавливают на основании причинно – следственных связей точные количественные соотношения, другие – статистические , устанавливающие вероятность появления какого – либо события при определенных условиях.

В природе законы действуют как стихийная сила. Однако, зная законы, их можно использовать целенаправленно в практической деятельности (как силу давления пара в паровых машинах, как силу сжатого газа в двигателях внутреннего сгорания).

Общественно – исторические законы мало чем отличаются от законов природы, но действуют они между мыслящими людьми. Познание этих законов способствует лучшей организации экономики и общества.

Таким образом, изучение законов природы и общества является первейшей задачей человечества. Только знание законов и разработка мер по правильному их использованию может обеспечить развивающееся и растущее по численности человечество продуктами питания и средой искусственно созданных условий, в котором может оно существовать.

Скорость решения возникающих новых задач зависит от того, какой запас научных знаний люди накопили на данный момент и как его обработали, осмыслили. Осмысление научных знаний приводит к формулировке научной проблемы , решение которой может привести к завершению теории по этому кругу вопросов и использованию более строгих выводов в практических делах. Научная проблема – не только философская категория в описанном плане, но и практическая, от которой зависит как теоретическая наука, так и ее практическое воплощение в жизнь людей.

Из этой разъяснительной части значимости научной проблемы для завершенности теории следует и ее определение: научная проблема – это противоречивая ситуация, выступающая в виде противоположных позиций в объяснении каких – либо явлений, объектов, процессов и требующая адекватной единственной теории для ее разрешения .

Важной предпосылкой успешного ее решения является ее правильная постановка. Увидеть противоречия в получаемых эмпирических знаниях, обратить на них внимание и поставить вопрос об устранении этого противоречия, значит, положить начало решению научной проблемы и продвижению науки в сторону прогресса. Недаром, в науке людей, способных формулировать проблемы, почитают даже больше исследователей, конкретно решивших сформулированную проблему. Формулировка неверных проблем приводит к большому застою в науке.

С категорией «научная проблема» непосредственно связана и категория «гипотеза». Гипотезы, в первую очередь, используют для теоретического устранения противоречий научной проблемы. Такие гипотезы (предположения) в случае успеха превращаются даже в фундаментальные теории (предположение Ньютона о силе притяжения между двумя физическими телами).

Гипотезы используются и в технических науках, где они носят частный характер и представляют описание способа взаимодействия факторов, определяющих поведение изучаемого объекта, его элементов. В таком случае гипотеза называется рабочей гипотезой, которая, как в научной проблеме, может быть доказана или отвергнута на базе опытных данных.

Поэтому гипотеза – это предположение о вероятной (возможной) закономерности изменения явления, объекта, события, которое не доказано, но кажется вероятным.

Полезность гипотезы в том, что она мобилизует исследователей формулировать задачи опытных работ с целью доказательства верности высказанной гипотезы. И если получается иной результат, то накопленный материал позволит откорректировать гипотезу и спланировать дальнейшую научно – исследовательскую работу.

В более общей формулировке моделирование как метод методологии науки заключается в переходе от неформально содержательных представлений об изучаемом объекте к использованию математических моделей.

Теоретический уровень моделей, полученных на базе аксиом, правил вывода теорем, правил соответствия повышается в дальнейшем на базе гипотико - дедуктивных положений с формулировкой следствий, полученных анализом выдвинутых гипотез. Математический аппарат, используемый при этом, - это только средство получения нового знания и никак не конечная цель методологического анализа.

За составлением математической модели следует её использование, целью которого является получение информации, которая отсутствовала до её создания, т.е. полученная модель должна быть эвристичной. Именно это действие превращает методологию в экспериментальную науку, допускающую верификацию её выводов на практике.

Модель и её свойства.

Формализация существующих знаний об исследуемой системе (составителем модели) создаёт модель, чтобы получить нужные свойства системы: непротиворечивость; полноту; независимость системы аксиом; содержательность. Хорошим примером выполнения этих свойств являются теории неевклидовых геометрий Лобачевского, Гаусса, Больяи в 19 веке. Итальянец Бельтрами показал, что существуют реальные тела, на поверхности которых выполняются законы геометрии Лобачевского.

На заре теоретического осмысливания знаний человечества развитие теорий всегда шло от частных случаев к общему. В настоящее время появились методики моделирования объектов уже на базе структурирования математической модели. Цепочка развития такого знания идёт в обратном порядке. Сначала появляется аксиоматическое математическое описание изучаемого события (объекта), а уже на его базе формулируется концептуальная модель – парадигма. Вместе с этим меняются и принципы соответствия природных процессов и теоретических схем (моделей). Вместо простого совпадения результатов счёта по модели с экспериментальными данными опытов рассматриваются сравнительные характеристики их математических алгоритмов достижения результатов по другим (косвенным) параметрам. К таким принципам относится, например, принципы простоты и красоты научных теорий . При этом модель в этом случае вводится с новым математическим аппаратом вместе с интерпретацией, т.е. исходным в ней является математический формализм, способный на языке математики объяснить некоторую сущность, проявляющуюся в опыте. Именно этот шаг затрудняет эмпирическую проверку, так как опытом должно проверяться не только уравнение описания, но и его интерпретация.

Введённый математический аппарат в этом случае содержит неконструктивные элементы, способные в дальнейшем привести к рассогласованию теории с опытом. Надо отметить, что в этом состоит как раз специфика современного научного исследования. С другой стороны эта особенность современного научного исследования грозит возможностью отбросить предложенный перспективный аппарат. Чтобы этого не случилось, необходимо отдельно заняться этой стороной дела - ликвидацией неувязок на базе экксперимента (примером может служить квантовая физика и электродинамика).

Старая система классической физики интерпретации научных фактов превратилась при этом в пошаговое «создание» приближённой математически сформированной теории реального процесса к исходной модели. Возникает вопрос, что же толкает исследователей к такому алгоритму действий, т.е. каковы же позывы к такому способу формирования теоретической картины? На это методология науки даёт вполне определённый ответ: самоценность истины; ценность новизны.

Достигается всё сказанное использованием следующих принципов исследования: а) запрет на плагиат; б) допустимость критического пересмотра оснований научного поиска; в) равенство всех (гениев в том числе) перед лицом истины; г) запрет на фальсификацию и подтасовки

Пример этому в связке Эйнштейн – Лоренц. Первый по существовашему тогда негласному рейтингу был в то время менее авторитетным, но его элементы теории относительности превратились в фундаментальную теорию. .

Несмотря на многочисленность работ по математическому моделированию, выявилась некоторая трудность в формулировке точного понятия математического моделирования. Слишком разнообразны они (модели) и их содержание. В целом ясно, что от модели требуется нечто большее, чем сопоставление с реальной действительностью: модель обязательно должна давать информацию о свойствах моделируемых объектов и явлений. Поэтому приемлемым определением модели должно быть определение, которое не включает в себя частных неопределённостей. Например: моделью данного объекта называется другой объект, который сопоставляется исходному, моделируемому и определённые свойства которого заданным образом отражают (сохраняют) выбранные свойства объекта.

Модель должна отображать всё известное (иногда некоторые известные характеристики) об объекте и предсказывать или формировать новую информацию о нём в каких - либо новых условиях существования. Цель моделирования, таким образом,- функция представления (описания) в случае наличия объяснения явлений, рассматриваемых моделью. Именно в этом случае модель выступает в качестве теории. И, несмотря на это, резкое противопоставление математической (формальной) и содержательной сторон модели в целом несостоятельно. Учитывая специфическую сторону формирования модели можно резюмировать, что математика при этом выступает как важнейшее средство выработки содержательных представлений об изучаемом явлении на протяжении всего исследования.

Чтобы построить математическую теорию нужны не только сами элементы, но и отношения между ними. Для чисел имеет смысл понятие равенства: а = b. Если числа а и b разные, а? b, тогда возможно или а > b, или а

Две прямые плоскости могут быть перпендикулярными, параллельными, пересекаться под некоторым углом.

Все эти отношения касаются двух объектов. Поэтому они называются бинарными отношениями.

Для изучения отношений между объектами в математике создана теория бинарных отношений.

Когда мы рассматриваем те или иные отношения, мы всегда имеем дело с упорядоченными парами, образованными из элементов данного множества. Например, для отношения «больше на 4», которое рассматривается на множестве Х = {2, 6, 10, 14}, это будут упорядоченные пары (2, 6), (6, 10), (10, 14), а для отношения «делится» - (6, 2), (10, 2), (14, 2).

Можно заметить, что множество пар, которые определяют отношения «больше на 4», «делится», являются подмножествами декартова произведения

Х ´ Х ={(2, 2), (2, 6), (2, 10), (2, 14), (6, 2), (6, 6), (6, 10), (6, 14), (10, 2), (10, 6), (10, 10), (10, 14), (14, 2), (14, 6), (14, 10), (14, 24)}.

Определение 1. Бинарным отношением между элементами множества Х или отношением на множестве Х называется всякое подмножество декартова произведения Х ´ Х.

Бинарные отношения обычно обозначают заглавными буквами латинского алфавита: P, T, S, R, Q и т. д. Итак, если Р–отношение на множестве Х, то Р Ì Х ´ Х. Часто для записи отношений используются разные специальные символы, например, =, >, ~, ½½, ^ и т. д. Множество всех первых элементов пар из Р называется областью определения отношения Р. Множеством значений отношения Р называется множество всех вторых элементов пар из Р.

Для наглядности бинарные отношения изображают графически с помощью специального рисунка графа. Элементы множества Х изображают точками. Если имеет место (х, у) Î Р(хРу), то из точки х проводят стрелку в точку у. Такой чертеж называют графом отношения Р, а точки, изображающие элементы множества Х, вершинами графа. стрелки рёбрами графа.

Пример. Пусть отношение Р: «число х - делитель числа у», заданного на множестве

Х = {5, 10, 20, 30, 40}, изображен на рисунке 25.

Стрелки графа, у которых началом и концом является одна и та же точка, называются петлями. Если на графе отношения Р изменить направления всех стрелок на противоположные, то получится новое отношение, которое называют обратным для Р. Его обозначают Р–1. Отметим, что хРу Û уР–1х.

Способы задания бинарных отношений.

Поскольку отношение R между элементами множества Х - это множество, элементами которого являются упорядоченные пары, то его можно задать теми же способами, что и любое множество.

1. Чаще всего отношение R на множестве Х задают при помощи характеристического свойства пар элементов, находящихся в отношении R. Это свойство формулируют в виде предложения с двумя переменными.

Например, среди отношений на множестве Х = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, можно рассматривать следующие: «число х меньше числа у в 2 раза», «число х - делитель числа у», «число х больше, чем число у» и другие.

2. Отношение R на множестве Х можно задать и путем перечисления всех пар элементов множества Х, связанных отношением R.

Например, если записать множество пар (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), то на множестве Х = {1, 2, 3, 4} мы зададим некоторое отношение R. Это же отношение R можно задать и

3. при помощи графа (рис. 26).

Свойства бинарных отношений.

Определение 2. Отношение R на множестве Х называется рефлексивным, если каждый элемент из множества Х сам с собой находится в этом отношении.

Короче: R рефлексивно на Х Û хRx для любого x Î X.

или, что тоже: в каждой вершине графа отношения есть петля. Верно и обратное: если ни каждая вершина графа отношения имеет петлю, то это рефлексивное отношение.

Пример. Рефлексивные отношения: «быть равными на множестве всех треугольников плоскости», «? и £ на множестве всех действительных чисел».

Отметим, что существуют отношения, которые не обладают свойством рефлексивности.(привести пример «х больше у»)

Определение 3. Бинарное отношение R на множестве Х называется антирефлексивным на Х, если для каждого х из Х (х, х) Ï R, т.е. для каждого х из Х не выполняется условие хRх.

Если отношение R антирефлексивно, то ни одна вершина его графа не имеет петли. Обратно: если ни одна вершина графа не имеет петли, то граф представляет антирефлексивное отношение.

Примеры антирефлексивных отношений: «быть старше», «быть меньше», «быть дочерью» и др.

Определение 4. Отношение R на множестве Х называется симметричным, если для любых элементов х, Î X выполняется условие: если х и у находятся в отношении R, то у и х тоже находятся в этом отношении.

Короче: R симметрично на Х Û хRу Û уRх.

Граф симметричного отношения обладает свойством: если есть стрелка, соединяющая пару элементов, то обязательно есть вторая, которая соединяет эти же элементы, но идет в противоположно направлении. Верно и обратное утверждение.

Примерами симметричных отношений являются отношения: «быть взаимно перпендикулярными на множестве всех прямых плоскости», «быть подобными на множестве всех прямоугольников плоскости».

Определение 5. Если ни для каких элементов х и у из множества Х не может случиться, что одновременно и хRу, и уRх, то отношение R на множестве Х называется асимметричным.

Пример асимметричного отношения: «быть отцом» (если х –– отец у, то у не может быть отцом х).

Определение 6. Отношение R на множестве Х называется антисимметричным, если для разных элементов х, у Î Х из того, что элемент х находится в отношении R с элементом у, следует, что элемент у не находится в отношении R с элементом х.

Короче: R антисимметрично на Х Û хRу и х? у? .

Например, отношение «меньше» на множестве целых чисел, является антисимметричным.

Граф антисимметричного отношения обладает особенностью: если две вершины графа соединены стрелкой, то эта стрелка только одна. Справедливым является и обратное утверждение.

Заметим, что существуют отношения, которые не обладают ни свойством симметричности, ни свойством антисимметричности.

Определение7. Отношение R на множестве Х называется транзитивным, если для любых элементов х, у, z Î Х выполняется условие: если х находится в отношении R с у и у находится в отношении R с z, то элемент х находится в отношении R с элементом z.

Короче: R транзитивно на Х Û хRу и уRz ? хRz.

Например, отношение «прямая х параллельна прямой у», заданное на множестве прямых плоскости, является транзитивным.

Граф транзитивного отношения обладает особенностью: с каждой парой стрелок, идущих от х к у и от у к z, он содержит и стрелку, идущую от х к z. Верно и обратное утверждение.

Заметим, что существуют отношения, которые не обладают свойством транзитивности. Например, отношение «стоять рядом на полке» не транзитивно.

Все общие свойства отношений можно разбить на три группы:

рефлексивности (каждое отношение рефлексивно или антирефлексивно),

симметричности (отношение всегда или симметрично или асимметрично, или антисимметрично),

транзитивности (каждое отношение транзитивно или не транзитивно). Отношениям, обладающим определенным набором свойств, присвоены специальные названия.

Слово «соответствие» в русском языке употребляется довольно часто, оно означает соотношение между чем-либо, выражающее согласованность, равенство в каком-либо отношении (толковый словарь Ожегова).

В жизни часто приходится слышать: «Этот учебник соответствует данной программе, а этот учебник не соответствует (но может соответствовать другой программе); это яблоко соответствует высшему сорту, а это только первому». Мы говорим, что этому ответу на экзамене соответствует оценка «отлично», этому – «хорошо». Мы говорим, что этому человеку соответствует (в смысле подходит) одежда 46 размера. В соответствии с инструкцией следует поступать так, а не иначе. Наблюдается соответствие между количеством солнечных дней в году и урожайностью культуры.

Если попытаться проанализировать эти примеры, то можно заметить, что во всех случаях речь идет о двух классах объектов, причем между объектами из одного класса устанавливается по определенным правилам некая связь с объектами другого класса. Например, в случае соответствия одежды определенного размера, один класс объектов – это люди, а другой класс объектов – это некоторые натуральные числа, играющие роль размеров одежды. Правило, по которому устанавливается соответствие, можем задать, например, с помощью естественного алгоритма – примерки конкретного костюма или определения «на глаз» его годности.

Мы будем рассматривать соответствия, для которых классы объектов, между которыми устанавливается соответствие и правило установления соответствия, вполне определены. Многочисленные примеры таких соответствий изучались в школе. Прежде всего, это, конечно, функции. Любая функция есть пример соответствия. Действительно, рассмотрим, например, функцию у = х + 3. Если не говорится специально об области определения функции, то считают, что каждому числовому значению аргумента х соответствует числовое значение у , которое находится по правилу: к х нужно прибавить 3. В этом случае соответствие устанавливается между множествами R и R действительных чисел.

Заметим, что установление связей между двумя множествами X и Y связано с рассмотрением пар объектов, образованных из элементов множества X и соответствующих элементов множества Y .

Определение. Соответствием между множествами X и Y называют всякое непустое подмножество декартова произведения X ´ Y .

Множество X называется областью отправления соответствия, множество Y областью прибытия соответствия.

Соответствия между множествами принято обозначать прописными буквами латинского алфавита, например, R, S, Т . Если R – некоторое соответствие между множествами X и Y , то, согласно определению, соответствия, R Í Х ´ Y и R ≠ Æ. Раз соответствие между множествами X и Y есть всякое подмножество декартова произведения Х ´ Y , т.е. является множеством упорядоченных пар, то способы задания соответствий по существу такие же, как и способы задания множеств. Итак, соответствие R между множествами X и Y можно задать:

а) перечислением всех пар элементов (х, y ) Î R ;

б) указанием характеристического свойства, которым обладают все пары (х, у ) множества R и не обладает ни одна пара, не являющаяся его элементом.

П р и м е р ы.

1) Соответствие R между множествами X = {20, 25} и Y = {4, 5, 6} задано указанием характеристического свойства: «х кратно у »,
х Î Х , у Î Y . Тогда множество R = {(20, 4), (20, 5),(25, 5)}.

2) Соответствие R между множествами X = {2, 4, 6, 8} и

Y = {1, 3, 5} задано множеством пар R = {(4, 1), (6, 3), (8, 5)}.

Если R – соответствие между двумя числовыми множествами X и Y , то, изобразив все пары чисел, находящихся в соответствии R на координатной плоскости, получим фигуру, называемую графиком соответствия R . Обратно, любое подмножество точек координатной плоскости считают графиком некоторого соответствия между числовыми множествами X и Y .

Граф соответствия

Для наглядного изображения соответствий между конечными множествами кроме графика применяются графы. (От греческого слова «графо» – пишу, сравните: график, телеграф).

Для построения графа соответствия между множествами X и Y элементы каждого из множеств изображают точками на плоскости, после проводят стрелки от х Î Х к у Î Y , если пара (х, у ) принадлежит данному соответствию. Получается чертеж, состоящий из точек и стрелок.

П р и м е р. Соответствие R между множествами X = {2, 3, 4, 5} и Y = {4, 9} задано перечислением пар R = {(2, 4), (4, 4), (3, 9)}.

Точно так же можно записать 4R 4, 3R 9. И вообще, если пара
(х, y ) Î R , то говорят, что элементу х Î Х соответствует элемент у Î Y и записывают хRу . Элемент 2 Î Х называется прообразом элемента
4 Î Y при соответствии R и обозначается 4R -1 2. Аналогично можно записать 4R -1 4, 9R -1 3.

Понятие соответствия. Способы задания соответствий

Первоначально алгеброй называли учение о решении уравнений. За много столетий своего развития алгебра превратилась в науку, которая изучает операции и отношения на различных множествах. Поэтому не случайно уже в начальной школе дети знакомятся с такими алгебраическими понятиями, как выражение (числовое и с переменными), числовое равенство, числовое неравенство, уравнение. Они изучают различные свойства арифметических действий над числами, которые позволяют рационально выполнять вычисления. И, конечно, в начальном курсе математики происходит их знакомство с различными зависимостями, отношениями, но чтобы использовать их в целях развития мыслительной деятельности детей, учитель должен овладеть некоторыми общими понятиями современной алгебры - понятием соответствия, отношения, алгебраической операции и др. Кроме того, усваивая математический язык, используемый в алгебре, учитель сможет глубже понять сущность математического моделирования реальных явлений и процессов.

Изучая окружающий нас мир, математика рассматривает не только его объекты, но и главным образом связи между ними. Эти связи называют зависимостями, соответствиями, отношениями, функциями. Например, при вычислении длин предметов устанавливаются соответствия между предметами и числами, которые являются значениями их длин; при решении задач на движение устанавливается зависимость между пройденным расстоянием и временем, если скорость движения постоянна.

Конкретные зависимости, соответствия, отношения между объектами в математике изучались с момента ее возникновения. Но вопрос о том, что общее имеют самые разные соответствия, какова сущность любого соответствия, был поставлен в конце XIX - начале XX века, и ответ на него был найден в рамках теории множеств.

В начальном курсе математики изучаются различные взаимосвязи между элементами одного, двух и более множеств. Поэтому учителю надо понимать их суть, что поможет ему обеспечить единство в методике изучения этих взаимосвязей.

Рассмотрим три примера соответствий, изучаемых в начальном курсе математики.

В первом случае мы устанавливаем соответствие между заданными выражениями и их числовыми значениями. Во втором выясняем, какое число соответствует каждой из данных фигур, характеризуя ее площадь. В третьем ищем число, которое является решением уравнения.

Что общее имеют эти соответствия?

Видим, что во всех случаях мы имеем два множества: в первом - это множество из трех числовых выражений и множество N натуральных чисел (ему принадлежат значения данных выражений), во втором - это множество из трех геометрических фигур и множество N натуральных чисел; в третьем - это множество из трех уравнений и множество N натуральных чисел.

Выполняя предложенные задания, мы устанавливаем связь (соответствие) между элементами этих множеств. Ее можно представить наглядно, при помощи графов (рис. 1).

Можно задать эти соответствия, перечислив все пары элементов, находящихся в заданном соответствии:

I. {(в 1 , 4), (в 3 , 20)};

II. {(F 1 , 4), (F 2 , 10), (F 3 , 10)};

III. {(у 1 , 4), (у 2 , 11), (у 3 , 4)}.

Полученные множества показывают, что любое соответствие между двумя множествами X и Y можно рассматривать как множество упорядоченных пар , образованных из их элементов. А так как упорядоченные пары - это элементы декартова произведения, то приходим к следующему определению общего понятия соответствия.

Определение. Соответствием между элементами множество X и Y называется всякое подмножество декартова произведения этих множеств.

Соответствия принято обозначать буквами Р, S, T, R и др. Если S - соответствие между элементами множеств X и Y, то, согласно определению, S Х х Y.

Выясним теперь, как задают соответствия между двумя множествами. Поскольку соответствие - это подмножество, то его можно задавать как любое множество, т.е. либо перечислив все пары элементов, находящихся в заданном соответствии, либо указав характеристическое свойство элементов этого подмножества. Так, соответствие между множествами X = {1, 2, 4, 6} и Y = {3, 5} можно задать:

1) при помощи предложения с двумя переменными: а < b при условии, что а X, b Y;

2) перечислив пары чисел, принадлежащих подмножеству декартова произведения XxY: {(1, 3), (1, 5), (2, 3), (2, 5), (4, 5)}. К этому способу задания относят также задание соответствия при помощи графа (рис. 2) и графика (рис. 3)

Рис. 2 Рис. 3

Нередко, изучая соответствия между элементами множеств X и Y, приходится рассматривать и соответствие, ему обратное. Пусть, например,

S - соответствие «больше на 2» между элементами множеств

Х = {4,5,8, 10} и Y= {2,3,6}. Тогда S={(4, 2), (5,3), (8, 6)} и его граф будет таким, как на рисунке 4а.

Соответствие, обратное данному, - это соответствие «меньше на 2». Оно рассматривается между элементами множеств Y и X, и чтобы его представить наглядно, достаточно на графе отношения S направление стрелок поменять на противоположное (рис. 4б). Если соответствие «меньше на 2» обозначить S -1 , то S -1 = {(2,4), (3,5), (6,8)}.

Условимся предложение «элемент х находится в соответствии S с элементом у» записывать кратко так: xSy. Запись xSy можно рассматривать как обобщение записей конкретных соответствий: х = 2у; х > 3у+1 и др.

Воспользуемся введенной записью для определения понятия соответствия, обратного данному.

Определение. Пусть S - соответствие между элементами множеств X и Y. Соответствие S -1 между элементами множеств Y и X называется обратным данному, если yS -x тогда и только тогда, когда xSy .

Соответствия S и S -1 называют взаимно обратными. Выясним особенности их графиков.

Построим график соответствия S = {(4, 2), (5, 3), (8, 6)} (рис. 5а). При построении графика соответствия S -1 = {(2, 4), (3, 5), (6, 8)} мы должны первую компоненту выбирать из множества Y = {2, 3, 6}, а вторую - из множества X = {4, 5, 8, 10}. В результате график соответствия S -1 совпадет с графиком соответствия S. Чтобы различать графики соответствий S и S -1 ,

условились первую компоненту пары соответствия S -1 считать абсциссой, а вторую - ординатой. Например, если (5, 3) S, то (3, 5) S -1 . Точки с координатами (5, 3) и (3, 5), а в общем случае (х, у) и (у, х) симметричны относительно биссектрисы 1-го и 3-го координатных углов. Следовательно, графики взаимно обратных соответствий S и S -1 симметричны относительно биссектрисы 1-го и 3-го координатных углов.

Чтобы построить график соответствия S -1 , достаточно изобразить на координатной плоскости точки, симметричные точкам графика S относительно биссектрисы 1-го и 3-го координатных углов.

Тема 8. Отношения и соответствия

Понятие бинарного отношения между элементами множества

В обычной жизни мы постоянно говорим об отношениях между двумя объектами. Например, х работает иод руководствому, х является отцому, х и у друзья - это отношения между людьми. Числох больше числам, числох делится на у, числах и у при делении на 3 дают одинаковый остаток - это отношения между числами.

Всякая математическая теория имеет дело с множеством каких-нибудь объектов или элементов. Чтобы построить математическую теорию нужны не только сами элементы, но и отношения между ними. Для чисел имеет смысл понятие отношений:a = b , илиа > b, илиа < b. Две прямые плоскости могут быть параллельными или пересекаться.

Все эти отношения касаются двух объектов. Поэтому они называются бинарными отношениями.

Когда мы рассматриваем те или иные отношения, мы всегда имеем дело с упорядоченными парами, образованными из элементов данного множества. Например, для отношения «число x больше на 4, чем числоy », которое рассматривается на множествеX = {2, 6, 10, 14}, это будут упорядоченные пары (6,2), (10, 6), (14, 10). Они - подмножество декартова произведенияX X .

Определение. Бинарным отношением между элементами множестваX или отношением на множествеX называется всякое подмножество декартова произведенияX X.

Бинарные отношения обычно обозначают заглавными буквами латинского алфавита: Р, Т, S, R, Q и т.д. Итак, еслиP - отношение на множествеX, тоР X X. Множество всех первых элементов пар изР называется областью определения отношенияР. Множеством значений отношенияР называется множество всех вторых элементов пар изР.

Во многих случаях удобно использовать графическое изображение бинарного отношения.

Элементы множества X изображают точками, а стрелками соединяют соответствующие элементы так, что если имеет место (х,у )Р(хРу), то стрелку проводят из точких в точкуу. Полученный чертеж называют графом отношенияР, а точки, изображающие элементы множестваX,

вершинами графа.

Например, граф отношения Р: «числох - делитель числау», заданного на множествеX = {5, 10, 20, 30,40}, изображен на рис. 54.

Стрелки графа, у которых началом и концом является одна и та же точка, называются петлями. Если на графе отношения Р изменить направления всех стрелок на

противоположные, то получится новое отношение, которое называют обратным для Р. Его обозначают Р -1 . Отметим, чтохРу уР -1 х.

Способы задания бинарных отношений, их свойства

Поскольку отношение R между элементами множестваХ - это множество, элементами которого являются упорядоченные пары, то его можно задать теми же способами, что и любое множество.

Чаще всего отношение R на множествеX задают при помощи характеристического свойства пар элементов, находящихся в отношенииR. Это свойство формулируют в виде предложения с двумя переменными. Например, среди отношений на множествеХ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} можно рассматривать следующие: «числох меньше числа у в 2 раза», «числох - делитель числау» и др.

Отношение R на множествеX можно задать и путем перечисления всех пар элементов, взятых из множестваX и связанных отношениемR.

Например, если записать множество пар (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3,

4), то на множестве

X = {1, 2, 3, 4} мы зададим некоторое

отношение

R = {(x, y)| x X, y

X, x < y} .

Это же отношение R можно задать и при помощи графа (рис). Выделим важнейшие свойства бинарных отношений.

Определение 1. ОтношениеR на множествеX называется рефлексивным, если каждый элемент из множества X сам с собой находится в этом отношении.

Короче данное определение можно записать так: R рефлексивно наХ хRх для любогох X.

Очевидно, что если отношение R на множествеX является рефлексивным, то в каждой вершине графа отношения есть петля. Справедливым является и обратное утверждение.

Примерами рефлексивных отношений являются отношения: «быть равными на множестве всех треугольников плоскости», «x ≤ y».

Отметим, что существуют отношения, которые не обладают свойством рефлексивности, например, отношение перпендикулярности прямых.

Определение 2. ОтношениеR на множествеX называется симметричным, если для любых элементовх, у Х выполняется условие: еслих и у находятся в отношенииR, то у их тоже находятся в этом отношении.

Короче: R симметрично наX xRy yRx.

Граф симметричного отношения обладает свойством: если есть стрелка, соединяющая пару элементов, то обязательно есть вторая, которая соединяет эти же элементы, но идет в противоположно направлении. Верно и обратное утверждение.

Примерами симметричных отношений являются отношения: «быть взаимно перпендикулярными на множестве всех прямых плоскости», «быть подобными на множестве всех прямоугольников плоскости».

Определение 3 . Если ни для каких элементовх и у из множестваX не может случиться, что одновременно иxRy, иyRx, то отношениеR на множествеX называется асимметричным. Пример асимметричного отношения: «быть отцом» (еслих - отецу , тоу не может быть отцомх).

Определение 4. ОтношениеR на множествеX называется антисим-

Например, отношение «меньше» на множестве целых чисел, является антисимметричным.

Граф антисимметричного отношения обладает особенностью: если две вершины графа соединены стрелкой, то эта стрелка только одна. Справедливым является и обратное утверждение. Свойство асимметричности является совокупностью свойства антисимметричности и отсутствия рефлексивности.

Определение 5. ОтношениеR на множествеX называется транзитивным, если для любых элементовx, y, z X выполняется условие: еслих находится в отношенииR су иу находится в отношенииR сz, то элементх находится в отношенииR с элементомz.

Короче: R транзитивно наX xRy иyRz xRz.

Например, отношение «прямая х параллельна прямойу», заданное на множестве прямых плоскости, является транзитивным.

Граф транзитивного отношения обладает особенностью: с каждой парой стрелок, идущих от х ку и оту кz, он содержит и стрелку, идущую отх кz. Верно и обратное утверждение.

Заметим, что существуют отношения, которые не обладают свойством транзитивности. Например, отношение «стоять рядом на полке» не транзитивно.

Отношение эквивалентности

Пусть Х - множество людей. На этом множестве зададим бинарное отношениеR с помощью закона:aRb, если а иb родились в один и тот же год.

Легко убедиться в том, что отношение R обладает свойствами рефлексивности, симметричности и транзитивности. Говорят, что отношениеR - отношение эквивалентности.

Определение 1. Бинарное отношениеR на множествеX называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Снова вернемся к отношению R, заданному на множестве людей законом:aRb, если а иb родились в один и тот же год.

Вместе с каждым человеком а рассмотрим множество людейК а , которые родились в один год са. Два множестваК а иК b либо не имеют общих элементов, либо совпадают полностью.

Совокупность множеств К а представляет собой разбиение множества всех людей на классы, поскольку из ее построения следует, что выполняются два условия: каждый человек входит в какой-нибудь класс и каждый человек входит только в один класс. Заметим, что каждый класс состоит из родившихся в один год людей.

Таким образом, отношение эквивалентности R порождает разбиение множестваX на классы (классы эквивалентности). Верно и обратное.

Теорема. Каждому отношению эквивалентности на множествеX соответствует разбиение множестваX на классы (классы эквивалентности). Каждому разбиению множествах соответствует отношение эквивалентности на множествеX.

Эту теорему примем без доказательства.

Из теоремы следует, что каждый класс, полученный в результате разбиения множества на классы, определяется любым (одним) своим представителем, что дает возможность вместо изучения всех элементов данного множества изучать только совокупность отдельных представителей каждого класса.

Отношение порядка

Отношениями порядка мы постоянно пользуемся в повседневной жизни. Определение 1. Всякое антисимметричное и транзитивное отношениеR на

некотором множестве X называется отношением порядка.

Множество X, на котором задано отношение порядка, называется упорядоченным.

Возьмем множество Х = {2, 4, 10, 24}. Его упорядочивает отношение «х большеу» (рис. 63).

Рассмотрим теперь на нем другое отношение порядка «х делит

у» (рис. 64).

Результат рассмотрения может показаться странным. Отношения «x большеy » и«х делиту» упорядочивают множествоX поразному. Отношение«х большеу» позволяет сравнивать любые два числа из

множества X. Что касается отношения«х делиту» , то оно таким свойством не обладает. Так пара чисел 10 и 24 этим отношением не связана.

Определение 2. Отношение порядкаR на некотором множествеX называется отношением линейного порядка, если оно обладает следующим свойством: для любых элементовх иу

множества Х либоxRy, либоуRx .

Множество X, на котором задано отношение линейного порядка, называется линейно упорядоченным.

Линейно упорядоченные множества обладают рядом свойств. Пусть а, b, с - элементы множестваX, на котором задано отношение линейного порядкаR. ЕслиaRb иbRc, то говорят, что элементb лежит между элементамиa ис .

Линейно упорядоченное множество X называется дискретным, если между любыми двумя его элементами лежит лишь конечное множество элементов.

Если для любых двух различных элементов линейно упорядоченного множества X существует элемент множества, лежащий между ними, то множествоX называется плотным.

Понятие соответствия между множествами. Способы задания соответствий

Пусть заданы два множествами X иY. Если для каждого элементаx X указан элементу Y, с которым сопоставляетсях, то говорят, что между множествамиX иY установлено соответствие.

Иначе говоря, соответствием между элементами множеств X иY называется любое подмножествоG декартова произведенияX иY этих множеств:G X Y .

Поскольку соответствие - это множество, то его можно задать теми же способами, что и любое множество: перечислением всех пар (х, у), где

Когда множества X иY конечные, то соответствие между элементами можно задать таблицей, где в левом столбце записывают элементы множестваX, а в верхней строке - элементы множестваY. Пары элементов, находящихся в соответствииG, будут находиться на пересечении соответствующих столбцов и строк.

Соответствие между двумя конечными множествами можно показать и при помощи графа. Множества X иY показывают овалами, элементы множествX иY обозначают точками, а стрелками соединяют соответствующие элементы так, что если имеет место (x ,у) G , то стрелку проводят из точких в точкуу.

Например, граф, изображенный на рис. 16, задает соответствие «Писатель х написал произведениеу».

Когда множествах и Y числовые, то можно построить график соответствияG на координатной плоскости.

Соответствие, обратное данному. Взаимно однозначные соответствия

Пусть R - соответствие «Числох в пять раз меньше числау» между элементами множествX = {1, 2, 4, 5, 6} и

Y = {10, 5, 20, 13, 25}.

Граф этого соответствия будет таким, как на рис. 23. Если изменить направление стрелок этого графа на

обратное, то получим граф (рис. 22) нового соответствия «Число у в пять раз больше числа х», рассматриваемого

между множествами Y иX.

Это соответствие называется соответствием, обратным

соответствию R, и обозначается R -1 .

Определение. Пусть

R - соответствие

элементами множеств X иY. Соответствие R -1

элементами множеств Y иX называется обратным данному,

когда (у, х ) R -1 тогда и только тогда, когда (х,

у) R.

Соответствия R и R -1 называют взаимно обратными.

Если множества X иY числовые, то график

соответствия R -1 , обратного соответствиюR, состоит из

точек, симметричных точкам графика соответствия R

относительно биссектрисы первого и

третьего

координатных углов.

Представим ситуацию: в зрительном зале на каждом месте сидит зритель и для каждого зрителя нашлось место. В этом случае говорят, что между множеством

мест в зрительном зале и множеством зрителей установлено взаимно однозначное соответствие.

Определение. Пусть даны два множествахX иY. Соответствие между элементами множествX иY , при котором каждому элементу множестваX соответствует единственный элемент множества У, и каждый элемент множестваY соответствует только одному элементу из множестваX , называется взаимно однозначным.

Рассмотрим примеры взаимно однозначных соответствий. Пример 1. В каждой школе каждому классу

соответствует классный журнал. Это соответствие является взаимно однозначным.

Пример 2. Дан треугольникABC (рис. 25).А 1 С 1 средняя линия треугольника. ПустьХ - множество точек на отрезкеА 1 С 1 , Y - множество точек наАС.

Произвольную точку х отрезкаА 1 С 1 соединим с вершинойВ треугольника отрезком прямой линии и

продолжим его до пересечения с АС в точкеу. Поставим в соответствие точкех точкуу, построенную таким образом. При этом между множествамиX иY будет установлено взаимно однозначное соответствие.

Определение. МножестваX иY называются эквивалентными, или равномощными, если между ними каким-либо способом можно установить взаимно однозначное соответствие. Эквивалентность двух множеств обозначается так:Х ~ Y.

Понятие мощности является обобщением понятия количества. Это распространение понятия количества на бесконечные множества.