Спирты примеры формулы. Спирты — номенклатура, получение, химические свойства

ОПРЕДЕЛЕНИЕ

Спирты – соединения, содержащие одну или несколько гидроксильных групп –ОН, связанных с углеводородным радикалом.

Общая формула гомологического ряда предельных одноатомных спиртов C n H 2 n +1 OH . В названии спиртов присутствует суффикс – ол.

В зависимости от числа гидроксильных групп спирты делят на одно- (CH 3 OH — метанол, C 2 H 5 OH — этанол), двух- (CH 2 (OH)-CH 2 -OH — этиленгликоль) и трехатомные (CH 2 (OH)-CH(OH)-CH 2 -OH — глицерин). В зависимости от того, при каком углеродном атоме находится гидроксильная группа, различают первичные (R-CH 2 -OH), вторичные (R 2 CH-OH) и третичные спирты (R 3 C-OH).

Для предельных одноатомных спиртов характерна изомерия углеродного скелета (начиная с бутанола), а также изомерия положения гидроксильной группы (начиная с пропанола) и межклассовая изомерия с простыми эфирами.

СН 3 -СН 2 -СН 2 -СН 2 -ОН (бутанол – 1)

СН 3 -СН(СН 3)- СН 2 -ОН (2-метилпропанол – 1)

СН 3 -СН(ОН)-СН 2 -СН 3 (бутанол – 2)

СН 3 -СН 2 -О-СН 2 -СН 3 (диэтиловый эфир)

Химические свойства спиртов

1. Реакция, протекающие с разрывом связи О-Н:

кислотные свойства спиртов выражены очень слабо. Спирты реагируют с щелочными металлами

2C 2 H 5 OH + 2K → 2C 2 H 5 OK + H 2

но не реагируют с щелочами. В присутствии воды алкоголяты полностью гидролизуются:

C 2 H 5 OK + Н 2 О → C 2 H 5 OH + KOH

Это означает, что спирты – более слабые кислоты, чем вода

— образование сложных эфиров под действием минеральных и органических кислот:

CH 3 -CO-OH + H-OCH 3 ↔ CH 3 COOCH 3 + H 2 O

— окисление спиртов под действием дихромата или перманганата калия до карбонильных соединений. Первичные спирты окисляются в альдегиды, которые, в свою очередь, могут окисляться в карбоновые кислоты.

R-CH 2 -OH + [O] → R-CH = O + [O] → R-COOH

Вторичные спирты окисляются в кетоны:

R-CH(OH)-R’ + [O] → R-C(R’) = O

Третичные спирты более устойчивы к окислению.

2. Реакция с разрывом связи С-О.

— внутримолекулярная дегидратация с образованием алкенов (происходит при сильном нагревании спиртов с водоотнимающими веществами (концентрированная серная кислота)):

CH 3 -CH 2 -CH 2 -OH → CH 3 -CH = CH 2 + H 2 O

— межмолекулярная дегидратация спиртов с образованием простых эфиров (происходит при слабом нагревании спиртов с водоотнимающими веществами (концентрированная серная кислота)):

2C 2 H 5 OH → C 2 H 5 -O-C 2 H 5 + H 2 O

— слабые основные свойства спиртов проявляются в обратимых реакциях с галогеноводородами:

C 2 H 5 OH + HBr →C 2 H 5 Br + H 2 O

Физические свойства спиртов

Низшие спирты (до С 15) – жидкости, высшие – твердые вещества. Метанол и этанол смешиваются с водой в любых соотношениях. С ростом молекулярной массы растворимость спиртов в оде падает. Спирты имеют высокие температуры кипения и плавления за счет образования водородных связей.

Получение спиртов

Получение спиртов возможно с помощью биотехнологического (брожение) способа из древесины или сахара.

К лабораторным способам получения спиртов относятся:

— гидратация алкенов (реакция протекает при нагревании и в присутствии концентрированной серной кислоты)

СН 2 = СН 2 + Н 2 О → СН 3 ОН

— гидролиз алкилгалогенидов под действием водных растворов щелочей

СН 3 Br + NaOH → CH 3 OH + NaBr

СН 3 Br + Н 2 О → CH 3 OH + HBr

— восстановление карбонильных соединений

CH 3 -CH-O + 2[H] → CH 3 – CH 2 -OH

Примеры решения задач

ПРИМЕР 1

Задание Массовые доли углерода, водорода и кислорода в молекуле предельного одноатомного спирта 51,18, 13,04 и 31, 18%, соответственно. Выведите формулу спирта.
Решение Обозначим количество элементов, входящих в молекулу спирта индексами x, y, z. Тогда, формула спирта в общем виде будет выглядеть — С x H y O z .

Запишем соотношение:

x:y:z = ω(С)/Ar(C): ω(Н)/Ar(Н) : ω(О)/Ar(О);

x:y:z = 51,18/12: 13,04/1: 31,18/16;

x:y:z = 4,208: 13,04: 1,949.

Разделим получившиеся значения на наименьшее, т.е. на 1,949. Получим:

x:y:z = 2: 6: 1.

Следовательно, формула спирта – С 2 H 6 O 1 . Или C 2 H 5 OH – это этанол.

Ответ Формула предельного одноатомного спирта — C 2 H 5 OH.

Содержание статьи

СПИРТЫ (алкоголи) – класс органических соединений, содержащих одну или несколько группировок С–ОН, при этом гидроксильная группа ОН связана с алифатическим атомом углерода (соединения, у которых атом углерода в группировке С–ОН входит в состав ароматического ядра, называются фенолами)

Классификация спиртов разнообразна и зависит от того, какой признак строения взят за основу.

1. В зависимости от количества гидроксильных групп в молекуле спирты делят на:

а) одноатомные (содержат одну гидроксильную ОН-группу), например, метанол СН 3 ОН, этанол С 2 Н 5 ОН, пропанол С 3 Н 7 ОН

б) многоатомные (две и более гидроксильных групп), например, этиленгликоль

HO–СH 2 –CH 2 –OH, глицерин HO–СH 2 –СН(ОН)–CH 2 –OH, пентаэритрит С(СН 2 ОН) 4 .

Соединения, в которых у одного атома углерода есть две гидроксильных группы, в большинстве случаев нестабильны и легко превращаются в альдегиды, отщепляя при этом воду: RCH(OH) 2 ® RCH=O + H 2 O

2. По типу атома углерода, с которым связана группа ОН, спирты делят на:

а) первичные, у которых ОН-группа связана с первичным атомом углерода. Первичным называют атом углерода (выделен красным цветом), связанный всего с одним углеродным атомом. Примеры первичных спиртов – этанол СH 3 –C H 2 –OH, пропанол СH 3 –CH 2 –C H 2 –OH.

б) вторичные, у которых ОН-группа связана с вторичным атомом углерода. Вторичный атом углерода (выделен синим цветом) связан одновременно с двумя атомами углерода, например, вторичный пропанол, вторичный бутанол (рис. 1).

Рис. 1. СТРОЕНИЕ ВТОРИЧНЫХ СПИРТОВ

в) третичные, у которых ОН-группа связана с третичным атомом углерода. Третичный углеродный атом (выделен зеленым цветом) связан одновременно с тремя соседними атомами углерода, например, третичный бутанол и пентанол (рис. 2).

Рис. 2. СТРОЕНИЕ ТРЕТИЧНЫХ СПИРТОВ

В соответствии с типом углеродного атома присоединенную к нему спиртовую группу также называют первичной, вторичной или третичной.

У многоатомных спиртов, содержащих две или более ОН-групп, могут присутствовать одновременно как первичные, так и вторичные НО-группы, например, в глицерине или ксилите (рис. 3).

Рис. 3. СОЧЕТАНИЕ В СТРУКТУРЕ МНОГОАТОМНЫХ СПИРТОВ ПЕРВИЧНЫХ И ВТОРИЧНЫХ ОН-ГРУПП .

3. По строению органических групп, связанных ОН-группой, спирты подразделяют на предельные (метанол, этанол, пропанол), непредельные, например, аллиловый спирт СН 2 =СН–СН 2 –ОН, ароматические (например, бензиловый спирт С 6 Н 5 СН 2 ОН), содержащие в составе группы R ароматическую группу.

Непредельные спирты, у которых ОН-группа «примыкает» к двойной связи, т.е. связана с атомом углерода, участвующим одновременно в образовании двойной связи (например, виниловый спирт СН 2 =СН–ОН), крайне нестабильны и сразу же изомеризуются (см .ИЗОМЕРИЗАЦИЯ) в альдегиды или кетоны :

CH 2 =CH–OH ® CH 3 –CH=O

Номенклатура спиртов.

Для распространенных спиртов, имеющих простое строение, используют упрощенную номенклатуру: название органической группы преобразуют в прилагательное (с помощью суффикса и окончания «овый ») и добавляют слово «спирт»:

В том случае, когда строение органической группы более сложное, используют общие для всей органической химии правила. Названия, составленные по таким правилам, называют систематическими. В соответствии с этими правилами, углеводородную цепь нумеруют с того конца, к которому ближе расположена ОН-группа. Далее используют эту нумерацию, чтобы указать положение различных заместителей вдоль основной цепи, в конце названия добавляют суффикс «ол» и цифру, указывающую положение ОН-группы (рис. 4):

Рис. 4. СИСТЕМАТИЧЕСКИЕ НАЗВАНИЯ СПИРТОВ . Функциональные (ОН) и замещающие (СН 3) группы, а также соответствующие им цифровые индексы выделены различающимися цветами.

Систематические названия простейших спиртов составляют по тем же правилам: метанол, этанол, бутанол. Для некоторых спиртов сохранились тривиальные (упрощенные) названия, сложившиеся исторически: пропаргиловый спирт НСє С–СН 2 –ОН, глицерин HO–СH 2 –СН(ОН)–CH 2 –OH, пентаэритрит С(СН 2 ОН) 4 , фенетиловый спирт С 6 Н 5 –CH 2 –CH 2 –OH.

Физические свойства спиртов.

Спирты растворимы в большинстве органических растворителей, первые три простейших представителя – метанол, этанол и пропанол, а также третичный бутанол (Н 3 С) 3 СОН – смешиваются с водой в любых соотношениях. При увеличении количества атомов С в органической группе начинает сказываться гидрофобный (водоотталкивающий) эффект, растворимость в воде становится ограниченной, а при R, содержащем свыше 9 атомов углерода, практически исчезает.

Благодаря наличию ОН-групп между молекулами спиртов возникают водородные связи.

Рис. 5. ВОДОРОДНЫЕ СВЯЗИ В СПИРТАХ (показаны пунктиром)

В результате у всех спиртов более высокая температура кипения, чем у соответствующих углеводородов, например, Т. кип. этанола +78° С, а Т. кип. этана –88,63° С; Т. кип. бутанола и бутана соответственно +117,4° С и –0,5° С.

Химические свойства спиртов.

Спирты отличаются разнообразными превращениями. Реакции спиртов имеют некоторые общие закономерности: реакционная способность первичных одноатомных спиртов выше, чем вторичных, в свою очередь, вторичные спирты химически более активны, чем третичные. Для двухатомных спиртов, в том случае, когда ОН-группы находятся у соседних атомов углерода, наблюдается повышенная (в сравнении с одноатомными спиртами) реакционная способность из-за взаимного влияния этих групп. Для спиртов возможны реакции, проходящие с разрывом как С–О, так и О–Н – связей.

1. Реакции, протекающие по связи О–Н.

При взаимодействии с активными металлами (Na, K, Mg, Al) спирты проявляют свойства слабых кислот и образуют соли, называемые алкоголятами или алкоксидами:

2CH 3 OH + 2Na ® 2CH 3 OK + H 2

Алкоголяты химически не стабильны и при действии воды гидролизуются с образованием спирта и гидроксида металла:

C 2 H 5 OК + H 2 O ® C 2 H 5 OH + КOH

Эта реакция показывает, что спирты в сравнении с водой представляют собой более слабые кислоты (сильная кислота вытесняет слабую), кроме того, при взаимодействии с растворами щелочей спирты не образуют алкоголяты. Тем не менее, в многоатомных спиртах (в том случае, когда ОН-группы присоединены к соседним атомам С) кислотность спиртовых групп намного выше, и они могут образовывать алкоголяты не только при взаимодействии с металлами, но и со щелочами:

HO–CH 2 –CH 2 –OH + 2NaOH ® NaO–CH 2 –CH 2 –ONa + 2H 2 O

Когда в многоатомных спиртах НО-группы присоединены к не соседствующим атомам С, свойства спиртов близки к одноатомным, поскольку взаимовлияние НО-групп не проявляется.

При взаимодействии с минеральными или органическими кислотами спирты образуют сложные эфиры – соединения, содержащие фрагмент R–O–A (А – остаток кислоты). Образование сложных эфиров происходит и при взаимодействии спиртов с ангидридами и хлорангидридами карбоновых кислот (рис. 6).

При действии окислителей (К 2 Cr 2 O 7 , KMnO 4) первичные спирты образуют альдегиды, а вторичные – кетоны (рис.7)

Рис. 7. ОБРАЗОВАНИЕ АЛЬДЕГИДОВ И КЕТОНОВ ПРИ ОКИСЛЕНИИ СПИРТОВ

Восстановление спиртов приводит к образованию углеводородов, содержащих то же количество атомов С, что молекула исходного спирта (рис.8).

Рис. 8. ВОССТАНОВЛЕНИЕ БУТАНОЛА

2. Реакции, протекающие по связи С–О.

В присутствии катализаторов или сильных минеральных кислот происходит дегидратация спиртов (отщепление воды), при этом реакция может идти в двух направлениях:

а) межмолекулярная дегидратация с участием двух молекул спирта, при этом связи С–О у одной из молекул разрываются, в результате образуются простые эфиры – соединения, содержащие фрагмент R–О–R (рис. 9А).

б) при внутримолекулярной дегидратации образуются алкены - углеводороды с двойной связью. Часто оба процесса – образование простого эфира и алкена – протекают параллельно (рис. 9Б).

В случае вторичных спиртов при образовании алкена возможны два направления реакции (рис. 9В), преимущественное направление то, при котором в процессе конденсации отщепляется водород от наименее гидрогенизированного атома углерода (отмечен цифрой 3), т.е. окруженного меньшим количеством атомов водорода (в сравнении с атомом 1). Показанные на рис. 10 реакции используют для получения алкенов и простых эфиров.

Разрыв связи С–О в спиртах происходит также при замещении ОН-группы галогеном, или аминогруппой (рис. 10).

Рис. 10. ЗАМЕНА ОН-ГРУППЫ В СПИРТАХ ГАЛОГЕНОМ ИЛИ АМИНОГРУППОЙ

Реакции, показанные на рис. 10, используют для получения галогенуглеводородов и аминов.

Получение спиртов.

Некоторые из показанных выше реакций (рис. 6,9,10) обратимы и при изменении условий могут протекать в противоположном направлении, приводя к получению спиртов, например при гидролизе сложных эфиров и галогенуглеводородов (рис.11А и Б, соответственно), а также гидратацией алкенов – присоединением воды (рис.11В).

Рис. 11. ПОЛУЧЕНИЕ СПИРТОВ ГИДРОЛИЗОМ И ГИДРАТАЦИЕЙ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Реакция гидролиза алкенов (рис. 11, схема В) лежит в основе промышленного производства низших спиртов, содержащих до 4 атомов С.

Этанол образуется и при так называемом спиртовом брожении сахаров, например, глюкозы С 6 Н 12 О 6 . Процесс протекает в присутствии дрожжевых грибков и приводит к образованию этанола и СО 2:

С 6 Н 12 О 6 ® 2С 2 Н 5 ОН + 2СО 2

Брожением можно получить не более чем 15%-ный водный раствор спирта, поскольку при более высокой концентрации спирта дрожжевые грибки погибают. Растворы спирта более высокой концентрации получают перегонкой.

Метанол получают в промышленности восстановлением монооксида углерода при 400° С под давлением 20–30 МПа в присутствии катализатора, состоящего из оксидов меди, хрома, и алюминия:

СО + 2 Н 2 ® Н 3 СОН

Если вместо гидролиза алкенов (рис. 11) проводить окисление, то образуются двухатомные спирты (рис. 12)

Рис. 12. ПОЛУЧЕНИЕ ДВУХАТОМНЫХ СПИРТОВ

Применение спиртов.

Способность спиртов участвовать в разнообразных химических реакциях позволяет их использовать для получения всевозможных органических соединений: альдегидов, кетонов, карбоновых кислот простых и сложных эфиров, применяемых в качестве органических растворителей, при производстве полимеров, красителей и лекарственных препаратов.

Метанол СН 3 ОН используют как растворитель, а также в производстве формальдегида, применяемого для получения фенолформальдегидных смол, в последнее время метанол рассматривают как перспективное моторное топливо. Большие объемы метанола используют при добыче и транспорте природного газа. Метанол – наиболее токсичное соединение среди всех спиртов, смертельная доза при приеме внутрь – 100 мл.

Этанол С 2 Н 5 ОН – исходное соединение для получения ацетальдегида, уксусной кислоты, а также для производства сложных эфиров карбоновых кислот, используемых в качестве растворителей. Кроме того, этанол – основной компонент всех спиртных напитков, его широко применяют и в медицине как дезинфицирующее средство.

Бутанол используют как растворитель жиров и смол, кроме того, он служит сырьем для получения душистых веществ (бутилацетата, бутилсалицилата и др.). В шампунях он используется как компонент, повышающий прозрачность растворов.

Бензиловый спирт С 6 Н 5 –CH 2 –OH в свободном состоянии (и в виде сложных эфиров) содержится в эфирных маслах жасмина и гиацинта. Он обладает антисептическими (обеззараживающими) свойствами, в косметике он используется как консервант кремов, лосьонов, зубных эликсиров, а в парфюмерии - как душистое вещество.

Фенетиловый спирт С 6 Н 5 –CH 2 –CH 2 –OH обладает запахом розы , содержится в розовом масле, его используют в парфюмерии.

Этиленгликоль HOCH 2 –CH 2 OH используют в производстве пластмасс и как антифриз (добавка, снижающая температуру замерзания водных растворов), кроме того, при изготовлении текстильных и типографских красок .

Диэтиленгликоль HOCH 2 –CH 2 OCH 2 –CH 2 OH используют для заполнения тормозных гидравлических приспособлений, а также в текстильной промышленности при отделке и крашении тканей.

Глицерин HOCH 2 –CH(OH)–CH 2 OH применяют для получения полиэфирных глифталевых смол, кроме того, он является компонентом многих косметических препаратов. Нитроглицерин (рис. 6) – основной компонент динамита, применяемого в горном деле и железнодорожном строительстве в качестве взрывчатого вещества.

Пентаэритрит (HOCH 2) 4 С применяют для получения полиэфиров (пентафталевые смолы), в качестве отвердителя синтетических смол, как пластификатор поливинилхлорида, а также в производстве взрывчатого вещества тетранитропентаэритрита.

Многоатомные спирты ксилит НОСН2–(СНОH)3–CН2ОН и сорбит НОСН2– (СНОН)4–СН2OН имеют сладкий вкус, их используют вместо сахара в производстве кондитерских изделий для больных диабетом и людей страдающих от ожирения. Сорбит содержится в ягодах рябины и вишни .

Михаил Левицкий

Спирты – разнообразный и обширный класс химических соединений.

Спирты – это химические соединения, молекулы которых содержатся гидроксильные группы ОН, соединённые с углеводородным радикалом.

Углеводородный радикал состоит из атомов углерода и водорода. Примеры углеводородных радикалов - СН 3 - метил, С 2 Н 5 – этил. Часто углеводородный радикал обозначают просто буквой R. Но если в формуле присутствуют разные радикалы, их обозначают R", R ", R """ и т.д.

Названия спиртов образуются путём добавления суффикса –ол к названию соответствующего углеводорода.

Классификация спиртов


Спирты бывают одноатомные и многоатомные. Если в молекуле спирта только одна гидроксильная группа, то такой спирт называется одноатомным. Если же количество гидроксильных групп 2, 3, 4 и т.д., то это многоатомный спирт.

Примеры одноатомных спиртов: СН 3 -ОН – метанол или метиловый спирт, СН 3 СН 2 -ОН – этанол или этиловый спирт.

Соответственно, в молекуле двухатомного спирта присутствуют две гидроксильные группы, в молекуле трёхатомного – три и т.д.

Одноатомные спирты

Общую формулу одноатомных спиртов можно представить как R-OH.

По типу свободного радикала, входящего в молекулу, одноатомные спирты делятся на предельные (насыщенные), непредельные (ненасыщенные) и ароматические спирты.

В насыщенных углеводородных радикалах атомы углерода соединены простыми связями С – С. В ненасыщенных радикалах присутствуют одна или несколько пар атомов углерода, соединённых двойными С = С или тройными С ≡ С связями.

В состав предельных спиртов входят предельные радикалы.

CH 3 CH 2 CH 2 -OH – предельный спирт пропанол-1 или пропиленовый спирт.

Соответственно, непредельные спирты содержат непредельные радикалы.

CH 2 = CH - CH 2 - OH – непредельный спирт пропенол 2-1 (аллиловый спирт)

А в молекулу ароматических спиртов входит бензольное кольцо C 6 H 5.

C 6 H 5 -CH 2 -OH – ароматический спирт фенилметанол (бензиловый спирт).

В зависимости от типа атома углерода, связанного с гидроксильной группой, спирты делятся на первичные ((R-CH 2 -OH), вторичные (R-CHOH-R") и третичные (RR"R""C-OH) спирты.

Химические свойства одноатомных спиртов

1. Спирты горят, образуя углекислый газ и воду. При горении выделяется тепло.

C 2 H 5 OH + 3O 2 → 2CO 2 + 3H 2 O

2. При реакции спиртов со щелочными металлами образуется алкоголят натрия и выделяется водород.

C 2 H 5 -OH + 2Na → 2C 2 H 5 ONa + H 2

3. Реакция с галогеноводородом. В результате реакции образуется галогеноалкан (бромэтан и вода).

C 2 H 5 OH + HBr → C 2 H 5 Br + H 2 O

4. Внутримолекулярная дегидратация происходит при нагревании и под воздействием концентрированной серной кислоты. В результате получается непредельный углеводород и вода.

Н 3 – СН 2 – ОН → СН 2 = СН 2 + Н 2 О

5. Окисление спиртов. При обычной температуре спирты не окисляются. Но при помощи катализаторов и при нагревании окисление происходит.

Многоатомные спирты

Как вещества, содержащие гидроксильные группы, многоатомные спирты имеют химические свойства, схожие со свойствами одноатомных спиртов, но реакция у них идёт сразу по нескольким гидроксильным группам.

Многоатомные спирты вступают в реакцию с активными металлами, с галогеноводородными кислотами, с азотной кислотой.

Получение спиртов


Рассмотрим способы получения спиртов на примере этанола, формула которого С 2 Н 5 ОН.

Наиболее старый из них – отгонка спирта из вина, где он образуется в результате брожения сахаристых веществ. Сырьём для получения этилового спирта служат также крахмалосодержащие продукты, которые с помощью процесса брожения превращают в сахар, который затем сбраживают в спирт. Но производство этилового спирта таким способом требует большого расхода пищевого сырья.

Гораздо совершеннее синтетический способ получения этилового спирта. В этом случае проводят гидратацию этилена водяным паром.

С 2 Н 4 + Н 2 О → С 2 Н 5 ОН

Среди многоатомных спиртов наиболее известен глицерин, который получают расщеплением жиров или синтетическим способом из пропилена, который образуется при высокотемпературной переработке нефти.

ОПРЕДЕЛЕНИЕ

Предельные одноатомные спирты можно рассматривать как производные углеводородов ряда метана, в молекулах которых один атом водорода замещен на гидроксильную группу.

Итак, предельные одноатомные спирты состоят из углеводородного радикала и функциональной группы -OH. В названиях спиртов гидроксильная группа обозначается суффиксом -ол.

Общая формула предельных одноатомных спиртов C n H 2 n +1 OH или R-OH или C n H 2 n +2 O. Молекулярная формула спирта не отражает строения молекулы, поскольку одной и той же брутто-формуле могут соответствовать два абсолютно разных вещества, например молекулярная формула C 2 H 5 OH является общей и для этилового спирта и для ацетона (диметилкетона):

CH 3 -CH 2 -OH (этанол);

CH 3 -O-CH 3 (ацетон).

Так же как и углеводороды ряда метана предельные одноатомные спирты образуют гомологический ряд метанола.

Составим этот ряд гомологов и рассмотрим закономерности изменения физических свойств соединений этого ряда в зависимости от увеличения углеводородного радикала (табл. 1).

Гомологический ряд (неполный) предельных одноатомных спиртов

Таблица 1. Гомологический ряд (неполный) предельных одноатомных спиртов.

Предельные одноатомные спирты легче воды, поскольку их плотность меньше единицы. Низшие спирты смешиваются с водой во всех отношениях, с увеличением углеводородного радикала эта способность уменьшается. Большинство спиртов хорошо растворимы в органических растворителях. Спирты имеют более высокие температуры кипения и плавления, чем соответствующие углеводороды или галогенпроизводные, что обусловлено возможностью образования ими межмолекулярных связей.

Важнейшими представителями предельных одноатомных спиртов являются метанол (CH 3 OH) и этанол (C 2 H 5 OH).

Примеры решения задач

ПРИМЕР 1

Задание В натуральном жемчуге массовые отношения кальция, углерода и кислорода равны 10:3:12. Какова простейшая формула жемчуга?
Решение Для того, чтобы узнать, в каких отношениях находятся химические элементы в составе молекулы необходимо найти их количество вещества. Известно, что для нахождения количества вещества следует использовать формулу:

Найдем молярные массы кальция, углерода и кислорода (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел). Известно, что M = Mr, значит M(Ca)= 40 г/моль, Ar(C)=12 г/моль, а М(O) = 32 г/моль.

Тогда, количество вещества этих элементов равно:

n (Ca) = m (Ca) / M (Ca);

n (Ca) = 10 / 40 = 0,25моль.

n (C) = m (C) / M (C);

n (C) = 3 / 12 = 0,25 моль.

n (O) = m (O) / M (O);

n (O) = 12 / 16 = 0,75 моль.

Найдем мольное отношение:

n(Ca) :n(C):n(O) = 0,25: 0,25: 0,75= 1: 1: 3,

т.е. формула соединения жемчуга имеет вид CaCO 3 .

Ответ CaCO 3

ПРИМЕР 2

Задание Оксид азота содержит 63,2% кислорода. Какова формула оксида
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Вычислим массовую долю азота в оксиде:

ω (N) = 100% — ω(O) = 100% — 63,2% = 36,8%.

Обозначим количество моль элементов, входящих в состав соединения за «х» (азот) и «у» (кислород). Тогда, мольное отношение будет выглядеть следующим образом (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел):

x:y = ω(N)/Ar(N) : ω(O)/Ar(O);

x:y= 36,8/14: 63,2/16;

x:y= 2,6: 3,95 = 1: 2.

Значит формула соединения азота и кислорода будет иметь вид NO 2 . Это оксид азота (IV).

Ответ NO 2

Этиловый спирт или винный является широко распространённым представителем спиртов. Известно много веществ, в состав которых наряду с углеродом и водородом входит кислород. Из числа кислородсодержащих соединений мне интересен прежде всего класс спиртов.

Этиловый спирт

Физические свойства спирта . Этиловый спирт С 2 Н 6 О - бес­цветная жидкость со своеобразным запахом, легче воды (удель­ный вес 0,8), кипит при температуре 78°,3, хорошо растворяет многие неорганические и органические вещества. Спирт «ректи­фикат» содержит 96% этилового спирта и 4% воды.

Строение молекулы спирта .Согласно валентности элементов, формуле С 2 Н 6 О соответствуют две структуры:


Чтобы решить вопрос о том, какая из формул соответствует спирту в действительности, обратимся к опыту.

Поместим в пробирку со спиртом кусочек натрия. Тотчас начнётся реакция, сопровождающаяся выделением газа. Нетрудно установить, что этот газ - водород.

Теперь поставим опыт так, чтобы можно было определить, сколько атомов водорода выделяется при реакции из каждой мо­лекулы спирта. Для этого в колбу с мелкими кусочками натрия (рис. 1) прибавим по каплям из воронки определённое количе­ство спирта, например 0,1 грамм-молекулы (4,6 грамма). Выделяю­щийся из спирта водород вытесняет воду из двугорлой склянки в измерительный цилиндр. Объём вытесненной воды в цилиндре соответствует объёму выделившегося водорода.

Рис.1. Количественный опыт получения водорода из этилового спирта.

Так как для опыта была взята 0,1 грамм-молекулы спирта, то водорода удаётся получить (в пересчёте на нормальные условия) около 1,12 литра. Это означает, что из грамм-молекулы спирта нат­рий вытесняет 11,2 литра , т.е. половину грамм-молекулы, иначе го­воря 1 грамм-атом водорода. Следовательно, из каждой молекулы спирта натрием вытесняется только один атом водорода.

Очевидно, в молекуле спирта этот атом водорода находится в особом положе­нии по сравнению с осталь­ными пятью атомами водо­рода. Формула (1) не даёт объяснения такому факту. Согласно ей, все атомы водо­рода одинаково связаны с атомами углерода и, как нам известно, не вытесняются ме­таллическим натрием (нат­рий хранят в смеси углеводородов - в керосине). Наоборот, формула (2) отражает наличие одного атома, находя­щегося в особом положении: он соединён с углеродом через атом кислорода. Можно заключить, что именно этот атом водорода связан с атомом кислорода менее прочно; он оказывается более подвижным и вытесняется натрием. Следовательно, структурная формула этилового спирта:


Несмотря на большую подвижность атома водорода гидроксильной группы по сравнению с другими атомами водорода, этиловый спирт не является электролитом и в водном растворе не диссоциирует на ионы.


Чтобы подчеркнуть, что в молекуле спирта содержится гидроксильная группа - ОН, соединённая с углеводородным радика­лом, молекулярную формулу этилового спирта пишут так:

Химические свойства спирта . Выше мы видели, что этиловый спирт реагирует с натрием. Зная строение спирта, мы можем эту реакцию выразить уравнением:

Продукт замещения водорода в спирте натрием носит назва­ние этилата натрия. Он может быть выделен после реакции (пу­тём испарения избытка спирта) в виде твёрдого вещества.

При поджигании на воздухе спирт горит синеватым, еле за­метным пламенем, выделяя много тепла:

Если в колбе с холодильником нагревать этиловый спирт с галогеноводородной кислотой, например с НВг (или смесью NаВг и Н 2 SО 4 , дающей при реакции бромистый водород), то будет от­гоняться маслянистая жидкость - бромистый этил С 2 Н 5 Вг:

Эта реакция подтверждает наличие гидроксильной группы в молекуле спирта.

При нагревании с концентрированной серной кислотой в каче­стве катализатора спирт легко дегидратируется, т. е. отщепляет воду (приставка «де» указывает на отделение чего-либо):

Эта реакция используется для получения этилена в лаборатории. При более слабом нагревании спирта с серной кислотой (не выше 140°) каждая молекула воды отщепляется от двух молекул спирта, вследствие чего образуется диэтиловый эфир - летучая легко воспламеняющаяся жидкость:

Диэтиловый эфир (иногда называемый серным эфиром) при­меняется в качестве растворителя (чистка тканей) и в медицине для наркоза. Он относится к классу простых эфиров - органи­ческих веществ, молекулы которых состоят из двух углеводород­ных радикалов, соединённых посредством атома кислорода: R - О - R1

Применение этилового спирта . Этиловый спирт имеет большое практическое значение. Много этилового спирта расходуется на получение синтетического каучука по способу академика С. В. Лебедева. Пропуская пары этилового спирта через специальный катализатор, получают дивинил:

который затем может полимеризоваться в каучук.

Спирт идёт на выработку красителей, диэтилового эфира, раз­личных «фруктовых эссенций» и ряда других органических ве­ществ. Спирт как растворитель применяется для изготовления парфюмерных продуктов, многих лекарств. Растворяя в спирте смолы, готовят различные лаки. Высокая теплотворная способность спирта обусловливает применение его в качестве горючего (автомобильного топлива = этанола).

Получение этилового спирта . Мировое производство спирта измеряется миллионами тонн в год.

Распространённым способом получения спирта является бро­жение сахаристых веществ в присутствии дрожжей. В этих низ­ших растительных организмах (грибках) вырабатываются особые вещества - ферменты, которые служат биологическими катали­заторами реакции брожения.

В качестве исходных материалов в производстве спирта берут семена злаков или клубни картофеля, богатые крахмалом. Крах­мал с помощью солода, содержащего фермент диастаз, сперва превращают в сахар, который затем сбраживают в спирт.

Учёные много работали над тем, чтобы заменить пищевое сырьё для получения спирта более дешёвым непищевым сырьём. Эти по­иски увенчались успехом.

В последнее время в связи с тем, что при крекинге нефти образуется много этилена, стали

Реакция гидратации этилена (в присутствии серной кислоты) была изучена ещё А. М. Бутлеровым и В. Горяиновым (1873), который предсказал и её промышленное значение. Разработан и внедрен в промышленность также метод прямой гидратации этилена пропусканием его в смеси с парами воды над твердыми катализаторами. Получение спирта из этилена очень экономично, так как этилен входит в состав газов крекинга нефти и других промышленных газов и, следовательно, является широкодоступным сырьем.

Другой способ основан на использовании в качестве исходного продукта ацетилена. Ацетилен подвергается гидратации по реакции Кучерова, а образующийся уксусный альдегид каталитически восстанавливают водородом в присутствии никеля в этиловый спирт. Весь процесс гидратации ацетилена с последующим восстановлением водородом на никелевом катализаторе в этиловый спирт может быть представлен схемой.

Гомологический ряд спиртов

Кроме этилового спирта, известны и другие спирты, сходные с ним по строению и свойствам. Все они могут рассматриваться как производные соответствующих предельных углеводородов, в молекулах которых один атом водорода заменён гидроксильной группой:

Таблица

Углеводороды

Спирты

Температура кипения спиртов в º С

Метан СН 4 Метиловый СН 3 ОН 64,7
Этан С 2 Н 6 Этиловый С 2 Н 5 ОН илиСН 3 - СН 2 - ОН 78,3
Пропан С 3 Н 8 Пропиловый С 4 Н 7 ОН или СН 3 - СН 2 - СН 2 - ОН 97,8
Бутан С 4 Н 10 Бутиловый С 4 Н 9 ОН илиСН 3 - СН 2 - СН 2 - ОН 117

Будучи сходны по химическим свойствам и отличаясь друг от друга по составу молекул на группу атомов СН 2 , эти спирты со­ставляют гомологический ряд. Сравнивая физические свойства спиртов, мы в этом ряду, так же как и в ряду углеводородов, на­блюдаем переход количественных изменений в изменения качест­венные. Общая формула спиртов данного ряда R - ОН (где R - углеводородный радикал).

Известны спирты, в молекулы которых входит несколько гидроксильных групп, например:

Группы атомов, обусловливающие характерные химические свойства соединений, т. е. их химическую функцию, называются функциональными группами.

Спиртами называются органические вещества, моле­кулы которых содержат одну или несколько функциональных гидроксильных групп, соединённых с углеводородным радикалом .

По своему составу спирты отличаются от углеводородов, соот­ветствующих им по числу углеродных атомов, наличием кисло­рода (например, С 2 Н 6 и С 2 Н 6 О или С 2 Н 5 ОН). Поэтому спирты можно рассматривать как продукты частичного окисления угле­водородов.

Генетическая связь между углеводородами и спиртами

Произвести непосредственное окисление углеводорода в спирт довольно трудно. Практически проще это сделать через галогенопроизводное углеводорода. Например, чтобы получить этиловый спирт, исходя из этана С 2 Н 6 , можно сначала получить бромистый этил по реакции:


а затем бромистый этил превратить в спирт нагреванием с водой в присутствии щёлочи:


Щёлочь при этом нужна, чтобы нейтрализовать образующийся бромистый водород и устранить возможность реакции его со спиртом, т.е. сдвинуть эту обратимую реакцию вправо.

Подобным же образом метиловый спирт может быть получен по схеме:


Таким образом, углеводороды, их галогенопроизводные и спирты находятся между собой в генетической связи (связи по происхождению).