Современная формулировка законов. Условия выполнения закона чистоты гамет

Усовершенствование гибридиологического метода позволило Г. Менделю выявить ряд важнейших закономерностей наследования признаков у гороха, которые, как оказалось впоследствии, справедливы для всех диплоидных организмов, размножающихся половым путем.

Описывая результаты скрещиваний, сам Мендель не интерпретировал установленные им факты как некие законы. Но после их переоткрытия и подтверждения на растительных и животных объектах, эти повторяющиеся при определенных условиях явления стали называть законами наследования признаков у гибридов.

Некоторые исследователи выделяют не три, а два закона Менделя. При этом некоторые ученые объединяют первый и второй законы, считая, что первый закон является частью второго и описывает генотипы и фенотипы потомков первого поколения (F1). Другие исследователи объединяют в один второй и третий законы, полагая, что «закон независимого комбинирования» есть в сущности «закон независимости расщепления», протекающего одновременно по разным парам аллелей. Однако в отечественной литературе речь идет о трех законах Менделя.

Крупная научная удача Менделя состояла в том, что выбранные им семь признаков определялись генами на разных хромосомах, что исключало возможное сцепленное наследование. Он обнаружил, что:

1) У гибридов первого поколения присутствует признак только одной родительской формы, а другой «исчезает». Это закон единообразия гибридов первого поколения.

2) Во втором поколении наблюдается расщепление: три четверти потомков имеют признак гибридов первого поколения, а четверть - «исчезнувший» в первом поколении признак. Это закон расщепления.

3) Каждая пара признаков наследуется независимо от другой пары. Это закон независимого наследования.

Разумеется, Мендель не знал, что эти положения со временем назовут первым, вторым и третьим законами Менделя.

Современная формулировка законов

Первый закон Менделя

Закон единообразия гибридов первого поколения -- при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей.

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака -- на современном языке это означает гомозиготность особей по этому признаку.

Второй закон Менделя

Закон расщепления -- при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть -- рецессивный, называется расщеплением. Следовательно, расщепление -- это распределение (рекомбинация) доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Расщепление потомства при скрещивании гетерозиготных особей объясняется тем, что гаметы генетически чисты, то есть несут только один ген из аллельной пары. Закон чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один аллель из пары аллелей данного гена. Цитологическая основа расщепления признаков -- расхождение гомологичных хромосом и образование гаплоидных половых клеток в мейозе (рис.4).

Рис.4.

Пример иллюстрирует скрещивание растений с гладкими и морщинистыми семенами. Изображены только две пары хромосом, в одной из этих пар находится ген, ответственный за форму семян. У растений с гладкими семенами мейоз приводит к образованию гамет с аллелем гладкости (R), а у растений с морщинистыми семенами - гамет с аллелем морщинистости (r). Гибриды первого поколения F1 имеют одну хромосому с аллелем гладкости и одну - с аллелем морщинистости. Мейоз в F1 приводит к образованию в равном числе гамет с R и с r. Случайное попарное объединение этих гамет при оплодотворении приводит в поколении F2 к появлению особей с гладкими и морщинистыми горошинами в отношении 3:1.

Третий закон Менделя

Закон независимого наследования -- при скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).

Менделеевский закон независимого наследования можно объяснить перемещением хромосом во время мейоза (рис.5). При образовании гамет распределение между ними аллелей из данной пары гомологичных хромосом происходит независимо от распределения аллелей из других пар. Именно случайное расположение гомологичных хромосом на экваторе веретена в метафазе I мейоза и их последующее расположение в анафазе I ведет к разнообразию рекомбинаций аллелей в гаметах. Число возможных сочетаний аллелей в мужских или женских гаметах можно определить по общей формуле 2n , где n - гаплоидное число хромосом. У человека n=23, а возможное число различных сочетаний составляет 223=8 388 608.


Рис.5. Объяснение менделевского закона независимого распределения факторов (аллелей) R, r, Y, y как результата независимого расхождения разных пар гомологичных хромосом в мейозе. Скрещивание растений, отличающихся по форме и цвету семян (гладкие желтые Ч зеленые морщинистые), дает гибридные растения, у которых в хромосомах одной гомологичной пары содержатся аллели R и r, а другой гомологичной пары - аллели Y и y. В метафазе I мейоза хромосомы, полученные от каждого из родителей, могут с равной вероятностью отходить либо к одному и тому же полюсу веретена (левый рисунок), либо к разным (правый рисунок). В первом случае возникают гаметы, содержащие те же комбинации генов (YR и yr), что и у родителей, во втором случае - альтернативные сочетания генов (Yr и yR). В результате с вероятностью 1/4образуются четыре типа гамет, случайная комбинация этих типов приводит к расщеплению потомства 9:3:3:1, как это и наблюдалось Менделем.

Формулировка 1 закона Менделя Закон единообразия первого поколения гибридов, или первый закон Менделя. При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных признаков, всё первое поколение гибридов (F1) окажется единообразным и будет нести признак одного из родителей




Формулировка 2 закона Менделя Закон расщепления, или второй закон Менделя Менделя При скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.






Формулировка 3 закона Менделя Закон независимого наследования (третий закон Менделя) При скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).(Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1)


Р АА ВВ аа bb х жёлтые, гладкие семеназелёные, морщинистые семена G (гаметы) АВаbаb F1F1 Аа Bb жёлтые, гладкие семена 100% 3 закон Менделя ДИГИБРИДНОЕ СКРЕЩИВАНИЕ. Для опытов в качестве материнского растения был взят горох с гладкими желтыми семенами, а в качестве отцовского – с зелеными морщинистыми семенами. У первого растения оба признака являлись доминантными (АВ), а у второго – оба рецессивными (аb



Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. (желтые и гладкие горошины) Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1. 9/16 желтыми гладкими горошинами, 3/16 с желтыми морщинистыми горошинами, 3/16 с зелёными гладкими горошинами, 1/16 с зелёными морщинистыми горошинами.


Задача 1.У спаниелей чёрный цвет шерсти доминирует над кофейным, а короткая шерсть – над длинной. Охотник купил собаку чёрного цвета с короткой шерстью и, чтобы быть уверенным, что она чистопородна, провёл анализирующее скрещивание. Родилось 4 щенка: 2 короткошерстных чёрного цвета, 2 короткошерстных кофейного цвета. Каков генотип купленной охотником собаки? Задачи на дигибридное скрещивание.


Задача 2. У томата красная окраска плода доминирует над желтой окраской, а высокий стебель - над низким стеблем. От скрещивания сорта с красными плодами и высоким стеблем и сорта с желтыми плодами и низким стеблем получили 28 гибридов во втором поколении. Гибриды первого поколения скрещивались между собой, получили 160 растений- гибридов второго поколения. Сколько типов гамет образует растение первого поколения? Сколько растений в первом поколении имеют красную окраску плода и высокий стебель? Сколько разных генотипов среди растений второго поколения с красной окраской плода и высоким стеблем? Сколько растений во втором поколении имеют желтую окраску плода и высокий стебель? Сколько растений во втором поколении имеют желтую окраску плода и низкий стебель?


Задача 3 У человека карий цвет глаз доминирует над голубым цветом, а способность владеть левой рукой рецессивна по отношению к праворукости. От брака голубоглазого мужчины-правши с кареглазой женщиной-левшой родился голубоглазый ребенок-левша. Сколько типов гамет образуется у матери? Сколько типов гамет образуется у отца? Сколько может быть разных генотипов среди детей? Сколько может быть разных фенотипов среди детей? Какова вероятность рождения в этой семье голубоглазого ребенка-левши (%)?


Задача 4 Хохлатость у кур доминирует над отсутствием хохла, а черная окраска оперения - над бурой. От скрещивания гетерозиготной черной курицы без хохла с гетерозиготным бурым хохлатым петухом получено 48 цыплят. Сколько типов гамет образуется у курицы? Сколько типов гамет образуется у петуха? Сколько разных генотипов будет среди цыплят? Сколько будет хохлатых черных цыплят? Сколько будет черных цыплят без хохла?


Задача 5 У кошек короткая шерсть сиамской породы доминирует над длинной шерстью персидской породы, а черная окраска шерсти персидской породы доминантна по отношению к палевой окраске сиамской. Скрещивались сиамские кошки с персидскими. При скрещивании гибридов между собой во втором поколении получено 24 котенка. Сколько типов гамет образуется у кошки сиамской породы? Сколько разных генотипов получилось во втором поколении? Сколько разных фенотипов получилось во втором поколении? Сколько котят во втором поколении похожи на сиамских кошек? Сколько котят во втором поколении похожи на персидских?


Решение задач на дом Вариант 1 1) Голубоглазый правша женился на кареглазой правше. У них родилось двое детей – кареглазый левша и голубоглазый правша. От второго брака этого мужчины с другой кареглазой правшой родилось 8 кареглазых детей, все правши. Каковы генотипы всех трёх родителей. 2) У человека ген лопоухости доминирует над геном нормальных прижатых ушей, а ген нерыжих волос над геном рыжих. Какого потомства можно ожидать от брака лопоухого рыжего, гетерозиготного по первому признаку мужчины с гетерозиготной нерыжей с нормальными прижатыми ушами женщиной. Вариант 2 1)У человека косолапость (Р) доминирует над нормальным строением стопы (Р) а нормальный обмен углеводов (О) над сахарным диабетом. Женщина, имеющая нормальное строение стопы и нормальный обмен веществ, вышла замуж за косолапого мужчину. От этого брака родилось двое детей, у одного из которых развилась косолапость, а у другого сахарный диабет. Определить генотип родителей по фенотипу их детей. Какие фенотипы и генотипы детей возможны в этой семье? 2) У человека ген карих глаз доминирует над геном голубых глаз, а умение владеть правой рукой над леворукостью. Обе пары генов расположены в разных хромосомах. Какими могут быть дети, если: отец левша, но гетерозиготен по цвету глаз, а мать голубоглаза, но гетерозиготна в отношении умения владеть руками.


Решим задачи 1. У человека нормальный обмен углеводов доминирует над рецессивным геном, ответственным за развитие сахарного диабета. Дочь здоровых родителей больна. Определите, может ли в этой семье родиться здоровый ребенок и какова вероятность этого события? 2. У людей карий цвет глаз доминирует над голубым. Способность лучше владеть правой рукой доминирует над леворукостью, гены обоих признаков находятся в разных хромосомах. Кареглазый правша женится на голубоглазой левше. Какое потомство следует ожидать в этой паре?

Закономерности наследования признаков при половом размножении были установлены Г. Менделем. Необходимо иметь четкое представление о генотипе и фенотипе, аллелях, гомо- и гетерозиготности, доминировании и его типах, типах скрещиваний, а также составлять схемы.

Моногибридным называется скрещивание, при котором родительские формы отличаются друг от друга по одной паре контрастных, альтернативных признаков.

Следовательно, при таком скрещивании прослеживаются закономерности наследования только двух вариантов признака, развитие которого обусловлено парой аллельных генов. Примерами моногибридного скрещивания, проведенного Г. Менделем, могут служить скрещивания гороха с такими хорошо заметными альтернативными признаками, как пурпурные и белые цветки, желтая и зеленая окраска незрелых плодов (бобов), гладкая и морщинистая поверхность семян, желтая и зеленая их окраска и др.

Единообразие гибридов первого поколения (первый закон Менделя).При скрещивании гороха с пурпурными (АА) и белыми (аа) цветками Мендель обнаружил, что у всех гибридных растений первого поколения (F 1) цветки оказались пурпурными (рис. 2).

Рисунок 2 Схема моногибридного скрещивания

При этом белая окраска цветка не проявлялась. При скрещивании растений, имеющих гладкую и морщинистую форму семян, у гибридов семена будут гладкими. Г. Мендель установил также, что все гибриды F 1 оказались единообразными (однородными) по каждому из семи исследуемых им признаков. Следовательно, у гибридов первого поколения из пары родительских альтернативных признаков проявляется только один, а признак другого родителя как бы исчезает.

Альтернативные признаки – это признаки взаимоисключающие, контрастные.

Явление преобладания у гибридов F 1 признаков одного из родителей Мендель назвал доминированием, а соответствующий признак – доминантным. Признаки, не проявляющиеся у гибридов F 1, он назвал рецессивными. Поскольку все гибриды первого поколения единообразны, это явление было названо первым законам Менделя, или законом единообразия гибридов первого поколения, а также правилом доминирования.

Сформулировать его можно следующим образом: при скрещивании двух организмов, относящихся к разным чистым линиям (двух гомозиготных организмов), отличающихся друг от друга по одной паре альтернативных признаков, все первое поколение гибридов окажется единообразным и будет нести признак одного из родителей.

Каждый ген имеет два состояния – «А» и «а», поэтому они составляют одну пару, а каждого из членов пары называют аллелем. Гены, расположенные в одних и тех же локусах (участках) гомологических хромосом и определяющие альтернативное развитие одного и того же признака, называются аллельными.

Например, пурпурная и белая окраска цветка гороха является доминантным и рецессивным признаками соответственно двум аллелям (А и а) одного гена. Благодаря наличию двух аллелей возможны два состояния организма: гомо- и гетерозиготные. Если организм содержит одинаковые аллели конкретного гена (АА или аа), то он называется гомозиготным по данному гену (или признаку), а если разные (Аа) – то гетерозиготным. Следовательно, аллель – это форма существования гена. Примером трехаллельного гена является ген, определяющий у человека систему группы крови АВО. Аллелей бывает и больше: для гена, контролирующего синтез гемоглобина человека, их известно много десятков.

Из гибридных семян гороха Мендель вырастил растения, которые подверг самоопылению, и образовавшиеся семена вновь высеял. В результате было получено второе поколение гибридов, или гибриды F 2 . Среди последних обнаружилось расщепление по каждой паре альтернативных признаков в соотношении примерно 3:1, т. е. три четверти растений имели доминантные признаки (пурпурные цветки, желтые семена, гладкие семена и т. д.) и одна четверть – рецессивные (белые цветки, зеленые семена, морщинистые семена и т. д.). Следовательно, рецессивный признак у гибрида F 1 не исчез, а только был подавлен и вновь проявился во втором поколении. Это обобщение позднее было названовторым законом Менделя, или законом расщепления.

Расщепление – это явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несет доминантный признак, а часть – рецессивный.

Второй закон Менделя: при скрещивании двух потомков первого поколения между собой (двух гетерозиготных особей) во втором поколении наблюдается расщепление в определенном числовом соотношении: по фенотипу 3:1, по генотипу 1:2:1 (рис. 3).

Рисунок 3 – Схема расщепления признаков

при скрещивании гибридов F 1

Расщепление признаков в потомстве при скрещивании гетерозиготных особей Г. Мендель объяснил тем, что гаметы генетически чисты, то есть несут только один ген из аллельной пары. Закон чистоты гаметможно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадают только один ген из аллельной пары.

Следует иметь в виду, что использование гибридологического метода для анализа наследования признаков на любых видах животных или растений предусматривает проведение следующих скрещиваний:

    скрещивание родительских форм (Р), различающихся по одной (моногибридное скрещивание) или нескольким парам (полигибридное скрещивание) альтернативных признаков и получение гибридов первого поколения (F 1);

    скрещивание гибридов F 1 между собой и получение гибридов второго поколения (F 2);

    математический анализ результатов скрещивания.

В дальнейшем Мендель перешел к изучению дигибридного скрещивания.

Дигибридное скрещивание – это скрещивание, в котором участвуют две пары аллелей (парные гены – аллельные и располагаются только в гомологичных хромосомах).

При дигибридном скрещивании Г. Мендель изучал наследование признаков, за которые отвечают гены, лежащие в разных парах гомологичных хромосом. В связи с этим каждая гамета должна содержать по одному гену из каждой аллельной пары.

Гибриды, гетерозиготные по двум генам, называют дигетерозиготными, а в случае отличия их по трем и многим генам – три- и полигетерозиготными соответственно.

Более сложные схемы дигибридных скрещиваний, запись генотипов и фенотипов F 2 ведется с использованием решетки Пеннета. Рассмотрим пример такого скрещивания. Для скрещивания были взяты две исходные гомозиготные родительские формы: первая форма имела желтые и гладкие семена; вторая форма обладала зелеными и морщинистыми семенами (рис. 4).

Рисунок 4 – Дигибридное скрещивание растений гороха,

различающихся по форме и окраске семян

Желтый цвет и гладкие семена – доминантные признаки; зеленый цвет и морщинистые семена – рецессивные признаки. Гибриды первого поколения – скрещивались между собой. Во втором поколении наблюдалось расщепление по фенотипу в соотношении 9:3:3:1, или (3+1) 2 , после самоопыления гибридов F 1 в соответствии с законом расщепления вновь появились морщинистые и зеленые семена.

Родительские растения в этом случае имеют генотипы ААВВ и aabb, а генотип гибридов F 1 – АаВb, т. е. является дигетерозиготным.

Таким образом, при скрещивании гетерозиготных особей, отличающихся по нескольким парам альтернативных признаков, в потомстве наблюдается расщепление по фенотипу в соотношении (3+1) п, где п – число пар альтернативных признаков.

Гены, определяющие развитие разных пар признаков, называются неаллельными.

Результаты дигибридного и полигибридного скрещивания зависят от того, располагаются гены, определяющие рассмотренные признаки, в одной или в разных хромосомах. Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом гороха.

При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2 n = 14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако, Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

На основе проведенных исследований Мендель вывел третий закон – закон независимого наследования признаков, или независимого комбинирования генов.

Каждая пара аллельных генов (и альтернативных признаков, контролируемых ими) наследуется независимо друг от друга.

Закон независимого комбинирования генов составляет основу комбинативной изменчивости, наблюдаемой при скрещивании у всех живых организмов. Отметим также, что в отличие от первого закона Менделя, который справедлив всегда, второй закон действителен только для генов, локализованных в разных парах гомологичных хромосом. Это обусловлено тем, что негомологичные хромосомы комбинируются в клетке независимо друг от друга, что было доказано не только при изучении характера наследования признаков, но и прямым цитологическим методом.

При изучении материала обратите внимание на случаи нарушений закономерных расщеплений по фенотипу, вызванных летальным действием отдельных генов.

Наследственность и изменчивость. Наследственность и изменчивость являются важнейшими свойствами, характерными для всех живых организмов.

Наследственную, или генотипическую, изменчивость подразделяют на комбинативную и мутационную.

Комбинативной называют изменчивость, в основе которой лежит образование рекомбинаций, т. е. таких комбинаций генов, которых не было у родителей.

В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости служат три процесса:

    Независимое расхождение гомологичных хромосом в первом мейотическом делении. Именно независимое комбинирование хромосом при мейозе является основой третьего закона Г. Менделя. Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами – пример комбинативной изменчивости.

    Взаимный обмен участками гомологичных хромосом, или кроссинговер. Он создает новые группы сцепления, т. е. служит важным источником генетической рекомбинации аллелей. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.

    Случайное сочетание гамет при оплодотворении.

Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом (сами гены при этом не изменяются). Однако новые комбинации генов довольно легко распадаются при передаче из поколения в поколение.

Пример комбинативной изменчивости. У цветка ночная красавица есть ген красного цвета лепестков А и ген белого цвета а. Организм Аа имеет розовый цвет лепестков. Таким образом, у ночной красавицы нет гена розового цвета, розовый цвет возникает при сочетании (комбинации) красного и белого гена.

У человека есть наследственное заболевание серповидноклеточная анемия. АА – норма, аа – смерть, Аа – СКА. При СКА человек не может переносить повышенных физических нагрузок, при этом он не болеет малярией, т. е. возбудитель малярии малярийный плазмодий не может питаться неправильным гемоглобином. Такой признак полезен в экваториальном поясе; для него нет гена, он возникает при сочетании генов А и а.

Таким образом, наследственная изменчивость усиливается благодаря комбинативной изменчивости. Возникнув, отдельные мутации оказываются в соседстве с другими мутациями, входят в состав новых генотипов, т. е. возникает множество сочетаний аллелей. Любая особь генетически уникальна (за исключением однояйцевых близнецов и особей, возникших за счет бесполого размножения клона, имеющего родоначальником одну клетку). Так, если допустить, что в каждой паре гомологичных хромосом имеется только одна пара аллельных генов, то для человека, у которого гаплоидный набор хромосом равен 23, число возможных генотипов составит 3 в 23 степени. Такое огромное количество генотипов в 20 раз превышает численность всех людей на Земле. Однако в действительности гомологичные хромосомы различаются по нескольким генам и в расчете не учтено явление кроссинговера. Поэтому количество возможных генотипов выражается астрономическим числом, и можно с уверенностью утверждать, что возникновение двух одинаковых людей практически невероятно (за исключением однояйцовых близнецов, возникших из одной оплодотворенной яйцеклетки). Отсюда, в частности, следует возможность достоверного определения личности по остаткам живых тканей, подтверждения или исключения отцовства.

Таким образом, обмен генами вследствие перекреста хромосом в первом делении мейоза, независимая и случайная перекомбинация хромосом в мейозе и случайность слияния гамет в половом процессе – три фактора, обеспечивающие существование комбинативной изменчивости. Мутационная изменчивость самого генотипа.

Мутации – это внезапные наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Основные положения мутационной теории разработаны ученым Г. Де Фризом в 19011903 гг. и сводятся к следующему:

Мутации возникают внезапно, скачкообразно, как дискретные изменения признаков;

Отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в поколение;

Мутации проявляются по-разному и могут быть как полезными, так и вредными, как доминантными, так и рецессивными;

Вероятность обнаружения мутаций зависит от числа исследованных особей;

Сходные мутации могут возникать повторно;

Мутации ненаправленны (спонтанны), т. е. мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.

Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма.

По характеру изменения генома, т. е. совокупности генов, заключенных в гаплоидном наборе хромосом, различают генные, хромосомные и геномные мутации.

Генные, или точковые, мутации – результат изменения нуклеотидной последовательности в молекуле ДНК в пределах одного гена.

Такое изменение в гене воспроизводится при транскрипции в структуре и-РНК; оно приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся при трансляции на рибосомах. В результате синтезируется другой белок, что ведет к изменению соответствующего признака организма. Это наиболее распространенный вид мутаций и важнейший источник наследственной изменчивости организмов.

Хромосомные мутации (перестройки, или аберрации) – это изменения в структуре хромосом, которые можно выявить и изучить под световым микроскопом.

Известны перестройки разных типов:

Нехватка потеря концевых участков хромосомы;

Делеция выпадение участка хромосомы в средней ее части;

Дупликация двух- или многократное повторение генов, локализованных в определенном участке хромосомы;

Инверсия поворот участка хромосомы на 180°, в результате чего в этом участке гены расположены в последовательности, обратной по сравнению с обычной;

Транслокация изменение положения какого-либо участка хромосомы в хромосомном наборе. К наиболее распространенному типу транслокаций относятся реципрокные, при которых происходит обмен участками между двумя негомологичными хромосомами. Участок хромосомы может изменить свое положение и без реципрокного обмена, оставаясь в той же хромосоме или включаясь в какую-то другую.

Геномные мутации – изменение числа хромосом в геноме клеток организма. Это явление происходит в двух направлениях: в сторону увеличения числа целых гаплоидных наборов (полиплоидия) и в сторону потери или включения отдельных хромосом (анеуплоидия).

Полиплоидия кратное увеличение гаплоидного набора хромосом. Клетки с разным числом гаплоидных наборов хромосом называются триплоидными (3 n), тетраплоидными (4 n), гексаплоидными (6 n), октаплоидными (8 n) и т. д. Чаще всего полиплоиды образуются при нарушении порядка расхождения хромосом к полюсам клетки при мейозе или митозе. Полиплоидия приводит к изменению признаков организма и поэтому является важным источником изменчивости в эволюции и селекции, особенно у растений. Это связано с тем, что у растительных организмов весьма широко распространены гермафродитизм (самоопыление), апомиксис (партеногенез) и вегетативное размножение. Поэтому около трети видов растений, распространенных на нашей планете, полиплоиды, а в резко континентальных условиях высокогорного Памира произрастает до 85 % полиплоидов. Почти все культурные растения тоже полиплоиды, у которых, в отличие от их диких сородичей, более крупные цветки, плоды и семена, а в запасающих органах (стебель, клубни) накапливается больше питательных веществ. Полиплоиды легче приспосабливаются к неблагоприятным условиям жизни, легче переносят низкие температуры и засуху. Именно поэтому они широко распространены в северных и высокогорных районах.

Грегор Мендель - австрийский ботаник, изучивший и описавший Законы Менделя - это по сей день играющие важную роль в изучении влияния наследственности и передачи наследственных признаков.

В своих экспериментах ученый скрещивал различные виды гороха, отличающиеся по одному альтернативному признаку: оттенок цветов, гладкие-морщинистые горошины, высота стебля. Кроме того, отличительной особенностью опытов Менделя стало использование так называемых "чистых линий", т.е. потомства, получившегося от самоопыления родительского растения. Законы Менделя, формулировка и краткое описание будут рассмотрены ниже.

Многие годы изучая и скрупулезно подготавливая эксперимент с горохом: специальными мешочками ограждая цветки от внешнего опыления, австрийский ученый достиг невероятных на тот момент результатов. Тщательный и длительный анализ полученных данных позволил вывести исследователю законы наследственности, которые позже получили название "Законы Менделя".

Прежде чем приступить к описанию законов, следует ввести несколько понятий, необходимых для понимания данного текста:

Доминантный ген - ген, признак которого проявлен в организме. Обозначается A, B. При скрещивании такой признак считается условно более сильным, т.е. он всегда проявится в случае, если второе родительское растение будет иметь условно менее слабые признаки. Что и доказывают законы Менделя.

Рецессивный ген - ген в фенотипе не проявлен, хотя присутствует в генотипе. Обозначается прописной буквой a,b.

Гетерозиготный - гибрид, в чьем генотипе (наборе генов) есть и доминантный, и некоторого признака. (Aa или Bb)

Гомозиготный - гибрид, обладающий исключительно доминантными или только рецессивными генами, отвечающими за некий признак. (AA или bb)

Ниже будут рассмотрены Законы Менделя, кратко сформулированные.

Первый закон Менделя , также известный, как закон единообразия гибридов, можно сформулировать следующим образом: первое поколение гибридов, получившихся от скрещивания чистых линий отцовских и материнских растений, не имеет фенотипических (т.е. внешних) различий по изучаемому признаку. Иными словами, все дочерние растения имеют одинаковый оттенок цветков, высоту стебля, гладкость или шероховатость горошин. Более того, проявленный признак фенотипически в точности соответствует исходному признаку одного из родителей.

Второй закон Менделя или закон расщепления гласит: потомство от гетерозиготных гибридов первого поколения при самоопылении или родственном скрещивании имеет как рецессивные, так и доминантные признаки. Причем расщепление происходит по следующему принципу: 75% - растения с доминантным признаком, остальные 25% - с рецессивным. Проще говоря, если родительские растения имели красные цветки (доминантный признак) и желтые цветки (рецессивный признак), то дочерние растения на 3/4 будут иметь красные цветки, а остальные - желтые.

Третий и последний закон Менделя , который еще называют в общих чертах означает следующее: при скрещивании гомозиготных растений, обладающих 2 и более разными признаками (то есть, например, высокое растение с красными цветками(AABB) и низкое растение с желтыми цветками(aabb), изучаемые признаки (высота стебля и оттенок цветков) наследуются независимо. Иными словами, результатом скрещивания могут стать высокие растения с желтыми цветками (Aabb) или низкие с красными(aaBb).

Законы Менделя, открытые еще в середине 19 века, много позже получили признание. На их основе была построена вся современная генетика, а вслед за ней - селекция. Кроме того, законы Менделя являются подтверждением великого разнообразия существующих ныне видов.

Законы Менделя

Схема первого и второго закона Менделя. 1) Растение с белыми цветками (две копии рецессивного аллеля w) скрещивается с растением с красными цветками (две копии доминантного аллеля R). 2) У всех растений-потомков цветы красные и одинаковый генотип Rw. 3) При самооплодотворении у 3/4 растений второго поколения цветки красные (генотипы RR + 2Rw) и у 1/4 - белые (ww).

Законы Менделя - это принципы передачи наследственных признаков от родительских организмов к их потомкам, вытекающие из экспериментов Грегора Менделя . Эти принципы послужили основой для классической генетики и впоследствии были объяснены как следствие молекулярных механизмов наследственности. Хотя в русскоязычных учебниках обычно описывают три закона, «первый закон» не был открыт Менделем. Особое значение из открытых Менделем закономерностей имеет «гипотеза чистоты гамет» .

История

В начале XIX века Дж. Госс, экспериментируя с горохом, показал, что при скрещивании растений с зеленовато-голубыми горошинами и с желтовато-белыми в первом поколении получались жёлто-белые. Однако, при втором поколении, не проявляющиеся у гибридов первого поколения, и названные позже Менделем рецессивными признаки вновь проявлялись, причём растения с ними не давали расщепление при самоопылении .

О. Саржэ, проводя опыты на дынях сравнивал их по отдельным признакам(мякоть, кожура и т.д.) также установил отсутствие смешения признаков, которые не исчезали у потомков, а только перераспределялись среди них. Ш. Ноден , скрещивая различные виды дурмана, обнаружил преобладание признаков дурмана Datula tatula над Datura stramonium , причём это не зависело от того, какое растение материнское, а какое - отцовское .

Таким образом к середине XIX века было открыто явление доминантности, единообразие гибридов в первом поколении(все гибриды первого поколения похожи друг на друга), расщепление и комбинаторику признаков во втором поколении. Тем не менее, Мендель, высоко оценивая работы предшественников указывал, что всеобщего закона образования и развития гибридов ими не было найдено, и их опыты не обладают достаточной достоверностью для определения численных соотношений. Нахождение такого достоверного метода и математический анализ результатов, которые помогли создать теорию наследственности, является главной заслугой Менделя .

Методы и ход работы Менделя

  • Мендель изучал, как наследуются отдельные признаки.
  • Мендель выбрал из всех признаков только альтернативные - такие, которые имели у его сортов два чётко различающихся варианта (семена либо гладкие, либо морщинистые; промежуточных вариантов не бывает). Такое сознательное сужение задачи исследования позволило чётко установить общие закономерности наследования .
  • Мендель спланировал и провёл масштабный эксперимент. Им было получено от семеноводческих фирм 34 сорта гороха, из которых он отобрал 22 «чистых» (не дающих расщепления по изучаемым признакам при самоопылении) сорта. Затем он проводил искусственную гибридизацию сортов, а полученные гибриды скрещивал между собой. Он изучил наследование семи признаков, изучив в общей сложности около 20 000 гибридов второго поколения. Эксперимент облегчался удачным выбором объекта: горох в норме - самоопылитель , но легко проводить искусственную гибридизацию.
  • Мендель одним из первых в биологии использовал точные количественные методы для анализа данных. На основе знания теории вероятностей он понял необходимость анализа большого числа скрещиваний для устранения роли случайных отклонений.

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

Закон единообразия гибридов первого поколения (первый закон Менделя) - при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей.

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака - на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный ), всегда подавлял другой (рецессивный) .

Кодоминирование и неполное доминирование

Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования . Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот .

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть - рецессивный, называется расщеплением. Следовательно, расщепление - это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Объяснение

Закон чистоты гамет : в каждую гамету попадает только одна аллель из пары аллелей данного гена родительской особи.

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный «Закон» носит наиболее общий характер (выполняется при наиболее широком круге условий).

Закон независимого наследования признаков

Иллюстрация независимого наследования признаков

Определение

Закон независимого наследования (третий закон Менделя) - при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

Объяснение

Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

Основные положения теории наследственности Менделя

В современной интерпретации эти положения следующие:

  • За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы - гены (термин «ген» предложен в 1909 г. В.Иоганнсеном)
  • Каждый диплоидный организм содержит пару аллелей данного гена, отвечающих за данный признак; один из них получен от отца, другой - от матери.
  • Наследственные факторы передаются потомкам через половые клетки. При формировании гамет в каждую из них попадает только по одному аллелю из каждой пары (гаметы «чисты» в том смысле, что не содержат второго аллеля).

Условия выполнения законов Менделя

В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена (а таких признаков абсолютное большинство), он имеет более сложный характер наследования.

Условия выполнения закона расщепления при моногибридном скрещивании

Расщепление 3: 1 по фенотипу и 1: 2: 1 по генотипу выполняется приближенно и лишь при следующих условиях.