Симметричными относительно прямой. Симметрия относительно прямой

Жизнь людей наполнена симметрией. Это удобно, красиво, не нужно выдумывать новых стандартов. Но что она есть на самом деле и так ли красива в природе, как принято считать?

Симметрия

С древних времен люди стремятся упорядочить мир вокруг себя. Поэтому что-то считается красивым, а что-то не очень. С эстетической точки зрения как привлекательные рассматриваются золотое и серебряное сечения, а также, разумеется, симметрия. Этот термин имеет греческое происхождение и дословно означает "соразмерность". Разумеется, речь идет не только о совпадении по этому признаку, но также и по некоторым другим. В общем смысле симметрия - это такое свойство объекта, когда в результате тех или иных образований результат равен исходным данным. Это встречается как в живой, так и в неживой природе, а также в предметах, сделанных человеком.

Прежде всего термин "симметрия" употребляется в геометрии, но находит применение во многих научных областях, причем его значение остается в общем и целом неизменным. Это явление достаточно часто встречается и считается интересным, поскольку различается несколько его видов, а также элементов. Использование симметрии также интересно, ведь она встречается не только в природе, но и в орнаментах на ткани, бордюрах зданий и многих других рукотворных предметах. Стоит рассмотреть это явление поподробнее, поскольку это крайне увлекательно.

Употребление термина в других научных областях

В дальнейшем симметрия будет рассматриваться с точки зрения геометрии, однако стоит упомянуть, что данное слово используется не только здесь. Биология, вирусология, химия, физика, кристаллография - все это неполный список областей, в которых данное явление изучается с различных сторон и в разных условиях. От того, к какой науке относится этот термин, зависит, например, классификация. Так, разделение на типы серьезно варьируется, хотя некоторые основные, пожалуй, остаются неизменными везде.

Классификация

Различают несколько основных типов симметрии, из которых наиболее часто встречаются три:


Кроме того, в геометрии различают также следующие типы, они встречаются значительно реже, но не менее любопытны:

  • скользящая;
  • вращательная;
  • точечная;
  • поступательная;
  • винтовая;
  • фрактальная;
  • и т. д.

В биологии все виды называются несколько иначе, хотя по сути могут быть такими же. Подразделение на те или иные группы происходит на основании наличия или отсутствия, а также количества некоторых элементов, таких как центры, плоскости и оси симметрии. Их следует рассмотреть отдельно и более подробно.

Базовые элементы

В явлении выделяют некоторые черты, одна из которых обязательно присутствует. Так называемые базовые элементы включают в себя плоскости, центры и оси симметрии. Именно в соответствии с их наличием, отсутствием и количеством определяется тип.

Центром симметрии называют точку внутри фигуры или кристалла, в которой сходятся линии, соединяющие попарно все параллельные друг другу стороны. Разумеется, он существует не всегда. Если есть стороны, к которым нет параллельной пары, то такую точку найти невозможно, поскольку ее нет. В соответствии с определением, очевидно, что центр симметрии - это то, через что фигура может быть отражена сама на себя. Примером может служить, например, окружность и точка в ее середине. Этот элемент обычно обозначается как C.

Плоскость симметрии, разумеется, воображаема, но именно она делит фигуру на две равные друг другу части. Она может проходить через одну или несколько сторон, быть параллельной ей, а может делить их. Для одной и той же фигуры может существовать сразу несколько плоскостей. Эти элементы обычно обозначаются как P.

Но, пожалуй, наиболее часто встречается то, что называют "оси симметрии". Это нередкое явление можно увидеть как в геометрии, так и в природе. И оно достойно отдельного рассмотрения.

Оси

Часто элементом, относительно которого фигуру можно назвать симметричной,


выступает прямая или отрезок. В любом случае речь идет не о точке и не о плоскости. Тогда рассматриваются фигур. Их может быть очень много, и расположены они могут быть как угодно: делить стороны или быть параллельными им, а также пересекать углы или не делать этого. Оси симметрии обычно обозначаются как L.

Примерами могут служить равнобедренные и В первом случае будет вертикальная ось симметрии, по обе стороны от которой равные грани, а во втором линии будут пересекать каждый угол и совпадать со всеми биссектрисами, медианами и высотами. Обычные же треугольники ею не обладают.

Кстати, совокупность всех вышеназванных элементов в кристаллографии и стереометрии называется степенью симметрии. Этот показатель зависит от количества осей, плоскостей и центров.

Примеры в геометрии

Условно можно разделить все множество объектов изучения математиков на фигуры, имеющие ось симметрии, и такие, у которых ее нет. В первую категорию автоматически попадают все окружности, овалы, а также некоторые частные случаи, остальные же попадают во вторую группу.

Как и в случае, когда говорилось про ось симметрии треугольника, данный элемент для четырехугольника существует не всегда. Для квадрата, прямоугольника, ромба или параллелограмма он есть, а для неправильной фигуры, соответственно, нет. Для окружности оси симметрии - это множество прямых, которые проходят через ее центр.

Кроме того, интересно рассмотреть и объемные фигуры с этой точки зрения. Хотя бы одной осью симметрии помимо всех правильных многоугольников и шара будут обладать некоторые конусы, а также пирамиды, параллелограммы и некоторые другие. Каждый случай необходимо рассматривать отдельно.

Примеры в природе

В жизни называется билатеральной, она встречается наиболее
часто. Любой человек и очень многие животные тому пример. Осевая же называется радиальной и встречается гораздо реже, как правило, в растительном мире. И все-таки они есть. Например, стоит подумать, сколько осей симметрии имеет звезда, и имеет ли она их вообще? Разумеется, речь идет о морских обитателях, а не о предмете изучения астрономов. И правильным ответом будет такой: это зависит от количества лучей звезды, например пять, если она пятиконечная.

Кроме того, радиальная симметрия наблюдается у многих цветков: ромашки, васильки, подсолнухи и т. д. Примеров огромное количество, они буквально везде вокруг.


Аритмия

Этот термин, прежде всего, напоминает большинству о медицине и кардиологии, однако он изначально имеет несколько другое значение. В данном случае синонимом будет "асимметрия", то есть отсутствие или нарушение регулярности в том или ином виде. Ее можно встретить как случайность, а иногда она может стать прекрасным приемом, например, в одежде или архитектуре. Ведь симметричных зданий очень много, но знаменитая чуть наклонена, и хоть она не одна такая, но это самый известный пример. Известно, что так получилось случайно, но в этом есть своя прелесть.

Кроме того, очевидно, что лица и тела людей и животных тоже не полностью симметричны. Проводились даже исследования, согласно результатам которых "правильные" лица расценивались как неживые или просто непривлекательные. Все-таки восприятие симметрии и это явление само по себе удивительны и пока не до конца изучены, а потому крайне интересны.

симметрия архитектурный фасад сооружение

Симметрия - понятие, отражающее существующий в природе порядок, пропорциональность и соразмерность между элементами какой-либо системы или объекта природы, упорядоченность, равновесие системы, устойчивость, т.е. некий элемент гармонии.

Прошли тысячелетия, прежде чем человечество в ходе своей общественно-производственной деятельности осознало необходимость выразить в определенных понятиях установленные им прежде всего в природе две тенденции: наличие строгой упорядоченности, соразмерности, равновесия и их нарушения. Люди давно обратили внимание на правильность формы кристаллов, геометрическую строгость строения пчелиных сот, последовательность и повторяемость расположения ветвей и листьев на деревьях, лепестков, цветов, семян растений и отобразили эту упорядоченность в своей практической деятельности, мышлении и искусстве.

Симметрией обладают объекты и явления живой природы. Она не только радует глаз и вдохновляет поэтов всех времен и народов, а позволяет живым организмам лучше приспособиться к среде обитания и просто выжить.

В живой природе огромное большинство живых организмов обнаруживает различные виды симметрий (формы, подобия, относительного расположения). Причем организмы разного анатомического строения могут иметь один и тот же тип внешней симметрии.

Принцип симметрии - утверждает, что если пространство однородно, перенос системы как целого в пространстве не изменяет свойств системы. Если все направления в пространстве равнозначны, то принцип симметрии разрешает поворот системы как целого в пространстве. Принцип симметрии соблюдается, если изменить начало отсчета времени. В соответствии с принципом, можно произвести переход в другую систему отсчета, движущейся относительно данной системы с постоянной скоростью. Неживой мир очень симметричен. Нередко нарушения симметрии в квантовой физике элементарных частиц - это проявление еще более глубокой симметрии. Ассиметрия является структурообразующим и созидающим принципом жизни. В живых клетках функционально-значимые биомолекулы асимметричны.: белки состоят из левовращающих аминокислот (L-форма) , а нуклеиновые кислоты содержат в своем составе, помимо гетероциклических оснований, правовращающие углеводы - сахара (Д-форма) , кроме того сама ДНК - основа наследственности является правой двойной спиралью.

Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твердого тела, атомной и ядерной физики, физики элементарных частиц. Эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. Речь при этом идет не только о физических законах, но и других, например, биологических. Примером биологического закона сохранения может служить закон наследования. В основе его лежат инвариантность биологических свойств по отношению к переходу от одного поколения к другому. Вполне очевидно, что без законов сохранения (физических, биологических и прочих) наш мир попросту не смог бы существовать.

Таким образом, симметрия выражает сохранение чего-то при каких-то изменениях или сохранение чего-то, несмотря на изменение. Симметрия предполагает неизменность не только самого объекта, но и каких-либо его свойств по отношению к преобразованиям, выполненным над объектом. Неизменность тех или иных объектов может наблюдаться по отношению к разнообразным операциям - к поворотам, переносам, взаимной замене частей, отражениям и т.д.

Рассмотрим виды симметрии в математике:

  • * центральная (относительно точки)
  • * осевая (относительно прямой)
  • * зеркальная (относительно плоскости)
  • 1. Центральная симметрия (приложение 1)

Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры.

Впервые понятие центра симметрии встречается в XVI в. В одной из теорем Клавиуса, гласящей: «если параллелепипед рассекается плоскостью, проходящей через центр, то он разбивается пополам и, наоборот, если параллелепипед рассекается пополам, то плоскость проходит через центр». Лежандр, который впервые ввёл в элементарную геометрию элементы учения о симметрии, показывает, что у прямого параллелепипеда имеются 3 плоскости симметрии, перпендикулярные к ребрам, а у куба 9 плоскостей симметрии, из которых 3 перпендикулярны к рёбрам, а другие 6 проходят через диагонали граней.

Примерами фигур, обладающих центральной симметрией, являются окружность и параллелограмм.

В алгебре при изучении чётных и нечётных функций рассматриваются их графики. График чётной функции при построении симметричен относительно оси ординат, а график нечётной функции - относительно начала координат, т.е. точки О. Значит, нечётная функция обладает центральной симметрией, а чётная функция - осевой.

2. Осевая симметрия (приложение 2)

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а, также принадлежит этой фигуре. Прямая а называется осью симметрии фигуры. Говорят также, что фигура обладает осевой симметрией.

В более узком смысле осью симметрии называют ось симметрии второго порядка и говорят об «осевой симметрии», которую можно определить так: фигура (или тело) обладает осевой симметрией относительно некоторой оси, если каждой её точке Е соответствует такая принадлежащая этой же фигуре точка F, что отрезок EF перпендикулярен к оси, пересекает её и в точке пересечения делится пополам.

Приведу примеры фигур, обладающих осевой симметрией. У неразвернутого угла одна ось симметрии -- прямая, на которой расположена биссектриса угла. Равнобедренный (но не равносторонний) треугольник имеет также одну ось симметрии, а равносторонний треугольник-- три оси симметрии. Прямоугольник и ромб, не являющиеся квадратами, имеют по две оси симметрии, а квадрат-- четыре оси симметрии. У окружности их бесконечно много -- любая прямая, проходящая через её центр, является осью симметрии.

Имеются фигуры, у которых нет ни одной оси симметрии. К таким фигурам относятся параллелограмм, отличный от прямоугольника, разносторонний треугольник.

3. Зеркальная симметрия (приложение 3)

Зеркальной симметрией (симметрией относительно плоскости) называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей относительно этой плоскости точку М1.

Зеркальная симметрия хорошо знакома каждому человеку из повседневного наблюдения. Как показывает само название, зеркальная симметрия связывает любой предмет и его отражение в плоском зеркале. Говорят, что одна фигура (или тело) зеркально симметрично другой, если вместе они образуют зеркально симметричную фигуру (или тело).

Игрокам в бильярд издавна знакомо действие отражения. Их «зеркала» -- это борта игрового поля, а роль луча света исполняют траектории шаров. Ударившись о борт возле угла, шар катится к стороне, расположенной под прямым углом, и, отразившись от неё, движется обратно параллельно направлению первого удара.

Следует отметить, что две симметричные фигуры или две симметричные части одной фигуры при всем их сходстве, равенстве объемов и площадей поверхностей, в общем случае, неравны, т.е. их нельзя совместить друг с другом. Это разные фигуры, их нельзя заменить друг другом, например, правая перчатка, ботинок и т.д. не годятся для левой руки, ноги. Предметы могут иметь одну, две, три и т.д. плоскостей симметрии. Например, прямая пирамида, основанием которой является равнобедренный треугольник, симметрична относительно одной плоскости Р. Призма с таким же основанием имеет две плоскости симметрии. У правильной шестиугольной призмы их семь. Тела вращения: шар, тор, цилиндр, конус и т.д. имеют бесконечное количество плоскостей симметрии.

Древние греки полагали, что Вселенная симметрична просто потому, что симметрия прекрасна. Исходя из соображений симметрии, они высказали ряд догадок. Так, Пифагор (5 век до н.э.), считая сферу наиболее симметричной и совершенной формой, делал вывод о сферичности Земли и о ее движении по сфере. При этом он полагал, что Земля движется по сфере некоего «центрального огня». Вокруг того же «огня», согласно Пифагору, должны были обращаться известные в те времена шесть планет, а также Луна, Солнце, звезды.

Определение. Симметрия (означает «соразмерность») - свойство геометрических объектов совмещаться с собой при определенных преобразованиях. Под симметрией понимают всякую правильность во внутреннем строении тела или фигуры.

Симметрия относительно точки - это центральная симметрия (рис. 23 ниже), а симметрия относительно прямой - это осевая симметрия (рис. 24 ниже).

Симметрия относительно точки предполагает, что по обе стороны от точки на одинаковых расстояниях находится что-либо, например другие точки или геометрическое место точек (прямые линии, кривые линии, геометрические фигуры).

Если соединить прямой симметричные точки (точки геометрической фигуры) через точку симметрии, то симметричные точки будут лежать на концах прямой, а точка симметрии будет ее серединой. Если закрепить точку симметрии и вращать прямую, то симметричные точки опишут кривые, каждая точка которых тоже будет симметрична точке другой кривой линии.

Симметрия относительно прямой (оси симметрии) предполагает, что по перпендикуляру, проведенному через каждую точку оси симметрии, на одинаковом расстоянии от нее расположены две симметричные точки. Относительно оси симметрии (прямой) могут располагаться те же геометрические фигуры, что и относительно точки симметрии.

Примером может служить лист тетради, который согнут пополам, если по линии сгиба провести прямую линию (ось симметрии). Каждая точка одной половины листа будет иметь симметричную точку на второй половине листа, если они расположены на одинаковом расстоянии от линии сгиба на перпендикуляре к оси.

Линия осевой симметрии, как на рисунке 24, вертикальна, и горизонтальные края листа перпендикулярны ей. Т. е. ось симметрии служит перпендикуляром к серединам горизонтальных ограничивающих лист прямых. Симметричные точки (R и F, C и D) расположены на одинаковом расстоянии от осевой прямой - перпендикуляра к прямым, соединяющим эти точки. Следовательно, все точки перпендикуляра (оси симметрии), проведенного через середину отрезка, равноудалены от его концов; или любая точка перпендикуляра (оси симметрии) к середине отрезка равноудалена от концов этого отрезка.

6.7.3. Осевая симметрия

Точки А и А 1 симметричны относительно прямой m, так как прямая m перпендикулярна отрезку АА 1 и проходит через его середину.

m – ось симметрии.

Прямоугольник ABCD имеет две оси симметрии: прямые m и l .

Если чертеж перегнуть по прямой m или по прямой l, то обе части чертежа совпадут.

Квадрат ABCD имеет четыре оси симметрии: прямые m , l , k и s .

Если квадрат перегнуть по какой-либо из прямых: m , l , k или s , то обе части квадрата совпадут.

Окружность с центром в точке О и радиусом ОА имеет бесчисленное количество осей симметрии. Это прямые: m, m 1, m 2 , m 3 .

Задание. Построить точку А 1 , симметричную точке А(-4; 2) относительно оси Ох.

Построить точку А 2 , симметричную точке А(-4; 2) относительно оси Оy.

Точка А 1 (-4; -2) симметрична точке А(-4; 2) относительно оси Ох, так как ось Ох перпендикулярна отрезку АА 1 и проходит через его середину.

У точек, симметричных относительно оси Ох абсциссы совпадают, а ординаты являются противоположными числами.

Точка А 2 (4; -2) симметрична точке А(-4; 2) относительно оси Оy, так как ось Оу перпендикулярна отрезку АА 2 и проходит через его середину.

У точек, симметричных относительно оси Оу ординаты совпадают, а абсциссы являются противоположными числами.

www.mathematics-repetition.com

wiki.eduVdom.com

Инструменты пользователя

Инструменты сайта

Боковая панель

Геометрия:

Контакты

Центральная и осевая симметрии

Центральная симметрия

Две точки А и А 1 называются симметричными относительно точки О, если О - середина отрезка АА 1 (рис.1). Точка О считается симметричной самой себе.

Пример центральной симметрии

Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией.

Примерами фигур, обладающих центральной симметрией, являются окружность и параллелограмм (рис.2).

Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма - точка пересечения его диагоналей. Прямая также обладает центральной симметрией, однако в отличие от окружности и параллелограмма, которые имеют только один центр симметрии (точка О на рис.2), у прямой их бесконечно много - любая точка прямой является ее центром симметрии.

Осевая симметрия

Две точки А и А 1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА 1 и перпендикулярна к нему (рис.3). Каждая точка прямой а считается симметричной самой себе.

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая а называется осью симметрии фигуры.

Примеры таких фигур и их оси симметрии изображены на рисунке 4.

Заметим, что у окружности любая прямая, проходящая через ее центр, является осью симметрии.

Сравнение симметрий

Центральная и осевая симметрии

Сколько всего осей симметрии имеет фигура, изображённая на рисунке?

wiki.eduvdom.com

Урок «Осевая и центральная симметрия»

Краткое описание документа:

Симметрия – достаточно интересная тема в геометрии, так как именно это понятие очень часто встречается не только в процессе жизнедеятельности человека но и в природе.

Первая часть видео-презентации «Осевая и центральная симметрия» дает определение симметричности двух точек относительно прямой на плоскости. Условием их симметричности является возможность проведения через них отрезка, через середину которого будет проходить заданная прямая. Обязательным условием такой симметричности является перпендикулярность отрезка и прямой.

Следующая часть видео-урока дает наглядный пример определения, который показывается в виде чертежа, где несколько пар точек симметричны относительно прямой, а любая точка на этой прямой симметрична сама себе.

После получения первоначальных понятий о симметрии, ученикам предлагается более сложное определение фигуры, симметричной относительно прямой. Определение предлагается в виде текстового правила, а также параллельно сопровождается речью диктора за кадром. Завершает эту часть примеры симметричных и не симметричных фигур, относительно прямой. Интересно, что существуют геометрические фигуры, имеющие несколько осей симметрии – все они наглядно представлены в виде чертежей, где оси выделены отдельным цветом. Облегчить понимание предлагаемого материала можно таким способом – предмет или фигура является симметричной, если она точно совпадает при складывании двух половин относительно своей оси.

Кроме осевой симметрии существует симметрия относительно одной точки. Именно этому понятию посвящена следующая часть видео-презентации. Сначала дается определение симметричности двух точек относительно третьей, затем предоставляется пример в виде рисунке, где показаны симметричная и не симметричная пара точек. Завершает эту часть урока примеры геометрических фигур, у которых присутствует или отсутствует цент симметрии.

В заключении урока ученикам предлагается ознакомиться с наиболее яркими примерами симметрии, которые можно встретить в окружающем мире. Понимание и умение строить симметричные фигуры просто необходимы в жизни людей, которые занимаются самыми разными профессиями. По своей сути симметрия – основа всей человеческой цивилизации, так как 9 из 10 предметов, окружающих человека, имеют тот или иной тип симметрии. Без симметрии было бы не возможно возведение многих больших архитектурных сооружений, не получилось бы достигнуть впечатляющих мощностей в промышленности и так далее. В природе симметрия также – очень распространенное явление, и если в неодушевленных предметах ее встретить практически невозможно, то живой мир буквально кишит ею – практически вся флора и фауна, за редким исключением, имеет или осевую, или центральную симметрию.

Обычная школьная программа разрабатывается с таким учетом, чтобы ее мог бы понять любой ученик, допущенный к занятием. Видео-презентация в несколько раз облегчает этот процесс, так как одновременно воздействует на несколько центров освоения информации, предоставляет материал в нескольких цветах, тем самым, заставляя учеников концентрировать внимание учеников на самом важном во время урока. В отличии от обычного способа обучения в школах, когда не каждый учитель имеет возможность или желание отвечать ученикам на уточняющие вопросы, видео-урок легко можно перемотать на необходимое место, чтобы заново прослушать диктора и прочитать нужную информацию еще раз, вплоть до ее полного понимания. Учитывая простоту подачи материала, видео-презентацию можно использовать не только во время школьных занятий, но и в домашних условиях, в качестве самостоятельного способа обучения.

urokimatematiki.ru

Презентация «Движения. Осевая симметрия»

Документы в архиве:

Название документа 8.

Описание презентации по отдельным слайдам:

Центральная симметрия - один из примеров движения

Определение Осевая симметрия с осью а - отображение пространства на себя, при котором любая точка К переходит в симметричную ей точку К1 относительно оси а

1) Оxyz - прямоугольная система координат Оz - ось симметрии 2) М(x; y; z) и M1(x1; y1; z1), симметричны относительно оси Оz Формулы будут верны и в случае, если точка М ⊂ Оz Осевая симметрия является движением Z X Y М(x; y; z) M1(x1; y1; z1) O

Доказать: Задача 1 при осевой симметрии прямая, образующая с осью симметрии угол φ, отображается на прямую, так же образующую с осью симметрии угол φ Решение: при осевой симметрии прямая, образующая с осью симметрии угол φ, отображается на прямую, так же образующую с осью симметрии угол φ A F E N m l a φ φ

Дано: 2) △ABD - прямоугольный, по теореме Пифагора: 1) DD1 ⏊ (A1C1D1), 3) △BDD2 - прямоугольный, по теореме Пифагора: Задача 2 Найти: BD2 Решение:

Краткое описание документа:

Презентация «Движения. Осевая симметрия» представляет наглядный материал для объяснения на школьном уроке математики основных положений данной темы. В данной презентации осевая симметрия рассматривается как еще один вид движения. В ходе презентации ученикам напоминается изученное понятие центральной симметрии, дается определение осевой симметрии, доказывается положение о том, что осевая симметрия является движением, а также описывается решение двух задач, в которых необходимо оперировать понятием осевой симметрии.

Осевая симметрия является движением, поэтому ее представление на классной доске вызывает сложности. Более четкие понятные построения можно сделать с помощью электронных средств. Благодаря этому построения хорошо видны с любой парты в классе. На рисунках есть возможность выделить цветом детали построения, акцентировать внимание на особенностях операции. С той же целью используются анимационные эффекты. С помощью инструментов презентации учителю легче достичь целей обучения, поэтому презентация применяется для повышения эффективности урока.

Демонстрация начинается с напоминания ученикам об изученном виде движения – центральной симметрии. Примером применения операция служит симметричное отображение нарисованной груши. На плоскости отмечается точка, относительно которой каждая точка изображения переходит в симметричную. Отображенное изображение, таким образом, перевернуто. При этом все расстояния между точками объекта сохраняются при центральной симметрии.

На втором слайде вводится понятие осевой симметрии. На рисунке изображен треугольник, каждая его вершина переходит в симметричную вершину треугольника относительно некоторой оси. В рамке выделено определение осевой симметрии. Отмечается, что при нем каждая точка объекта переходит в симметричную.

Далее в прямоугольной координатной системе рассматривается осевая симметрия, свойства координат объекта, отображенного с помощью осевой симметрии, в также доказывается, что при данном отображении сохраняются расстояния, что есть признаком движения. Справа на слайде изображается прямоугольная система координат Оxyz. За ось симметрии принимается ось Оz. В пространстве отмечена точка М, при соответствующем отображении переходящая в М 1 . На рисунке видно, что при осевой симметрии точка сохраняет свою аппликату.

Отмечается, что среднее арифметическое абсцисс и ординат данного отображения при осевой симметрии равно нулю, то есть (x+ x 1)/2=0; (y+ y 1)/2=0. Иначе это свидетельствует, что x=-x 1 ; y=-y 1 ; z=z 1 . Правило сохраняется и в случае, если точка М отмечена на самой оси Оz.

Для рассмотрения, сохраняются ли расстояния между точками при осевой симметрии, описывается операция на точками А и В. Отображаясь относительно оси Оz, описываемые точки переходят в А1 и В1. Чтобы определить расстояние между точками, воспользуемся формулой, в которой расстояние вычисляется по координатам. Отмечается, что АВ=√(x 2 -x 1) 2 +(y 2 -y 1) 2 +(z 2 -z 1) 2), а для отображенных точек А 1 В 1 =√(-x 2 +x 1) 2 +(-y 2 +y 1) 2 +(z 2 -z 1) 2). Учитывая свойства возведения в квадрат, можно отметить, что АВ=А 1 В 1 . Это говорит о том, что расстояния сохраняются между точками – главный признак движения. Значит, осевая симметрия есть движение.

На слайде 5 рассматривается решение задачи 1. В ней необходимо доказать утверждение, что прямая, проходящая под углом φ к оси симметрии, образует с ней такой же угол φ. К задаче дается изображение, на котором начерчена ось симметрии, а также прямая m, образующая с осью симметрии угол φ, и относительно оси ее отображение – прямая l. Доказательство утверждения начинается с построения дополнительных точек. Отмечается, что прямая m пересекает ось симметрии в А. Если отметить на этой прямой точку F≠A и опустить от нее перпендикуляр на ось симметрии, получим пересечение перпендикуляра с осью симметрии в точке Е. При осевой симметрии отрезок FE переходит в отрезок NE. В результате такого построения получили прямоугольные треугольники ΔAEF и ΔAEN. Эти треугольник равны, так как АЕ является у них общим катетом, а FE = NE равны по построению. Соответственно, угол ∠EAN=∠EAF. Из этого следует, что отображенная прямая также образует с осью симметрии угол φ. Задача решена.

На последнем слайде рассматривается решение задачи 2, в которой необходимо дан куб ABCDA 1 B 1 C 1 D 1 со стороной а. Известно, что после симметрии относительно оси, содержащей ребро B 1 D 1 , точка D переходит в D 1 . В задаче требуется найти BD 2 . К задаче делается построение. На рисунке изображен куб, по которому видно, что осью симметрии является диагональ грани куба B 1 D 1 . Отрезок, образующийся при движении точки D, перпендикулярен плоскости грани, которой принадлежит ось симметрии. Так как при движении сохраняются расстояния между точками, то DD 1 = D 1 D 2 =а, то есть расстояние DD 2 =2а. Из прямоугольного треугольника ΔABD по теореме Пифагора следует, что BD=√(AB 2 +AD 2)=а√2. Из прямоугольного треугольника ΔВDD 2 следует по теореме Пифагора BD 2 =√(DD 2 2 +ВD 2)=а√6. Задача решена.

Презентация «Движения. Осевая симметрия» используется для повышения эффективности школьного урока математики. Также этот метод наглядности поможет учителю, осуществляющему дистанционное обучение. Материал может быть предложен для самостоятельного рассмотрения учениками, которые недостаточно хорошо усвоили тему урока.

Почему жена ушла и не подает на развод Практический форум о настоящей любви Жена подаёт на развод.Помогите! Жена подаёт на развод.Помогите! Сообщение MIRON4IK » 23 окт 2009, 16:22 Сообщение raz » 23 окт 2009, 19:17 Сообщение MIRON4IK » 23 окт 2009, 22:21 Сообщение edon » […]

  • Суд над фашизмом – Нюрнбергский процесс 8 августа 1945 г., через три месяца после Победы над фашистской Германией страны-победительницы: СССР, США, Великобритания и Франция в ходе лондонской конференции утвердили Соглашение о создании […]
  • Дурович А.П. Маркетинг в туризме Учебное пособие. - Минск: Новое знание, 2003. - 496 с. Раскрываются сущность, принципы маркетинга, его функции и технология маркетинговой деятельности в туризме. Концептуально структура учебного пособия […]
  • Учебное пособие "Таблица умножения", Lakeshore Планшет "Деление", который сама себя проверяет, настолько упрощает математику, что дети могут учиться сами! Дети просто нажимают кнопки равенства. и тут же появляются ответы-подсказки! 81 […]
  • Пусть g - фиксированная прямая (рис. 191). Возьмем произвольную точку X и опустим перпендикуляр АХ на прямую g. На продолжении перпендикуляра за точку А отложим отрезок АХ", равный отрезку АХ. Точка X" называется симметричной точке X относительно прямой g.

    Если точка X лежит на прямой g, то симметричная ей точка есть сама точка X. Очевидно, что точка, симметричная точке Х" есть точка X.

    Преобразование фигуры F в фигуру F", при котором каждая ее точка X переходит в точку X", симметричную относительно данной прямой g, называется преобразованием симметрии относительно прямой g. При этом фигуры F и F" называются симметричными относительно прямой g (рис. 192).

    Если преобразование симметрии относительно прямой g переводит фигуру F в себя, то эта фигура называется симметричной относительно прямой g, а прямая g называется осью симметрии фигуры.

    Например, прямые, проходящие через точку пересечения диагоналей прямоугольника параллельно его сторонам, являются осями симметрии прямоугольника (рис. 193). Прямые, на которых лежат диагонали ромба, являются его осями симметрии (рис. 194).

    Теорема 9.3. Преобразование симметрии относительно прямой является движением.


    Доказательство. Примем данную прямую за ось у декартовой системы координат (рис. 195). Пусть произвольная точка А (х; у) фигуры F переходит в точку А" (х"; у") фигуры F". Из определения симметрии относительно прямой следует, что у точек А и А" равные ординаты, а абсциссы отличаются только знаком:

    х"= -х.
    Возьмем две произвольные точки А(х 1 ; y 1) и В (х 2 ; y 2)- Они перейдут в точки А" (- х 1 , y 1) и В" (-x 2 ; y 2).

    AB 2 = (x 2 - x 1) 2 + (y 2 - y 1) 2
    A"B" 2 =(-x 2 + x 1) 2 +(y 2 -y 1) 2 .

    Отсюда видно, что АВ=А"В". А это значит, что преобразование симметрии относительно прямой есть движение. Теорема доказана.

    На этом уроке мы рассмотрим ещё одну характеристику некоторых фигур - осевую и центральную симметрию. С осевой симметрией мы сталкиваемся каждый день, глядя в зеркало. Центральная симметрия очень часто встречается в живой природе. Вместе с тем, фигуры, которые обладают симметрией, имеют целый ряд свойств. Кроме того, впоследствии мы узнаем, что осевая и центральная симметрии являются видами движений, с помощью которых решается целый класс задач.

    Данный урок посвящён осевой и центральной симметрии.

    Определение

    Две точки и называются симметричными относительно прямой , если:

    На Рис. 1 изображены примеры симметричных относительно прямой точек и , и .

    Рис. 1

    Отметим также тот факт, что любая точка прямой симметрична сама себе относительно этой прямой.

    Симметричными относительно прямой могут быть и фигуры.

    Сформулируем строгое определение.

    Определение

    Фигура называется симметричной относительно прямой , если для каждой точки фигуры симметричная ей относительно этой прямой точка также принадлежит фигуре. В этом случае прямая называется осью симметрии . Фигура при этом обладает осевой симметрией .

    Рассмотрим несколько примеров фигур, обладающих осевой симметрией, и их оси симметрии.

    Пример 1

    Угол обладает осевой симметрией. Осью симметрии угла является биссектриса. Действительно: опустим из любой точки угла перпендикуляр к биссектрисе и продлим его до пересечения с другой стороной угла (см. Рис. 2).

    Рис. 2

    (так как - общая сторона, (свойство биссектрисы), а треугольники - прямоугольные). Значит, . Поэтому точки и симметричны относительно биссектрисы угла.

    Из этого следует, что и равнобедренный треугольник обладает осевой симметрии относительно биссектрисы (высоты, медианы), проведённой к снованию.

    Пример 2

    Равносторонний треугольник обладает тремя осями симметрии (биссектрисы/медианы/высоты каждого из трёх углов (см. Рис. 3).

    Рис. 3

    Пример 3

    Прямоугольник обладает двумя осями симметрии, каждая из которых проходит через середины двух его противоположных сторон (см. Рис. 4).

    Рис. 4

    Пример 4

    Ромб также обладает двумя осями симметрии: прямые, которые содержат его диагонали (см. Рис. 5).

    Рис. 5

    Пример 5

    Квадрат, являющийся одновременно ромбом и прямоугольником, обладает 4 осями симметрии (см. Рис. 6).

    Рис. 6

    Пример 6

    У окружности осью симметрии является любая прямая, проходящая через её центр (то есть содержащая диаметр окружности). Поэтому окружность имеет бесконечно много осей симметрии (см. Рис. 7).

    Рис. 7

    Рассмотрим теперь понятие центральной симметрии .

    Определение

    Точки и называются симметричными относительно точки , если: - середина отрезка .

    Рассмотрим несколько примеров: на Рис. 8 изображены точки и , а также и , которые являются симметричными относительно точки , а точки и не являются симметричными относительно этой точки.

    Рис. 8

    Некоторые фигуры являются симметричными относительно некоторой точки. Сформулируем строгое определение.

    Определение

    Фигура называется симметричной относительно точки , если для любой точки фигуры точка, симметричная ей, также принадлежит данной фигуре. Точка называется центром симметрии , а фигура обладает центральной симметрией .

    Рассмотрим примеры фигур, обладающих центральной симметрией.

    Пример 7

    У окружности центром симметрии является центр окружности (это легко доказать, вспомнив свойства диаметра и радиуса окружности) (см. Рис. 9).

    Рис. 9

    Пример 8

    У параллелограмма центром симметрии является точка пересечения диагоналей (см. Рис. 10).

    Рис. 10

    Решим несколько задач на осевую и центральную симметрию.

    Задача 1.

    Сколько осей симметрии имеет отрезок ?

    Отрезок имеет две оси симметрии. Первая из них - это прямая, содержащая отрезок (так как любая точка прямой симметрична сама себе относительно этой прямой). Вторая - серединный перпендикуляр к отрезку, то есть прямая, перпендикулярная отрезку и проходящая через его середину.

    Ответ: 2 оси симметрии.

    Задача 2.

    Сколько осей симметрии имеет прямая ?

    Прямая имеет бесконечно много осей симметрии. Одна из них - это сама прямая (так как любая точка прямой симметрична сама себе относительно этой прямой). А также осями симметрии являются любые прямые, перпендикулярные данной прямой.

    Ответ: бесконечно много осей симметрии.

    Задача 3.

    Сколько осей симметрии имеет луч ?

    Луч имеет одну ось симметрии, которая совпадает с прямой, содержащей луч (так как любая точка прямой симметрична сама себе относительно этой прямой).

    Ответ: одна ось симметрии.

    Задача 4.

    Доказать, что прямые, содержащие диагонали ромба, являются его осями симметрии.

    Доказательство:

    Рассмотрим ромб . Докажем, к примеру, что прямая является его осью симметрии. Очевидно, что точки и являются симметричными сами себе, так как лежат на этой прямой. Кроме того, точки и симметричны относительно этой прямой, так как . Выберем теперь произвольную точку и докажем, что симметричная ей относительно точка также принадлежит ромбу (см. Рис. 11).

    Рис. 11

    Проведём через точку перпендикуляр к прямой и продлим его до пересечения с . Рассмотрим треугольники и . Эти треугольники прямоугольные (по построению), кроме того, в них: - общий катет, а (так как диагонали ромба являются его биссектрисами). Значит, эти треугольники равны: . Значит, равны и все их соответствующие элементы, поэтому: . Из равенства этих отрезков следует то, что точки и являются симметричными относительно прямой . Это означает, что является осью симметрии ромба. Аналогично можно доказать этот факт и для второй диагонали.

    Доказано.

    Задача 5.

    Доказать, что точка пересечения диагоналей параллелограмма является его центром симметрии.

    Доказательство:

    Рассмотрим параллелограмм . Докажем, что точка является его центром симметрии. Очевидно, что точки и , и являются попарно симметричными относительно точки , так как диагонали параллелограмма точкой пересечения делятся пополам. Выберем теперь произвольную точку и докажем, что симметричная ей относительно точка также принадлежит параллелограмму (см. Рис. 12).