Построение спирали архимеда. Краткие выводы по моделированию спирали Архимеда в COMSOL Multiphysics

«Кривой жизни» называл спираль Гёте. В природе форму спирали Архимеда имеют большинство раковин. Семена подсолнечника расположены по спирали. Спираль можно увидеть в кактусах, ананасах. Ураган закручивается спиралью. По спирали разбегается стадо оленей. Двойной спиралью закручена молекула ДНК. Даже галактики сформированы по принципу спирали.

Представим себе циферблат часов с длинной стрелкой. Стрелка движется по окружности циферблата. А по стрелке в это время перемещается с постоянной скоростью маленький жучок. Траектория движения жучка представляет собой спираль Архимеда.

Спираль, названная именем Архимеда, была открыта им в III веке до нашей эры.

Построение спирали Архимеда

По определению самого Архимеда: «Спираль – это траектория равномерного движения точки по равномерно вращающемуся вокруг своего начала лучу».

Чтобы понять, как получается спираль Архимеда, возьмём окружность и разделим её на одинаковое количество частей (в нашем примере на 8). На такое же количество частей (8) разделим и радиус окружности. Из центра окружности проведём лучи через точки деления окружности и обозначим их, как 11, 21, 31, 41, 51, 61, 71, 81.

На первом луче отложим одно деление радиуса и обозначим точку I. На втором луче отложим два деления радиуса и обозначим точку II. На третьем луче отложим три деления радиуса и обозначим точку III. Таким же образом получим точки IV, V, VI, VII, VIII. Соединив обозначенные точки кривой линией, получим спираль Архимеда. Если продолжать построение дальше, то в точке IX будет отложено 8+1 частей радиуса. И т.д.

Оказывается, спираль Архимеда тесно связана с последовательностью чисел Фибоначчи. Что же общего между этими, на первый взгляд, абсолютно разными понятиями?

Последовательность Фибоначчи

Ряд Фибоначчи – это последовательность чисел, в котором каждое последующее число равно сумме двух предыдущих. Выглядит последовательность Фибоначчи так: 1, 1, 2, 5, 8, 13, 21, 34, 55, 89... А отношение каждого последующего числа к предыдущему в этом ряду чисел равно 1,618... Это число называют числом Ф.

Однако, без понятия «золотого сечения» мы не сможем проследить связь числового ряда Фибоначчи со спиралью Архимеда.

Золотая пропорция


Представьте себе, что вы разделили отрезок прямой на две неравные части так, что весь отрезок относится к большей части, как большая часть относится к меньшей. Это и есть пропорция "золотого сечения" или «золотая пропорция» . Отношение большей стороны к меньшей в золотом сечении равно 1,618. Как видим, такому же числу равняется и отношение последующего числа к предыдущему в ряду Фибоначчи.

Построим прямоугольник, стороны которого будут соотноситься в золотой пропорции. То есть отношение большей стороны прямоугольника к меньшей равно 1,618. Прямоугольник с такими сторонами называется «золотой прямоугольник». Отсечём от этого прямоугольник квадрат, сторона которого равна меньшей стороне прямоугольника. Оказывается, оставшийся прямоугольник тоже будет «золотым». Если и от него отсечь квадрат со стороной, равной меньшей стороне уже этого прямоугольника, то и оставшийся прямоугольник будет «золотым». И так далее. Если добавлять квадрат по более длинной стороне прямоугольника, то этот процесс можно продолжать до бесконечности. Оказалось, что длины сторон этих квадратов равны соседним числам в последовательности Фибоначчи: 1, 1, 2, 3, 5, 8, 13, 21, 34 … И, соответственно, отношение стороны последующего квадрата к стороне предыдущего также равно 1,618.

Соединив кривой угловые точки этих квадратов, получим спираль Архимеда.

Средневековый математик Лука Пачиоли назвал «золотую пропорцию» Божественной пропорцией. Человеческий глаз воспринимает пропорцию золотого сечения в качестве гармоничной и красивой. И человек очень давно начал использовать «золотую пропорцию» в своей деятельности. Так, в пирамидах Гизе отношение длины основания к высоте равно 1,618. Такие же пропорции и у мексиканских пирамид. Золотую пропорцию использовал и Леонардо да Винчи в своих творениях. Может, потому они так привлекательны и совершенны?

Спираль Архимеда в природе


В природе спираль Архимеда встречается на каждом шагу.

Паук плетёт паутину по спирали.

Головка подсолнуха состоит из спиралей Архимеда, одни из которых закручены по часовой стрелке, другие - против. Так, в головке среднего размера 34 спирали одного направления и 55 другого. Узнаёте? Это же числа ряда Фибоначчи.

Сосновые шишки и колючки кактусов также имеют спирали, направленные по часовой, или против часовой стрелки. Причём число этих спиралей всегда будут равно соседним числам ряда Фибоначчи. Например, у сосновой шишки спиралей 5 и 8, у ананаса 8 и 13.

Применение спирали Архимеда


В III веке да нашей эры Архимед на основе своей спирали изобрёл винт, который успешно применяли для передачи воды в оросительные каналы из водоёмов, расположенных ниже. Позже на основе винта Архимеда создали шнек («улитку»). Его очень известная разновидность – винтовой ротор в мясорубке. Шнек используют в механизмах для перемешивания материалов различной консистенции. В технике нашли применение антенны в виде спирали Архимеда. Самоцентрирующийся патрон выполнен по спирали Архимеда. Звуковые дорожки на CD и DVD дисках также имеют форму спирали Архимеда.

Спираль Архимеда нашла практическое применение в математике, технике, архитектуре, машиностроении.

Сакральная геометрия. Энергетические коды гармонии Прокопенко Иоланта

Последовательность Фибоначчи и спираль Архимеда

Плотная пища жен Фибоначчи

Только на пользу им шла, не иначе.

Весили жены, согласно молве,

Каждая – как предыдущие две.

Джеймс Линдон

Числовой ряд Фибоначчи – загадочная последовательность, воспетая в романах Дэна Брауна. В чем же уникальность и необычность этого ряда чисел? Почему несколько цифр, ставшие в ряд, привлекают так много внимания?

Числа Фибоначчи – это элементы числовой последовательности, в которой каждое последующее число равно сумме двух предыдущих чисел. Числовой ряд Фибоначчи выглядит следующим образом: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 и т. д.

Эта последовательность была известна в Древней Индии, ее широко использовали в стихосложении. Чуть позже ее использовал на Западе в своем труде «Liber Abaci» (1202) Леонардо Пизанский, более известный как Фибоначчи. Он рассматривал развитие идеальной популяции кроликов со следующей точки зрения:

– Изначально имеется пара кроликов (1 новая пара кроликов);

– В первом месяце пара производит на свет еще одну пару (1 новая пара кроликов);

– Во втором месяце каждая пара производит на свет еще по одной паре. Первая пара погибает (2 новые пары кроликов);

– В третьем месяце вторая пара и две новые пары кроликов порождают на свет три новые пары. Старая пара погибает (3 новые пары кроликов), и т.д.

Фибоначчи определил закономерным тот факт, кто каждая пара кроликов за всю жизнь порождает еще две пары, а затем погибает.

К чему мы об этом говорим? Казалось бы, ничего нового Фибоначчи не открыл, он напомнил миру о таком явлении, как золотое сечение (см. главу «Золотое сечение. Божественная пропорция»).

Однако числа Фибоначчи с легкостью можно найти в природе, в жизни, которая нас окружает. Будто все в мире построено одним великим архитектором. Числа Фибоначчи можно найти на стебле любого растения или в количестве лепестков.

Распределение листков тысячелистника по последовательности Фибоначчи

Последовательность Фибоначчи тесно связана с определением спирали Архимеда. Спираль Архимеда – спираль с равномерным увеличением шага и витка. Рассмотрим «золотой прямоугольник».

«Золотой прямоугольник»

Как видим, части в нем располагаются согласно вышеупомянутой последовательности. К тому же, если провести линии через углы этих квадратов в порядке возрастания, то мы получим не что иное, как уже известную спираль Архимеда.

Спираль Архимеда

В природе существует множество примеров того, как гармонично может воплощаться последовательность Фибоначчи. (Семена подсолнуха, сосновые шишки, ячейки ананаса, лепестки цветов.)

Молекулу ДНК человека составляют две переплетенные вертикально спирали длиной 34 и шириной 21. Недаром Гёте называл спираль «кривой жизни», ведь 21 и 34 – это цифры, следующие друг за другом в последовательности Фибоначчи.

Расположение семян подсолнуха

Паутина, построенная по принципу спирали Архимеда

Ракушка улитки, построенная по принципу спирали Архимеда

ДНК человека, построенная по принципу последовательности Фибоначчи

Числа Фибоначчи встречаются и в космосе, ведь Млечный путь и многие другие галактики построены по модели спирали Архимеда.

Млечный путь, одна из самых крупных спиралей Архимеда

Из книги Женщина-ягуар и мудрость дерева бабочек автора Эндрюс Линн

Глава 8. Кальдера и священная спираль Мы ищем не отдыха – преображенья. Мы проходим друг в друга, как в двери. Мы сливаемся, скрещиваемся, уходим и возвращаемся, как волны, из сердцевины яблока, глаза мандалы, пустоты в цветке розы, безграничного круга с центром в

Из книги Тайны древних цивилизаций. Энциклопедия самых интригующих загадок прошлого автора Джеймс Питер

СПИРАЛЬ ГЛАСТОНБЕРИ ***В 1944 году ирландский бизнесмен Джеффри Расселл увидел необыкновенно яркий сон. Проснувшись, он немедленно перенес на бумагу образ, все еще стоявший у него перед глазами. Это был спиральный символ, состоящий из одной линии, закрученной в семь витков.

Из книги Проклятые книги автора Бержье Жак

ДВОЙНАЯ СПИРАЛЬ Книжку профессора Джеймса Д. Уотсона «Двойная спираль» легко найти в любом книжном магазине. Его французский перевод был выпущен издательством «Robert Laffont». Существуют также несколько английских изданий в твёрдом переплёте и карманное издание в мягкой

Из книги Учебник по колдовству автора Каннингем Скотт

Глава 9 Спираль перерождений Реинкарнация является самым спорным духовным явлением нашего времени. Реинкарнация - один из наиболее ценных уроков колдовства. Знание о том, что эта жизнь только одна из многих, и что, когда физическое тело умирает, мы не прекращаем своего

Из книги Тайны древних цивилизаций автора Джеймс Питер

СПИРАЛЬ ГЛАСТОНБЕРИ *** В 1944 году ирландский бизнесмен Джеффри Расселл увидел необыкновенно яркий сон. Проснувшись, он немедленно перенес на бумагу образ, все еще стоявший у него перед глазами. Это был спиральный символ, состоящий из одной линии, закрученной в семь витков.

Из книги В этой книге нет ни слова правды, но именно так все и происходит автора Фрисселл Боб

Спираль Вернемся же к квадрату, в который можно вписать человеческое тело, с вертикалью, делящей его пополам, и диагональю. Воспользуйтесь циркулем, чтобы повернуть диагональ, и завершите прямоугольник, продлив две оставшихся линии до их пересечения. Таким образом вы

Из книги Древняя Тайна Цветка Жизни. Том 1 автора Мельхиседек Друнвало

Спираль Фибоначчи Математик средневековья Леонардо Фибоначчи открыл определенный порядок, или последовательность, в которой происходит рост растений. Вот эта последовательность: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 и так далее. Я уже упоминал о ней при обсуждении роста растений.

Из книги Четыре касты. Кто вы? автора Похабов Алексей

8 Согласование полярностей бинарной последовательности и последовательности Фибоначчи Последовательность Фибоначчи и Спираль ФибоначчиДля того, чтобы понять, почему эти восемь спиралей вокруг Канона да Винчи не являются спиралями Золотого Сечения, и для понимания

Из книги Абсолютное исцеление. Системные и информационно-энергетические загадки нашего здоровья автора Гладков Сергей Михайлович

Глава 4 Спираль качеств Если мы говорим о том, как стать Магом, то надо понимать следующее: эволюция человека происходит по чёткой последовательности. Нет прыжков из касты купцов в касту Магов. По ступеням придётся подниматься, наступая на каждую.Проблема в том, что нас

Из книги Математика для мистиков. Тайны сакральной геометрии автора Шессо Ренна

Индивидуальная спираль исцеления Как бы нам ни хотелось найти «совершенную» систему питания, созданную кем-либо из великих, эти надежды, увы, несбыточны. Я много времени потратил, испытывая различные «системы», пока не понял: совершенная система – та, которую вы

Из книги Сакральная геометрия. Энергетические коды гармонии автора Прокопенко Иоланта

Глава № 9 Фибоначчи, золотое сечение и пентакль Последовательность Фибоначчи - не просто случайная числовая схема, придуманная этим итальянским математиком. Она является плодом осмысления пространственных отношений, имеющих место в природе и впоследствии получившими

Из книги Большая книга тайных знаний. Нумерология. Графология. Хиромантия. Астрология. Гадания автора Шварц Теодор

Спираль. Виток материи жизни Спиральность – одна из характерных признаков всех организмов, как проявление самой сущности жизни. И. Гёте Амбивалентный, неоднозначный сакральный символ. Спираль одновременно воплощает в себе символику жизни и смерти, развития на

Из книги Свободный разум. Практики для тела, души и духа автора Кацудзо Ниши

Спираль Архимеда и закон октав Искусство – и я имею в виду подлинное, доброе искусство – зиждется, помимо всего прочего, на принципах баланса, динамики, местоположения и композиции. Эти элементы должны находиться в гармонии, взаимодействовать друг с другом, чтобы

Из книги автора

Построение спирали Архимеда Заданный шаг t спирали Архимеда делят на несколько, например на восемь, равных частей. Из конца О отрезка проводят окружность R = t и делят ее на столько же равных частей, на сколько был разделен шаг t.На первом луче путем проведения дуги радиусом

Из книги автора

Последовательность Фибоначчи С историей золотого сечения связано имя математика Леонардо из Пизы, известного под именем Фибоначчи (сын Боначчи). Он был самым знаменитым математиком Средневековья. В 1202 году вышел в свет его труд «Книга об абаке» (счетной доске), где были

Из книги автора

Медитация на спираль Медитация со спиралью потребует времени, проводить ее надо в течение часа. Лучше для медитации выбрать утренние или дневные часы выходного дня. Создайте в комнате для медитирования полумрак, зажгите свечу. Сядьте прямо и постарайтесь отбросить все

Построение спирали Архимеда начинают с построения окружности радиусом, равным шагу спирали, командой Окружность. Из центра окружности О командой Отрезок проводят горизонтальную линию, равную шагу спирали Архимеда ОА . Окружность и отрезок делят на 12 равных частей. Отрезок можно разделить на 12 равных частей с помощью команды Разбить кривую на n частей. Через точки деления отрезка ОА с помощью команды Эквидистанта копируют окружности: их должно быть 12. С помощью команды Копия по окружности создают полярный массив из разделенного на 12 частей шага спирали (рис.3.50).

Рис. 3.50. Построение спирали Архимеда

Точки пересечения шагов и окружностей радиусов 1/12, 2/12, 3/12 и т.д. соединяют ломаной линией с помощью команды Отрезок, начиная от центра спирали (точка О ), учитывая направление вращения объекта. Командой NURBS получают линию спирали Архимеда (рис.3.51).

Для построения большего числа витков спирали Архимеда, строят окружность радиусом, равным двум шагам спирали, или трем шагам, и, соответственно, делят два шага на 24 части, 2,5 шага - на 30 частей.

Рис. 3.51. Спираль Архимеда, построенная с помощью команды NURBS

Построение двухцентрового завитка

Вначале строят горизонтальную вспомогательную прямую. Затем на ней откладывают отрезок. Из первого центра строят окружность радиусом О 1 О 2 , из второго центра строят окружность радиусом 2О 1 О 2 (рис.3.52).

Рис. 3.52. Построение двухцентрового завитка окружностями

После построения необходимого количества окружностей лишние их части удаляют с помощью команды Усечь кривую (рис. 3.53).

Проставляют радиальные размеры к полуокружностям, убедившись, что радиус увеличивается в два раза для каждой последующей окружности.

Рис. 3.53. Двухцентровый завиток

Работа с текстом

Команда Текст позволяет создать текстовую надпись в чертеже или фрагменте. Каждая надпись может состоять из произвольного количества строк.

Для вызова команды нажмите кнопку Текст на инструментальной панели Обозначения.

После вызова команды КОМПАС переключается в режим работы с текстом. При этом изменяются количество и названия команд главного меню, а также состав Компактной панели.

С помощью группы переключателей Размещение выберите расположение текста относительно точки привязки.

В поле Угол можно ввести угол наклона строк текста к оси Х текущей системы координат.

Укажите точку привязки текста.

Введите нужное количество строк, заканчивая набор каждой из них нажатием клавиши <Enter >.

Вы можете изменить установленные по умолчанию параметры текста с помощью элементов управления, расположенных на вкладке Форматирование Панели свойств, а также вставить различные специальные объекты с помощью элементов вкладкиВставка .

Чтобы зафиксировать изображение, нажмите кнопку Создать объект на Панели специального управления.

Порядок выполнения лабораторной работы

Создайте новый фрагмент.

Постройте спираль Архимеда согласно задания.

Постройте завиток по индивидуальному варианту.

Сохраните файл.

Проставьте необходимые размеры.

Внесите обозначения центра, шага спирали с помощью команды Текст.

Создайте во фрагменте надпись, содержащую ФИО студента, группа, № лабораторной работы, № варианта, дата создания.

Спирали Архимеда широко используются при построении геометрий для катушек индуктивности, спиральных теплообменников и микрогидродинамических устройств. В этой заметке мы покажем, как построить спираль Архимеда, используя аналитические выражения и их производные для задания необходимых кривых. Сначала мы создадим двухмерную геометрию, а затем, задав нужную толщину, преобразуем её в трёхмерную с помощью операции Extrude (Вытягивание).

Что такое спираль Архимеда?

Широко распространённые в природе спирали или завитки используются во многих инженерных конструкциях. Например, в электротехнике и электронике с помощью проводников спиралевидной формы наматывают катушки индуктивности или проектируют геликоидные антенны . В машиностроении спирали используются при проектировании пружин , косозубых цилиндрических передач или даже механизмов часов, один из которых изображён ниже.

Пример спирали Архимеда, которая используется в часовом механизме. Изображение представлено Greubel Forsey. Доступно по лицензии CC BY-SA 3.0 из Wikimedia Commons .

В данной статье мы разберём только один вид спирали, а именно, спираль Архимеда, которая изображена в механизме выше. Спираль Архимеда – это особый вид спирали с постоянным расстоянием между витками. Благодаря этому свойству она широко распространена при проектировании катушек и пружин.

Уравнение спирали Архимеда в полярной системе координат записывается, как:

где a и b — параметры, определяющие начальный радиус спирали и расстояние между витками, которое равно 2 \pi b . Обратите внимание, что спираль Архимеда также иногда называют арифметической спиралью . Это имя связывают с арифметической зависимостью расстояния от начала кривой до точек спирали, находящихся на одной радиальной линии.

Задание параметризированной геометрии спирали Архимеда

Теперь, когда вы уже знаете, что такое спираль Архимеда, давайте приступим к параметризации и созданию геометрии в COMSOL Multiphysics.


Спираль Архимеда может быть задана как в полярных, так и в декартовых координатах.

Для начала необходимо преобразовать уравнение спирали из полярной системы координат в декартову и выразить каждое уравнение в параметрической форме:

\begin{align*} x_{component}=rcos(\theta) \\ y_{component}=rsin(\theta) \end{align*}

После преобразования уравнения спирали в параметрической форме в декартовой системе координат примут вид:

\begin{align*} x_{component}=(a+b\theta)cos(\theta) \\ y_{component}=(a+b\theta)sin(\theta) \end{align*}

В COMSOL Multiphysics необходимо определить набор параметров, с помощью которых будем задавать геометрию спирали. В нашем случае — это начальный и конечный радиусы спирали a_{initial} и a_{final} , соответственно, и количество витков n . Показатель роста спирали b находится, как:

b=\frac{a_{final}-a_{initial}}{2 \pi n}

Также необходимо определить начальный и конечный углы спирали — theta_0 и theta_f , соответственно. Давайте с них и начнём — theta_0=0 и theta_f=2 \pi n . Исходя из заданной информации, определяем параметры для построения геометрии спирали.


Параметры, которые используются для построения геометрии спирали.

Начнём наше построение, выбрав трёхмерную задачу (3D Component) и создадим Work Plane (Рабочую плоскость) в разделе Geometry (Геометрия). В геометрии для Work Plane добавляем Parametric Curve (Параметрическую кривую) и записываем параметрические уравнения, описанные выше, чтобы задать двухмерную геометрию спирали Архимеда. Данные уравнения можно сразу вписать в соответствующие поля во вкладке Expression либо сначала можно задать каждое уравнение отдельной Аналитической функцией (Analytic function):

\begin{align*} X_{fun}=(a+bs)cos(s) \\ Y_{fun}=(a+bs)sin(s) \\ \end{align*}


Выражение для X-компоненты уравнения спирали Архимеда, заданное аналитической функцией.

Аналитическая функция затем может использоваться в качестве выражения в узле Parametric Curve. Во вкладке Parameter задаём параметр s от начального угла, theta_0 , до его конечного значения, theta_f=2 \pi n .


Настройки для Parametric Curve (Параметрической кривой).

Как только вы зададите все параметры и нажмёте на кнопку «Build Selected», будет построена кривая, изображённая на скриншоте выше. Теперь давайте зададим толщину спирали, чтобы получить твёрдотельную (solid) двухмерную фигуру.

До этого момента параметрами нашей кривой были начальный (a_{initial} ) и конечный (a_{final} ) радиусы и количество витков n . Теперь мы хотим добавить ещё один – толщину спирали.

Ещё раз напомним главное свойство спирали — расстояние между витками постоянно и равно 2 \pi b . Что эквивалентно \frac{a_{final}-a_{initial}}{n} . Чтобы добавить толщину в наши уравнения, представляем расстояние между витками суммой толщины спирали и зазора thick+gap .


Расстояние между витками определяется толщиной спирали и величиной зазора.

\begin{align*} distance=\frac{a_{initial}-a_{final}}{n} \\ gap=distance-thick \end{align*}

После этого выражаем показатель роста спирали через толщину:

\begin{align*} distance=2\pi b \\ b=\frac{gap+thick}{2\pi} \end{align*}

Также нужно выразить конечный угол спирали через начальный угол и конечный радиус:

\begin{align*} \theta_{final}=2 \pi n \\ a_{final}=\text{total distance}+a_{initial} \\ a_{final}=2 \pi bn+a_{initial} \\ n=\frac{a_{final}-a_{initial}}{2 \pi b} \\ \theta_{final}=\frac{2 \pi (a_{final}-a_{initial})}{2 \pi b} \\ \theta_{final}=\frac{a_{final}-a_{initial}}{b} \end{align*}

Хотите задать отличный от нуля начальный угол спирали? Если так, то его надо будет добавить в выражение для определения конечного угла: theta_f=\frac{a_{final}-a_{initial}}{b}+theta_0 .

Дублирование кривой спирали дважды со смещением на -\frac{thick}{2} и +\frac{thick}{2} по отношению к начальной кривой позволяет построить спираль заданной толщины. Чтобы правильно расположить внутреннюю и внешнюю спирали, необходимо убедиться, что начала данных кривых перпендикулярны линии, на которой расположены их начальные точки. Это можно сделать, домножив расстояние смещения \pm\frac{thick}{2} на единичный вектор, расположенный по нормали к начальной кривой спирали. Уравнения векторов нормали в параметрическом виде:

n_x=-\frac{dy}{ds} \quad \text{and} \quad n_y=\frac{dx}{ds}

где s — это параметр, используемый в узле Parametric Curve. Чтобы получить нормированные единичные вектора, необходимо эти выражения разделить на длину нормали:

\sqrt{(dx/ds)^2+(dy/ds)^2 }

Обновленные параметрические уравнения спирали Архимеда со смещением:

\begin{align*} x_{component}=(a+bs)cos(s)-\frac{dy/ds}{\sqrt{(dx/ds)^2+(dy/ds)^2}}\frac{thick}{2} \\ y_{component}=(a+bs)sin(s)+\frac{dx/ds}{\sqrt{(dx/ds)^2+(dy/ds)^2}}\frac{thick}{2} \end{align*}

Записывать такие длинные выражения довольно неудобно, поэтому введём следующие обозначения:

\begin{align*} N_x=-\frac{dy/ds}{\sqrt{(dx/ds)^2+(dy/ds)^2}} \\ N_y=\frac{dx/ds}{\sqrt{(dx/ds)^2+(dy/ds)^2 }} \end{align*}

где N_x и N_y определяются аналитическими функциями в COMSOL Multiphysics, аналогично X_{fun} и Y_{fun} в первом примере. Внутри функции используется оператор производной, d(f(x),x) , как показано на скриншоте ниже.


Примеры оператора производной, который используется в аналитической функции

Функции X_{fun} , Y_{fun} , N_x , и N_y могут быть использованы в выражениях для задания параметрической кривой, как с одной стороны:

\begin{align*} x_{lower}=X_{fun}(s)+N_x(s)\frac{thick}{2} \\ y_{lower}=Y_{fun}(s)+N_y(s)\frac{thick}{2} \end{align*}

Так и с другой:

\begin{align*} x_{upper}=X_{fun}(s)-N_x(s)\frac{thick}{2} \\ y_{upper}=Y_{fun}(s)-N_y(s)\frac{thick}{2} \end{align*}


Выражения для второй смещённой параметрической кривой.

Чтобы соединить концы, добавим ещё две параметрические кривые, используя незначительные изменения уравнений выше. Для кривой, которая будет соединять спираль в центре, необходимо задать X_{fun} , Y_{fun} , N_x , и N_y для начального значения угла, theta. Для кривой, которая будет соединять концы, необходимо задать конечное значение theta. Исходя из этого, уравнения кривой в центре:

\begin{align*} X_{fun}(theta_0)+s\cdot N_x(theta_0)\cdot\frac{thick}{2} \\ Y_{fun}(theta_0)+s\cdot N_y(theta_0)\cdot\frac{thick}{2} \end{align*}

Уравнения кривой на конце:

\begin{align*} X_{fun}(theta_f)+s\cdot N_x(theta_f)\cdot\frac{thick}{2} \\ Y_{fun}(theta_f)+s\cdot N_y(theta_f)\cdot\frac{thick}{2} \end{align*}

В этих уравнениях параметр s изменяется от -1 до 1, как показано на скриншоте ниже.


Уравнения кривой, соединяющей спираль в центре.

В итоге, мы имеем пять кривых, которые определяют осевую линию спирали и её четыре стороны. Осевую линию можно отключить (функция disable) или даже удалить, так как она не является необходимой. Добавив узел Convert to Solid , создаём единый геометрический объект. Последним шагом является вытягивание данного профиля с помощью операции Extrude и создание трёхмерного объекта.


Полная геометрическая последовательность и вытянутая (экструдированная) трёхмерная геометрия спирали.

Краткие выводы по моделированию спирали Архимеда в COMSOL Multiphysics

В данной заметке мы разобрали основные шаги по созданию параметрической спирали Архимеда. С помощью данной модели вы можете сами экспериментировать с различными значениями параметров, а также попробовать решить с использованием данной параметризации оптимизационную задачу. Надеемся, что данная статья оказалась полезной и вы будете применять данную технику в своих последующих моделях.

Дополнительные ресурсы по проектированию и расчёту спиралей

  • Для улучшения навыков моделирования спиралей, ознакомьтесь со следующими учебными моделями:
  • Познакомьтесь с опытом одного из наших пользователей: