Рисунки имеющие ось симметрии. Совершенство линий – осевая симметрия в жизни

Научно-практическая конференция

МОУ «Средняя общеобразовательная школа № 23»

города Вологды

секция: естественно - научная

проектно-исследовательская работа

ВИДЫ СИММЕТРИИ

Выполнила работу ученица 8 «а» класса

Кренёва Маргарита

Руководитель: учитель математики высшей

2014 год

Структура проекта:

1. Введение.

2. Цели и задачи проекта.

3. Виды симметрии:

3.1. Центральная симметрия;

3.2. Осевая симметрия;

3.3. Зеркальная симметрия (симметрия относительно плоскости);

3.4. Поворотная симметрия;

3.5. Переносная симметрия.

4. Выводы.

Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство.

Г. Вейль

Введение.

Тема моей работы была выбрана после изучения раздела «Осевая и центральная симметрия» в курсе «Геометрия 8 класса». Меня очень заинтересовала эта тема. Я захотела узнать: какие виды симметрии существуют, чем они отличаются друг от друга, каковы принципы построения симметричных фигур в каждом из видов.

Цель работы : Знакомство с различными видами симметрии.

Задачи:

    Изучить литературу по данному вопросу.

    Обобщить и систематизировать изученный материал.

    Подготовить презентацию.

В древности слово «СИММЕТРИЯ» употреблялось в значении «гармония», «красота». В переводе с греческого это слово означает «соразмерность, пропорциональность, одинаковость в расположении частей чего-либо по противоположным сторонам от точки, прямой или плоскости.

Существуют две группы симметрий.

К первой группе относится симметрия положений, форм, структур. Это та симметрия, которую можно непосредственно видеть. Она может быть названа геометрической симметрией.

Вторая группа характеризует симметрию физических явлений и законов природы. Эта симметрия лежит в самой основе естественнонаучной картины мира: ее можно назвать физической симметрией.

Я остановлюсь на изучении геометрической симметрии .

В свою очередь, геометрической симметрии существует тоже несколько видов: центральная, осевая, зеркальная (симметрия относительно плоскости) радиальная (или поворотная), переносная и другие. Я рассмотрю сегодня 5 видов симметрии.

    Центральная симметрия

Две точки А и А 1 называются симметричными относительно точки О, если они лежат на прямой, проходящей через т О и находятся по разные стороны от неё на одинаковом расстоянии. Точка О называется центром симметрии.

Фигура называется симметричной относительно точки О , если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры, говорят, что фигура обладает центральной симметрией.

Примерами фигур, обладающими центральной симметрией является окружность и параллелограмм.

Фигуры, изображённые на слайде симметричны, относительно некоторой точки

2. Осевая симметрия

Две точки X и Y называются симметричными относительно прямой t , если эта прямая проходит чрез середину отрезка ХУ и перпендикулярна к нему. Также следует сказать, что каждая точка прямой t считается симметричной сама себе.

Прямая t – ось симметрии.

Фигура называется симметричной относительно прямой t , если для каждой точки фигуры симметричная ей точка относительно прямой t также принадлежит этой фигуре.

Прямая t называется осью симметрии фигуры, говорят, что фигура обладает осевой симметрией.

Осевой симметрией обладают неразвёрнутый угол, равнобедренный и равносторонний треугольники, прямоугольник и ромб, буквы (смотри презентацию).

    Зеркальная симметрия (симметрия относительно плоскости)

Две точки Р 1 и Р называются симметричными относительно плоскости а если они лежат на прямой, перпендикулярной плоскости а, и находятся от неё на одинаковом расстоянии

Зеркальная симметрия хорошо знакома каждому человеку. Она связывает любой предмет и его отражение в плоском зеркале. Говорят, что одна фигура зеркально симметрична другой.

На плоскости фигурой с бесчисленным множеством осей симметрии был круг. В пространстве бесчисленное множество плоскостей симметрии имеет шар.

Но если круг является единственным в своем роде, то в трехмерном мире имеется целый ряд тел, обладающих бесконечным множеством плоскостей симметрии: прямой цилиндр с кругом в основании, конус с круговым основанием, шар.

Легко установить, что каждая симметричная плоская фигура может быть с помощью зеркала совмещена сама с собой. Достойно удивления, что такие сложные фигуры, как пятиконечная звезда или равносторонний пятиугольник, тоже симметричны. Как это вытекает из числа осей, они отличаются именно высокой симметрией. И наоборот: не так просто понять, почему такая, казалось бы, правильная фигура, как косоугольный параллелограмм, несимметрична.

4. П оворотная симметрия (или радиальная симметрия)

Поворотная симметрия - это симметрия, сохраняющаяся форму предмета при повороте вокруг некоторой оси на угол, равный 360°/ n (или кратный этой величине), где n = 2, 3, 4, … Указанную ось называют поворотной осью n -го порядка.

При п=2 все точки фигуры поворачиваются на угол 180 0 ( 360 0 /2 = 180 0 )вокруг оси, при этом форма фигуры сохраняется, т.е. каждая точка фигуры переходит в точку той же фигуры(фигура преобразуется сама в себя). Ось называют осью второго порядка.

На рисунке 2 показана ось третьего порядка, на рисунке 3 – 4 порядка, на рисунке 4 - 5-го порядка.

Предмет может иметь более одной поворотной оси: рис.1 – 3оси поворота, рис.2 -4 оси, рис 3 – 5 осей, рис. 4 – только 1 ось

Всем известные буквы «И» и «Ф» обладают поворотной симметрией Если повернуть букву «И» на 180° вокруг оси, перпендикулярной к плоскости буквы и проходящей через ее центр, то буква совместится сама с собой. Иными словами, буква «И» симметрична относительно поворота на 180°, 180°= 360°: 2, n =2 , значит она обладает симметрией второго порядка.

Заметим, что поворотной симметрией второго порядка обладает также буква «Ф».

Кроме того буква и имеет центр симметрии, а буква Ф ось симметрии

Вернемся к примерам из жизни: стакан, конусообразный фунтик с мороженым, кусочек проволоки, труба.

Если мы повнимательней присмотримся к этим телам, то заметим, что все они, так или иначе состоят из круга, через бесконечное множество осей симметрии которого проходит бесчисленное множество плоскостей симметрии. Большинство таких тел (их называют телами вращения) имеют, конечно, и центр симметрии (центр круга), через который проходит по меньшей мере одна поворотная, ось симметрии.

Отчетливо видна, например, ось у конуса фунтика с мороженым. Она проходит от середины круга (торчит из мороженого!) до острого конца конуса-фунтика. Совокупность элементов симметрии какого-либо тела мы воспринимаем как своего рода меру симметрии. Шар, без сомнения, в отношении симметрии является непревзойденным воплощением совершенства, идеалом. Древние греки воспринимали его как наиболее совершенное тело, а круг, естественно, как наиболее совершенную плоскую фигуру.

Для описания симметрии конкретного объекта надо указать все поворотные оси и их порядок, а также все плоскости симметрии.

Рассмотрим, например, геометрическое тело, составленное из двух одинаковых правильных четырехугольных пирамид.

Оно имеет одну поворотную ось 4-го порядка (ось АВ), четыре поворотные оси 2-го порядка (оси СЕ, DF , MP , NQ ), пять плоскостей симметрии (плоскости CDEF , AFBD , ACBE , AMBP , ANBQ ).

5 . Переносная симметрия

Ещё одним видом симметрии является переносная с имметрия.

О такой симметрии говорят тогда, когда при переносе фигуры вдоль прямой на какое-то расстояние «а» либо расстояние, кратное этой величине, она совмещается сама с собой Прямая, вдоль которой производится перенос, называется осью переноса, а расстояние «а» - элементарным переносом, периодом или шагом симметрии.

а

Периодически повторяющийся рисунок на длинной ленте называется бордюром. На практике бордюры встречаются в различных видах (настенная роспись, чугунное литье, гипсовые барельефы или керамика). Бордюры применяют маляры и художники при оформлении комнаты. Для выполнения этих орнаментов изготавливают трафарет. Передвигаем трафарет, переворачивая или не переворачивая его, обводим контур, повторяя рисунок, и получается орнамент (наглядная демонстрация).

Бордюр легко построить с помощью трафарета (исходного элемента), сдвигая или переворачивая его и повторяя рисунок. На рисунке изображены трафареты пяти видов: а ) несимметричный; б, в ) имеющие одну ось симметрии: горизонтальную или вертикальную; г ) центрально-симметричный; д ) имеющий две оси симметрии: вертикальную и горизонтальную.

Для построения бордюров используют следующие преобразования:

а ) параллельный перенос; б ) симметрию относительно вертикальной оси; в ) центральную симметрию; г ) симметрию относительно горизонтальной оси.

Аналогично можно построить розетки. Для этого круг делят на n равных секторов, в одном из них выполняют образец рисунка и затем последовательно повторяют последний в остальных частях круга, поворачивая рисунок каждый раз на угол 360°/ n .

Наглядным примером применения осевой и переносной симметрии может служить забор, изображённый на фотографии.

Вывод: Таким образом, существуют различные виды симметрии, симметричные точки в каждом из этих видов симметрии строятся по определённым законам. В жизни мы повсюду встречаемся тем или иным видом симметрии, а часто у предметов, которые нас окружают, можно отметить сразу несколько видов симметрии. Это создаёт порядок, красоту и совершенство в окружающем нас мире.

ЛИТЕРАТУРА:

    Справочник по элементарной математике. М.Я. Выгодский. – Издательство « Наука». – Москва 1971г. – 416стр.

    Современный словарь иностранных слов. - М.: Русский язык, 1993г .

    История математики в школе IX - X классы. Г.И. Глейзер. – Издательство «Просвещение». – Москва 1983г. – 351стр.

    Наглядная геометрия 5 – 6 классы. И.Ф. Шарыгин, Л.Н. Ерганжиева. – Издательство «Дрофа», Москва 2005г. – 189стр.

    Энциклопедия для детей. Биология. С. Исмаилова. – Издательство «Аванта+». – Москва 1997г. – 704стр.

    Урманцев Ю.А. Симметрия природы и природа симметрии - М.: Мысль arxitekt / arhkomp 2. htm , , ru.wikipedia.org/wiki/

Пусть g - фиксированная прямая (рис. 191). Возьмем произвольную точку X и опустим перпендикуляр АХ на прямую g. На продолжении перпендикуляра за точку А отложим отрезок АХ", равный отрезку АХ. Точка X" называется симметричной точке X относительно прямой g.

Если точка X лежит на прямой g, то симметричная ей точка есть сама точка X. Очевидно, что точка, симметричная точке Х" есть точка X.

Преобразование фигуры F в фигуру F", при котором каждая ее точка X переходит в точку X", симметричную относительно данной прямой g, называется преобразованием симметрии относительно прямой g. При этом фигуры F и F" называются симметричными относительно прямой g (рис. 192).

Если преобразование симметрии относительно прямой g переводит фигуру F в себя, то эта фигура называется симметричной относительно прямой g, а прямая g называется осью симметрии фигуры.

Например, прямые, проходящие через точку пересечения диагоналей прямоугольника параллельно его сторонам, являются осями симметрии прямоугольника (рис. 193). Прямые, на которых лежат диагонали ромба, являются его осями симметрии (рис. 194).

Теорема 9.3. Преобразование симметрии относительно прямой является движением.


Доказательство. Примем данную прямую за ось у декартовой системы координат (рис. 195). Пусть произвольная точка А (х; у) фигуры F переходит в точку А" (х"; у") фигуры F". Из определения симметрии относительно прямой следует, что у точек А и А" равные ординаты, а абсциссы отличаются только знаком:

х"= -х.
Возьмем две произвольные точки А(х 1 ; y 1) и В (х 2 ; y 2)- Они перейдут в точки А" (- х 1 , y 1) и В" (-x 2 ; y 2).

AB 2 = (x 2 - x 1) 2 + (y 2 - y 1) 2
A"B" 2 =(-x 2 + x 1) 2 +(y 2 -y 1) 2 .

Отсюда видно, что АВ=А"В". А это значит, что преобразование симметрии относительно прямой есть движение. Теорема доказана.

симметрия архитектурный фасад сооружение

Симметрия - понятие, отражающее существующий в природе порядок, пропорциональность и соразмерность между элементами какой-либо системы или объекта природы, упорядоченность, равновесие системы, устойчивость, т.е. некий элемент гармонии.

Прошли тысячелетия, прежде чем человечество в ходе своей общественно-производственной деятельности осознало необходимость выразить в определенных понятиях установленные им прежде всего в природе две тенденции: наличие строгой упорядоченности, соразмерности, равновесия и их нарушения. Люди давно обратили внимание на правильность формы кристаллов, геометрическую строгость строения пчелиных сот, последовательность и повторяемость расположения ветвей и листьев на деревьях, лепестков, цветов, семян растений и отобразили эту упорядоченность в своей практической деятельности, мышлении и искусстве.

Симметрией обладают объекты и явления живой природы. Она не только радует глаз и вдохновляет поэтов всех времен и народов, а позволяет живым организмам лучше приспособиться к среде обитания и просто выжить.

В живой природе огромное большинство живых организмов обнаруживает различные виды симметрий (формы, подобия, относительного расположения). Причем организмы разного анатомического строения могут иметь один и тот же тип внешней симметрии.

Принцип симметрии - утверждает, что если пространство однородно, перенос системы как целого в пространстве не изменяет свойств системы. Если все направления в пространстве равнозначны, то принцип симметрии разрешает поворот системы как целого в пространстве. Принцип симметрии соблюдается, если изменить начало отсчета времени. В соответствии с принципом, можно произвести переход в другую систему отсчета, движущейся относительно данной системы с постоянной скоростью. Неживой мир очень симметричен. Нередко нарушения симметрии в квантовой физике элементарных частиц - это проявление еще более глубокой симметрии. Ассиметрия является структурообразующим и созидающим принципом жизни. В живых клетках функционально-значимые биомолекулы асимметричны.: белки состоят из левовращающих аминокислот (L-форма) , а нуклеиновые кислоты содержат в своем составе, помимо гетероциклических оснований, правовращающие углеводы - сахара (Д-форма) , кроме того сама ДНК - основа наследственности является правой двойной спиралью.

Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твердого тела, атомной и ядерной физики, физики элементарных частиц. Эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. Речь при этом идет не только о физических законах, но и других, например, биологических. Примером биологического закона сохранения может служить закон наследования. В основе его лежат инвариантность биологических свойств по отношению к переходу от одного поколения к другому. Вполне очевидно, что без законов сохранения (физических, биологических и прочих) наш мир попросту не смог бы существовать.

Таким образом, симметрия выражает сохранение чего-то при каких-то изменениях или сохранение чего-то, несмотря на изменение. Симметрия предполагает неизменность не только самого объекта, но и каких-либо его свойств по отношению к преобразованиям, выполненным над объектом. Неизменность тех или иных объектов может наблюдаться по отношению к разнообразным операциям - к поворотам, переносам, взаимной замене частей, отражениям и т.д.

Рассмотрим виды симметрии в математике:

  • * центральная (относительно точки)
  • * осевая (относительно прямой)
  • * зеркальная (относительно плоскости)
  • 1. Центральная симметрия (приложение 1)

Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры.

Впервые понятие центра симметрии встречается в XVI в. В одной из теорем Клавиуса, гласящей: «если параллелепипед рассекается плоскостью, проходящей через центр, то он разбивается пополам и, наоборот, если параллелепипед рассекается пополам, то плоскость проходит через центр». Лежандр, который впервые ввёл в элементарную геометрию элементы учения о симметрии, показывает, что у прямого параллелепипеда имеются 3 плоскости симметрии, перпендикулярные к ребрам, а у куба 9 плоскостей симметрии, из которых 3 перпендикулярны к рёбрам, а другие 6 проходят через диагонали граней.

Примерами фигур, обладающих центральной симметрией, являются окружность и параллелограмм.

В алгебре при изучении чётных и нечётных функций рассматриваются их графики. График чётной функции при построении симметричен относительно оси ординат, а график нечётной функции - относительно начала координат, т.е. точки О. Значит, нечётная функция обладает центральной симметрией, а чётная функция - осевой.

2. Осевая симметрия (приложение 2)

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а, также принадлежит этой фигуре. Прямая а называется осью симметрии фигуры. Говорят также, что фигура обладает осевой симметрией.

В более узком смысле осью симметрии называют ось симметрии второго порядка и говорят об «осевой симметрии», которую можно определить так: фигура (или тело) обладает осевой симметрией относительно некоторой оси, если каждой её точке Е соответствует такая принадлежащая этой же фигуре точка F, что отрезок EF перпендикулярен к оси, пересекает её и в точке пересечения делится пополам.

Приведу примеры фигур, обладающих осевой симметрией. У неразвернутого угла одна ось симметрии -- прямая, на которой расположена биссектриса угла. Равнобедренный (но не равносторонний) треугольник имеет также одну ось симметрии, а равносторонний треугольник-- три оси симметрии. Прямоугольник и ромб, не являющиеся квадратами, имеют по две оси симметрии, а квадрат-- четыре оси симметрии. У окружности их бесконечно много -- любая прямая, проходящая через её центр, является осью симметрии.

Имеются фигуры, у которых нет ни одной оси симметрии. К таким фигурам относятся параллелограмм, отличный от прямоугольника, разносторонний треугольник.

3. Зеркальная симметрия (приложение 3)

Зеркальной симметрией (симметрией относительно плоскости) называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей относительно этой плоскости точку М1.

Зеркальная симметрия хорошо знакома каждому человеку из повседневного наблюдения. Как показывает само название, зеркальная симметрия связывает любой предмет и его отражение в плоском зеркале. Говорят, что одна фигура (или тело) зеркально симметрично другой, если вместе они образуют зеркально симметричную фигуру (или тело).

Игрокам в бильярд издавна знакомо действие отражения. Их «зеркала» -- это борта игрового поля, а роль луча света исполняют траектории шаров. Ударившись о борт возле угла, шар катится к стороне, расположенной под прямым углом, и, отразившись от неё, движется обратно параллельно направлению первого удара.

Следует отметить, что две симметричные фигуры или две симметричные части одной фигуры при всем их сходстве, равенстве объемов и площадей поверхностей, в общем случае, неравны, т.е. их нельзя совместить друг с другом. Это разные фигуры, их нельзя заменить друг другом, например, правая перчатка, ботинок и т.д. не годятся для левой руки, ноги. Предметы могут иметь одну, две, три и т.д. плоскостей симметрии. Например, прямая пирамида, основанием которой является равнобедренный треугольник, симметрична относительно одной плоскости Р. Призма с таким же основанием имеет две плоскости симметрии. У правильной шестиугольной призмы их семь. Тела вращения: шар, тор, цилиндр, конус и т.д. имеют бесконечное количество плоскостей симметрии.

Древние греки полагали, что Вселенная симметрична просто потому, что симметрия прекрасна. Исходя из соображений симметрии, они высказали ряд догадок. Так, Пифагор (5 век до н.э.), считая сферу наиболее симметричной и совершенной формой, делал вывод о сферичности Земли и о ее движении по сфере. При этом он полагал, что Земля движется по сфере некоего «центрального огня». Вокруг того же «огня», согласно Пифагору, должны были обращаться известные в те времена шесть планет, а также Луна, Солнце, звезды.

С древних времен человек выработал представления о красоте. Красивы все творения природы. По-своему прекрасны люди, восхитительны животные и растения. Радует взор зрелище драгоценного камня или кристалла соли, сложно не любоваться снежинкой или бабочкой. Но почему так происходит? Нам кажется правильным и завершенным вид объектов, правая и левая половина которых выглядит одинаково, как в зеркальном отражении.

Видимо, первыми о сути красоты задумывались люди искусства. Древние скульпторы, изучавшие строение человеческого тела, еще в V веке до н.э. стали применять понятие «симметрия». Это слово имеет греческое происхождение и означает гармоничность, пропорциональность и похожесть расположения составляющих частей. Платон утверждал, что прекрасным может быть лишь то, что симметрично и соразмерно.

В геометрии и математике рассматриваются три вида симметрии: осевая симметрия (относительно прямой), центральная (относительно точки) и зеркальная (относительно плоскости).

Если каждая из точек объекта имеет в пределах него свое точное отображение относительно его центра - имеет место центральная симметрия. Ее примером являются такие геометрические тела, как цилиндр, шар, правильная призма и т.д.

Осевая симметрия точек относительно прямой предусматривает, что эта прямая пересекает середину отрезка, соединяющего точки, и перпендикулярна ему. Примеры биссектриса неразвернутого угла равнобедренного треугольника, любая прямая, проведенная через центр окружности, и т.д. Если свойственна осевая симметрия, определение зеркальных точек можно наглядно представить, просто перегнув ее по оси и сложив равные половинки «лицом к лицу». Искомые точки при этом соприкоснутся.

При зеркальной симметрии точки объекта расположены одинаково относительно плоскости, что проходит через его центр.

Природа мудра и рациональна, поэтому почти все ее творения имеют гармоничное строение. Это относится и к живым существам, и к неодушевленным объектам. Для строения большинства форм жизни характерен один из трех видов симметрии: двусторонняя, лучевая или шаровидная.

Чаще всего осевая может наблюдаться у растений, развивающихся перпендикулярно поверхности почвы. В этом случае симметричность является результатом поворота идентичных элементов вокруг общей оси, находящейся в центре. Угол и частота их расположения могут быть разными. Примером служат деревья: ель, клен и другие. У некоторых животных осевая симметрия тоже встречается, но это бывает реже. Конечно, природе редко присуща математическая точность, но похожесть элементов организма все равно поразительна.

Биологами чаще рассматривается не осевая симметрия, а двусторонняя (билатеральная). Ее примером могут служить крылья бабочки или стрекозы, листья растений, лепестки цветов и т.д. В каждом случае правая и левая части живого объекта равны и представляют собой зеркальное отображение друг друга.

Шаровидная симметрия характерна для плодов многих растений, для некоторых рыб, моллюсков и вирусов. А примерами лучевой симметрии являются некоторые виды червей, иглокожие.

В глазах человека несимметричность чаще всего ассоциируется с неправильностью или ущербностью. Поэтому в большинстве творений людских рук прослеживается симметричность и гармония.

Определение. Симметрия (означает «соразмерность») - свойство геометрических объектов совмещаться с собой при определенных преобразованиях. Под симметрией понимают всякую правильность во внутреннем строении тела или фигуры.

Симметрия относительно точки - это центральная симметрия (рис. 23 ниже), а симметрия относительно прямой - это осевая симметрия (рис. 24 ниже).

Симметрия относительно точки предполагает, что по обе стороны от точки на одинаковых расстояниях находится что-либо, например другие точки или геометрическое место точек (прямые линии, кривые линии, геометрические фигуры).

Если соединить прямой симметричные точки (точки геометрической фигуры) через точку симметрии, то симметричные точки будут лежать на концах прямой, а точка симметрии будет ее серединой. Если закрепить точку симметрии и вращать прямую, то симметричные точки опишут кривые, каждая точка которых тоже будет симметрична точке другой кривой линии.

Симметрия относительно прямой (оси симметрии) предполагает, что по перпендикуляру, проведенному через каждую точку оси симметрии, на одинаковом расстоянии от нее расположены две симметричные точки. Относительно оси симметрии (прямой) могут располагаться те же геометрические фигуры, что и относительно точки симметрии.

Примером может служить лист тетради, который согнут пополам, если по линии сгиба провести прямую линию (ось симметрии). Каждая точка одной половины листа будет иметь симметричную точку на второй половине листа, если они расположены на одинаковом расстоянии от линии сгиба на перпендикуляре к оси.

Линия осевой симметрии, как на рисунке 24, вертикальна, и горизонтальные края листа перпендикулярны ей. Т. е. ось симметрии служит перпендикуляром к серединам горизонтальных ограничивающих лист прямых. Симметричные точки (R и F, C и D) расположены на одинаковом расстоянии от осевой прямой - перпендикуляра к прямым, соединяющим эти точки. Следовательно, все точки перпендикуляра (оси симметрии), проведенного через середину отрезка, равноудалены от его концов; или любая точка перпендикуляра (оси симметрии) к середине отрезка равноудалена от концов этого отрезка.

6.7.3. Осевая симметрия

Точки А и А 1 симметричны относительно прямой m, так как прямая m перпендикулярна отрезку АА 1 и проходит через его середину.

m – ось симметрии.

Прямоугольник ABCD имеет две оси симметрии: прямые m и l .

Если чертеж перегнуть по прямой m или по прямой l, то обе части чертежа совпадут.

Квадрат ABCD имеет четыре оси симметрии: прямые m , l , k и s .

Если квадрат перегнуть по какой-либо из прямых: m , l , k или s , то обе части квадрата совпадут.

Окружность с центром в точке О и радиусом ОА имеет бесчисленное количество осей симметрии. Это прямые: m, m 1, m 2 , m 3 .

Задание. Построить точку А 1 , симметричную точке А(-4; 2) относительно оси Ох.

Построить точку А 2 , симметричную точке А(-4; 2) относительно оси Оy.

Точка А 1 (-4; -2) симметрична точке А(-4; 2) относительно оси Ох, так как ось Ох перпендикулярна отрезку АА 1 и проходит через его середину.

У точек, симметричных относительно оси Ох абсциссы совпадают, а ординаты являются противоположными числами.

Точка А 2 (4; -2) симметрична точке А(-4; 2) относительно оси Оy, так как ось Оу перпендикулярна отрезку АА 2 и проходит через его середину.

У точек, симметричных относительно оси Оу ординаты совпадают, а абсциссы являются противоположными числами.

www.mathematics-repetition.com

wiki.eduVdom.com

Инструменты пользователя

Инструменты сайта

Боковая панель

Геометрия:

Контакты

Центральная и осевая симметрии

Центральная симметрия

Две точки А и А 1 называются симметричными относительно точки О, если О - середина отрезка АА 1 (рис.1). Точка О считается симметричной самой себе.

Пример центральной симметрии

Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией.

Примерами фигур, обладающих центральной симметрией, являются окружность и параллелограмм (рис.2).

Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма - точка пересечения его диагоналей. Прямая также обладает центральной симметрией, однако в отличие от окружности и параллелограмма, которые имеют только один центр симметрии (точка О на рис.2), у прямой их бесконечно много - любая точка прямой является ее центром симметрии.

Осевая симметрия

Две точки А и А 1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА 1 и перпендикулярна к нему (рис.3). Каждая точка прямой а считается симметричной самой себе.

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая а называется осью симметрии фигуры.

Примеры таких фигур и их оси симметрии изображены на рисунке 4.

Заметим, что у окружности любая прямая, проходящая через ее центр, является осью симметрии.

Сравнение симметрий

Центральная и осевая симметрии

Сколько всего осей симметрии имеет фигура, изображённая на рисунке?

wiki.eduvdom.com

Урок «Осевая и центральная симметрия»

Краткое описание документа:

Симметрия – достаточно интересная тема в геометрии, так как именно это понятие очень часто встречается не только в процессе жизнедеятельности человека но и в природе.

Первая часть видео-презентации «Осевая и центральная симметрия» дает определение симметричности двух точек относительно прямой на плоскости. Условием их симметричности является возможность проведения через них отрезка, через середину которого будет проходить заданная прямая. Обязательным условием такой симметричности является перпендикулярность отрезка и прямой.

Следующая часть видео-урока дает наглядный пример определения, который показывается в виде чертежа, где несколько пар точек симметричны относительно прямой, а любая точка на этой прямой симметрична сама себе.

После получения первоначальных понятий о симметрии, ученикам предлагается более сложное определение фигуры, симметричной относительно прямой. Определение предлагается в виде текстового правила, а также параллельно сопровождается речью диктора за кадром. Завершает эту часть примеры симметричных и не симметричных фигур, относительно прямой. Интересно, что существуют геометрические фигуры, имеющие несколько осей симметрии – все они наглядно представлены в виде чертежей, где оси выделены отдельным цветом. Облегчить понимание предлагаемого материала можно таким способом – предмет или фигура является симметричной, если она точно совпадает при складывании двух половин относительно своей оси.

Кроме осевой симметрии существует симметрия относительно одной точки. Именно этому понятию посвящена следующая часть видео-презентации. Сначала дается определение симметричности двух точек относительно третьей, затем предоставляется пример в виде рисунке, где показаны симметричная и не симметричная пара точек. Завершает эту часть урока примеры геометрических фигур, у которых присутствует или отсутствует цент симметрии.

В заключении урока ученикам предлагается ознакомиться с наиболее яркими примерами симметрии, которые можно встретить в окружающем мире. Понимание и умение строить симметричные фигуры просто необходимы в жизни людей, которые занимаются самыми разными профессиями. По своей сути симметрия – основа всей человеческой цивилизации, так как 9 из 10 предметов, окружающих человека, имеют тот или иной тип симметрии. Без симметрии было бы не возможно возведение многих больших архитектурных сооружений, не получилось бы достигнуть впечатляющих мощностей в промышленности и так далее. В природе симметрия также – очень распространенное явление, и если в неодушевленных предметах ее встретить практически невозможно, то живой мир буквально кишит ею – практически вся флора и фауна, за редким исключением, имеет или осевую, или центральную симметрию.

Обычная школьная программа разрабатывается с таким учетом, чтобы ее мог бы понять любой ученик, допущенный к занятием. Видео-презентация в несколько раз облегчает этот процесс, так как одновременно воздействует на несколько центров освоения информации, предоставляет материал в нескольких цветах, тем самым, заставляя учеников концентрировать внимание учеников на самом важном во время урока. В отличии от обычного способа обучения в школах, когда не каждый учитель имеет возможность или желание отвечать ученикам на уточняющие вопросы, видео-урок легко можно перемотать на необходимое место, чтобы заново прослушать диктора и прочитать нужную информацию еще раз, вплоть до ее полного понимания. Учитывая простоту подачи материала, видео-презентацию можно использовать не только во время школьных занятий, но и в домашних условиях, в качестве самостоятельного способа обучения.

urokimatematiki.ru

Презентация «Движения. Осевая симметрия»

Документы в архиве:

Название документа 8.

Описание презентации по отдельным слайдам:

Центральная симметрия - один из примеров движения

Определение Осевая симметрия с осью а - отображение пространства на себя, при котором любая точка К переходит в симметричную ей точку К1 относительно оси а

1) Оxyz - прямоугольная система координат Оz - ось симметрии 2) М(x; y; z) и M1(x1; y1; z1), симметричны относительно оси Оz Формулы будут верны и в случае, если точка М ⊂ Оz Осевая симметрия является движением Z X Y М(x; y; z) M1(x1; y1; z1) O

Доказать: Задача 1 при осевой симметрии прямая, образующая с осью симметрии угол φ, отображается на прямую, так же образующую с осью симметрии угол φ Решение: при осевой симметрии прямая, образующая с осью симметрии угол φ, отображается на прямую, так же образующую с осью симметрии угол φ A F E N m l a φ φ

Дано: 2) △ABD - прямоугольный, по теореме Пифагора: 1) DD1 ⏊ (A1C1D1), 3) △BDD2 - прямоугольный, по теореме Пифагора: Задача 2 Найти: BD2 Решение:

Краткое описание документа:

Презентация «Движения. Осевая симметрия» представляет наглядный материал для объяснения на школьном уроке математики основных положений данной темы. В данной презентации осевая симметрия рассматривается как еще один вид движения. В ходе презентации ученикам напоминается изученное понятие центральной симметрии, дается определение осевой симметрии, доказывается положение о том, что осевая симметрия является движением, а также описывается решение двух задач, в которых необходимо оперировать понятием осевой симметрии.

Осевая симметрия является движением, поэтому ее представление на классной доске вызывает сложности. Более четкие понятные построения можно сделать с помощью электронных средств. Благодаря этому построения хорошо видны с любой парты в классе. На рисунках есть возможность выделить цветом детали построения, акцентировать внимание на особенностях операции. С той же целью используются анимационные эффекты. С помощью инструментов презентации учителю легче достичь целей обучения, поэтому презентация применяется для повышения эффективности урока.

Демонстрация начинается с напоминания ученикам об изученном виде движения – центральной симметрии. Примером применения операция служит симметричное отображение нарисованной груши. На плоскости отмечается точка, относительно которой каждая точка изображения переходит в симметричную. Отображенное изображение, таким образом, перевернуто. При этом все расстояния между точками объекта сохраняются при центральной симметрии.

На втором слайде вводится понятие осевой симметрии. На рисунке изображен треугольник, каждая его вершина переходит в симметричную вершину треугольника относительно некоторой оси. В рамке выделено определение осевой симметрии. Отмечается, что при нем каждая точка объекта переходит в симметричную.

Далее в прямоугольной координатной системе рассматривается осевая симметрия, свойства координат объекта, отображенного с помощью осевой симметрии, в также доказывается, что при данном отображении сохраняются расстояния, что есть признаком движения. Справа на слайде изображается прямоугольная система координат Оxyz. За ось симметрии принимается ось Оz. В пространстве отмечена точка М, при соответствующем отображении переходящая в М 1 . На рисунке видно, что при осевой симметрии точка сохраняет свою аппликату.

Отмечается, что среднее арифметическое абсцисс и ординат данного отображения при осевой симметрии равно нулю, то есть (x+ x 1)/2=0; (y+ y 1)/2=0. Иначе это свидетельствует, что x=-x 1 ; y=-y 1 ; z=z 1 . Правило сохраняется и в случае, если точка М отмечена на самой оси Оz.

Для рассмотрения, сохраняются ли расстояния между точками при осевой симметрии, описывается операция на точками А и В. Отображаясь относительно оси Оz, описываемые точки переходят в А1 и В1. Чтобы определить расстояние между точками, воспользуемся формулой, в которой расстояние вычисляется по координатам. Отмечается, что АВ=√(x 2 -x 1) 2 +(y 2 -y 1) 2 +(z 2 -z 1) 2), а для отображенных точек А 1 В 1 =√(-x 2 +x 1) 2 +(-y 2 +y 1) 2 +(z 2 -z 1) 2). Учитывая свойства возведения в квадрат, можно отметить, что АВ=А 1 В 1 . Это говорит о том, что расстояния сохраняются между точками – главный признак движения. Значит, осевая симметрия есть движение.

На слайде 5 рассматривается решение задачи 1. В ней необходимо доказать утверждение, что прямая, проходящая под углом φ к оси симметрии, образует с ней такой же угол φ. К задаче дается изображение, на котором начерчена ось симметрии, а также прямая m, образующая с осью симметрии угол φ, и относительно оси ее отображение – прямая l. Доказательство утверждения начинается с построения дополнительных точек. Отмечается, что прямая m пересекает ось симметрии в А. Если отметить на этой прямой точку F≠A и опустить от нее перпендикуляр на ось симметрии, получим пересечение перпендикуляра с осью симметрии в точке Е. При осевой симметрии отрезок FE переходит в отрезок NE. В результате такого построения получили прямоугольные треугольники ΔAEF и ΔAEN. Эти треугольник равны, так как АЕ является у них общим катетом, а FE = NE равны по построению. Соответственно, угол ∠EAN=∠EAF. Из этого следует, что отображенная прямая также образует с осью симметрии угол φ. Задача решена.

На последнем слайде рассматривается решение задачи 2, в которой необходимо дан куб ABCDA 1 B 1 C 1 D 1 со стороной а. Известно, что после симметрии относительно оси, содержащей ребро B 1 D 1 , точка D переходит в D 1 . В задаче требуется найти BD 2 . К задаче делается построение. На рисунке изображен куб, по которому видно, что осью симметрии является диагональ грани куба B 1 D 1 . Отрезок, образующийся при движении точки D, перпендикулярен плоскости грани, которой принадлежит ось симметрии. Так как при движении сохраняются расстояния между точками, то DD 1 = D 1 D 2 =а, то есть расстояние DD 2 =2а. Из прямоугольного треугольника ΔABD по теореме Пифагора следует, что BD=√(AB 2 +AD 2)=а√2. Из прямоугольного треугольника ΔВDD 2 следует по теореме Пифагора BD 2 =√(DD 2 2 +ВD 2)=а√6. Задача решена.

Презентация «Движения. Осевая симметрия» используется для повышения эффективности школьного урока математики. Также этот метод наглядности поможет учителю, осуществляющему дистанционное обучение. Материал может быть предложен для самостоятельного рассмотрения учениками, которые недостаточно хорошо усвоили тему урока.

Почему жена ушла и не подает на развод Практический форум о настоящей любви Жена подаёт на развод.Помогите! Жена подаёт на развод.Помогите! Сообщение MIRON4IK » 23 окт 2009, 16:22 Сообщение raz » 23 окт 2009, 19:17 Сообщение MIRON4IK » 23 окт 2009, 22:21 Сообщение edon » […]

  • Суд над фашизмом – Нюрнбергский процесс 8 августа 1945 г., через три месяца после Победы над фашистской Германией страны-победительницы: СССР, США, Великобритания и Франция в ходе лондонской конференции утвердили Соглашение о создании […]
  • Дурович А.П. Маркетинг в туризме Учебное пособие. - Минск: Новое знание, 2003. - 496 с. Раскрываются сущность, принципы маркетинга, его функции и технология маркетинговой деятельности в туризме. Концептуально структура учебного пособия […]
  • Учебное пособие "Таблица умножения", Lakeshore Планшет "Деление", который сама себя проверяет, настолько упрощает математику, что дети могут учиться сами! Дети просто нажимают кнопки равенства. и тут же появляются ответы-подсказки! 81 […]