Особенности строения алканов таблица. Алканы: общие сведения

Химические свойства. Физические свойства алканов

Физические свойства алканов

В обычных условиях первые четыре члена гомологического ряда алканов (С 1 - С 4) - газы. Нормальные алканы от пентана до гептадекана (С 5 - С 17) - жидкости, начиная с С 18 и выше - твердые вещества. По мере увеличения числа атомов углерода в цепи, т.е. с ростом относительной молекулярной массы, возраста­ют температуры кипения и плавления алканов.

При одинаковом числе атомов углерода в молекуле алканы с разветвленным строением имеют более низкие температуры кипения, чем нормальные алканы.

Алканы практически нерастворимы в воде, т.к. их молекулы малополярны и не взаимодействуют с молекулами воды. Жидкие алканы легко смешиваются друг с другом. Они хорошо растворя­ются в неполярных органических растворителях, таких, как бен­зол, тетрахлорметан и т.п.

Строение

Молекула простейшего алкана - метана - имеет форму пра­вильного тетраэдра, в центре которого находится атом углерода, а в вершинах - атомы водорода. Углы между осями связей С-Н составляют 109°28" (рис. 29).

В молекулах других предельных углеводородов углы между связями (как С-Н, так и С-С) имеют такое же значение. Для описания формы молекул используется понятие гибри­дизации атомных орбиталей (см. часть I, §6).

В алканах все атомы углерода на­ходятся в состоянии sp 3 - гибридиза­ции (рис. 30).

Таким образом, атомы углерода в углеродной цепи не находятся на одной прямой. Расстояние между соседними атомами углерода (между ядрами атомов) строго фиксирова­но - это длина химической связи (0,154 нм). Расстояние С 1 - С 3 , С 2 - С 4 и т.д. (через один атом) тоже постоянны, т.к. постоянен угол между связями -валент­ный угол.

Расстояния между более удаленными атомами углерода могут изменяться (в некоторых пределах) в результате вращения вокруг s-связей. Такое вращение не нарушает перекрывания орбиталей, образующих s-связь, поскольку эта связь имеет осевую симметрию.

Разные пространственные формы одной молекулы, образующиеся при вращении групп атомов вокруг s-связей, называют конформациями (рис. 31).

Конформации различают по энер­гии, но это различие невелико (12-15 кДж/моль). Более устойчивы такие конформации алканов, в которых атомы расположены возможно дальше друг от друга (отталкивание электронных обо­лочек). Переход от одной конформации к другой осуществляется за счет энергии теплового движения. Для изображения конформации используют специальные пространственные формулы (формулы Ньюмена).

Не путать!

Следует различать понятия конформация и конфигурация.

Разные конформации могут превращаться друг в друга без разрыва химических связей. Для превращения молекулы с одной конфигурацией в молекулу с другой конфигурацией требуется разрыв химических связей.

Из четырех видов изомерии для алканов характерны два: изомерия углеродного скелета и оптическая изомерия (см. часть

Химические связи в алканах, их разрыв и образование опре­деляют химические свойства алканов. Связи С-С и С-Н ковалент­ные, простые (s-связи), практически неполярные, достаточно прочные, поэтому:

1) алканы вступают чаще всего в такие реакции, которые идут с гемолитическим разрывом связей;

2) по сравнению с органическими соединениями других классов алканы обладают низкой реакционной способностью (их за это называют парафинами - «лишенными свойства»). Так, алка­ны устойчивы к действию водных растворов кислот, щелочей и окислителей (например, перманганата калия) даже при ки­пячении.

Алканы не вступают в реакции присоединения к ним дру­гих молекул, т.к. алканы не имеют в своих молекулах кратных связей.

Алканы подвергаются разложению при сильном нагревании в присутствии катализаторов в виде платины или никеля, при этом от алканов отщепляется водород.

Алканы могут вступать в реакции изомеризации. Характер­ной реакцией для них является реакция замещения, протекаю­щая по радикальному механизму.

Химические свойства

Реакции радикального замещения

В качестве примера рассмотрим взаимодействие алканов с галогенами. Фтор реагирует очень энергично (как правило, со взрывом) - при этом рвутся все С-Н и С-С связи, и в результате образуются соединения CF 4 и HF. Практического значения реак­ция не имеет. Иод с алканами не взаимодействует. Реакции с хлором или бромом идут либо при освещении, либо при сильном нагревании; при этом происходит образование от моно- до полигалогензамещенных алканов, например:

СН 3 -СН 3 +Сl 2 ® hv СН 3 -СН 2 -Сl+НСl

Образование галогенопроизводных метана протекает по цеп­ному свободнорадикальному механизму. Под действием света мо­лекулы хлора распадаются на неорганические радикалы:

Неорганический радикал Сl . отрывает от молекулы метана атом водорода с одним электроном, образуя НС1 и свободный ра­дикал СН 3

Свободный радикал взаимодействует с молекулой хлора Сl 2 , образуя галогенопроизводное и радикал хлора.

Реакция окисления начинается с отрыва атома водорода мо­лекулой кислорода (которая представляет собой бирадикал) и далее идет как разветвленная цепная реакция. Количество ради­калов в ходе реакции увеличивается. Процесс сопровождается

выделением большого количества теплоты, рвутся уже не только С-Н, но и С-С связи, так что в результате образуется оксид угле­рода (IV) и вода. Реакция может протекать как горение или при­водит к взрыву.

2С n Н2 n+2 +(3n+1)О 2 ®2nСO 2 +(2n+2)Н 2 O

При обычной температуре реакция окисления не идет; ее можно инициировать либо поджиганием, либо действием элект­рического разряда.

При сильном нагревании (свыше 1000°С) алканы полностью разлагаются на углерод и водород. Эта реакция называется пиро­лизом.

СН 4 ® 1200° С+2Н 2

При мягком окислении алканов, в частности метана, кисло­родом воздуха в присутствии различных катализаторов могут быть получены метиловый спирт, формальдегид, муравьиная кислота.

Если метан пропускать через нагретую зону очень быстро, а затем сразу охлаждать водой, то в результате образуется аце­тилен.

Эта реакция - основа промышленного синтеза, который на­зывается крекингом (неполным разложением) метана.

Крекинг гомологов метана проводят при более низкой темпе­ратуре (около 600°С). Например, крекинг пропана включает сле­дующие стадии:

Итак, крекинг алканов приводит к образованию смеси алканов и алкенов меньшей молекулярной массы.



Нагревание алканов до 300-350°С (крекинг еще не идет) в присутствии катализатора (Pt или Ni) приводит к дегидрирова­нию - отщеплению водорода.

При действии разбавленной азотной кислоты на алканы при 140°С и небольшом давлении протекает радикальная реакция:

СН 3 -СН 3 + HNO 3 ®CH 3 -CH 2 -NO 2 + Н 2 О Изомеризация

При определенных условиях алканы нормального строения могут превращаться в алканы с разветвленной цепью.

Получение алканов

Рассмотрим получение алканов на примере получения метана. Метан широко распространен в природе. Он является главной со­ставной частью многих горючих газов, как природных (90-98%), так и искусственных, выделяющихся при сухой перегонке дерева, торфа, каменного угля, а также при крекинге нефти. Природные газы, особенно попутные газы нефтяных месторождений, помимо метана содержат этан, пропан, бутан и пентан.

Метан выделяется со дна болот и из каменноугольных пластов в рудниках, где он образуется при медленном разложении расти­тельных остатков без доступа воздуха. Поэтому метан часто назы­вают болотным газом или рудничным газом.

В лаборатории метан получают при нагревании смеси ацетата натрия с гидроксидом натрия:

CH 3 COONa+NaOH® 200° Na 2 CO 3 +CH 4 ­

или при взаимодействии карбида алюминия с водой: Аl 4 Сl 3 +12H 2 O®4Аl(ОН) 3 +3CH 4 ­

В последнем случае метан получается весьма чистым.

Метан может быть получен из простых веществ при нагрева­нии в присутствии катализатора:

С+2Н 2 ® Ni СН 4 8 также синтезом на основе водяного газа

CO+3H 2 ® Ni CH 4 +H 2 O

Этот способ имеет промышленное значение. Однако используют обычно метан природных газов или газов, образующихся при кок­совании каменных углей и при переработке нефти.

Гомологи метана, как и метан, в лабораторных условиях полу­чают прокаливанием солей соответствующих органических кис­лот с щелочами. Другой способ - реакция Вюрца, т.е. нагревание моногалогенопроизводных с металлическим натрием, например:

С 2 Н 5 Br+2Na+BrC 2 H 6 ® С 2 Н 5 -С 2 Н 5 +2NaBr

В технике для получения технического бензина (смесь угле­водородов, содержащих 6-10 атомов углерода) применяют синтез

из оксида углерода (II) и водорода в присутствии катализатора (соединения кобальта) и при повышенном давлении. Процесс

можно выразить уравнением

nСО+(2n+1)Н 2 ® 200° C n H 2n+2 +nН 2 O

I Итак, основным источником алканов служат природный газ и нефть. Однако некоторые предельные углеводороды синтезиру­ют из других соединений.

Применение алканов

Большая часть алканов используется как топливо. Крекинг и

Дегидрирование их приводит к непредельным углеводородам, на

базе которых получают множество других органических веществ.

Метан - основная часть природных газов (60-99%). В состав

природных газов входят пропан и бутан. Жидкие углеводороды

применяются в качестве горючего в двигателях внутреннего сгорания а автомашинах, самолетах и др. Очищенная смесь жидких

и твердых алканов образует вазелин. Высшие алканы являются

исходными веществами при получении синтетических моющих средств. Алканы, полученные путем изомеризации, используют­ся в производстве высококачественных бензинов и каучука. Ниже приведена схема применения метана

Циклоалканы

Строение

Циклоалканы - насыщенные углеводороды, в молекулах ко­торых имеется замкнутое кольцо из углеродных атомов.

Циклоалканы (циклопарафины) образуют гомологический ряд с общей формулой С n Н 2 n , в котором первым членом является

циклопропан С 3 Н 6 , т.к. для образования кольца необходимо на­личие не менее трех атомов углерода.

Циклоалканы имеют несколько названий: циклопарафины, нафтены, цикланы, полиметилены. Примеры некоторых соеди­нений:

Формула С n Н 2 n характерна для циклопарафинов, и точно такая же формула описывает гомологический ряд алкенов (непре­дельных углеводородов, имеющих одну кратную связь). Из этого можно сделать вывод, что каждому циклоалкану изомерен соот­ветствующий алкен - это пример «межклассовой» изомерии.

Циклоалканы по размеру цикла делятся на ряд групп, из которых рассмотрим две: малые (С 3 , С 4) и обычные (С 5 -С 7) циклы.

Названия циклоалканов строятся путем добавления пристав­ки цикло- к названию алкана с соответствующим числом атомов углерода. Нумерацию в цикле проводят так, чтобы заместители получили наименьшие номера.

Структурные формулы циклоалканов обычно записываются в сокращенном виде, используя геометрическую форму цикла и опуская символы атомов углерода и водорода. Например:

Структурная изомерия циклоалканов обусловлена размером цикла (циклобутан и метилциклопропан - изомеры) и положе­нием заместителей в цикле (например, 1,1- и 1,2-диметилбутан), а также их строением.

Пространственная изомерия также характерна для цикло­алканов, т.к. она связана с различным расположением замес­тителей относительно плоскости цикла. При расположении за­местителей по одну сторону от плоскости цикла получаются цис-изомеры, по разные стороны - транс-изомеры.

Алканы (метан и его гомологи) имеют общую формулу C n H 2n +2. Первые четыре углеводорода называют метан, этан, пропан, бутан. Названия высших членов этого ряда состоят из корня – греческого числительного и суффикса -ан. Названия алканов положены в основу номенклатуры IUPAC.

Правила систематической номенклатуры:

  • Правило главной цепи.

Главную цепь выбирают, руководствуясь последовательно следующими критериями:

    • Максимальное число функциональных заместителей.
    • Максимальное число кратных связей.
    • Максимальная протяженность.
    • Максимальное число боковых углеводородных групп.
  • Правило наименьших номеров (локантов).

Главную цепь нумеруют от одного конца до другого арабскими цифрами. Каждый заместитель получает номер того атома углерода главной цепи, к которому он присоединен. Последовательность нумерации выбирают таким образом, чтобы сумма номеров заместителей (локантов) была наименьшей. Это правило применяется и при нумерации моноциклических соединений.

  • Правило радикалов.

Все углеводородные боковые группы рассматривают как одновалентные (односвязные) радикалы. Если боковой радикал сам содержит боковые цепи, то в нем по приведенным выше правилам выбирается дополнительная главная цепь, которая нумеруется, начиная с атома углерода, присоединенного к главной цепи.

  • Правило алфавитного порядка.

Название соединения начинают с перечисления заместителей, указывая их названия в алфавитном порядке. Названию каждого заместителя предшествует его номер в главной цепи. Наличие нескольких заместителей обозначают префиксами-числителями: ди-, три-, тетра- и т. д. После этого называют углеводород, соответствующий главной цепи.

В табл. 12.1 приведены названия первых пяти углеводородов, их радикалов, возможных изомеров и соответствующие им формулы. Названия радикалов заканчиваются суффиксом -ил.

Формула

Название

углеводорода

радикала

угле-
водорода

радикала

Изопропил

Метилпропан
(изо-бутан)

Метилпропил
(изо-бутил)

Трет-бутил

метилбутан
(изопентан)

метилбутил
(изопентил)

диметилпропан
(неопентан)

диметилпропил
(неопентил)

Таблица 12.1.

Алканы ациклопического ряда C n H 2 n +2 .

Пример. Назвать все изомеры гексана.

Пример. Назвать алкан следующего строения

В этом примере из двух двенадцатиатомных цепей выбрана та, в которой сумма номеров наименьшая (правило 2).

Используя названия разветвленных радикалов, приведенных в табл. 12.2,

Радикал

Название

Радикал

Название

изопропил

изопентил

изобутил

неопентил

втор-бутил

трет-пентил

трет-бутил

изогексил

Таблица 12.2.

Названия развлетвленных радикалов.

название этого алкана несколько упрощается:

10-трет-бутил-2,2-(диметил)-7-пропил-4-изопропил-3-этил-додекан.

При замыкании углеводородной цепи в цикл с потерей двух атомов водорода образуются моноциклоалканы с общей формулой C n H 2n . Циклизация начинается с C 3, названия образуются от C n с префиксом цикло:

Полициклические алканы. Их названия образуются посредством приставки бицикло-, трицикло- и т. д. Бициклические и трициклические соединения содержат соответственно два и три цикла в молекуле, для описания их строения в квадратных скобках указывают в порядке уменьшения число атомов углерода в каждой из цепей, соединяющих узловые атомы; под формулой название атома:

Этот трициклический углеводород обычно называют адамантаном (от чешского адамант – алмаз), поскольку он представляет комбинацию трех сконденсированных циклогексановых колец в форме, приводящей к такому расположению атомов углерода в кристаллической решетке, которое свойственно алмазу.

Циклические углеводороды с одним общим атомом углерода называются спиранами, например, спиро-5,5-ундекан:

Плоские циклические молекулы неустойчивы, поэтому образуются различные конформационные изомеры. В отличие от конфигурационных изомеров (пространственное расположение атомов в молекуле без учета ориентации) конформационные изомеры различаются между собой только поворотом атомов или радикалов вокруг формально простых связей при сохранении конфигурации молекул. Энергия образования стабильного конформера называется конформационной .

Конформеры находятся в динамическом равновесии и превращаются друг в друга через нестабильные формы. Неустойчивость плоских циклов вызвана значительной деформацией валентных углов. При сохранении тетраэдрических валентных углов для циклогексана C 6H 12 возможны две устойчивые конформации: в форме кресла (а) и в форме ванны (б):

Строение алканов

Химическое строение (порядок соединения атомов в молекулах) простейших алканов – метана, этана и пропана – показывают их структурные формулы, приведенные в разделе 2. Из этих формул видно, что в алканах имеются два типа химических связей:

С–С и С–Н.

Связь С–С является ковалентной неполярной. Связь С–Н - ковалентная слабополярная, т.к. углерод и водород близки по электроотрицательности (2.5 - для углерода и 2.1 - для водорода). Образование ковалентных связей в алканах за счет общих электронных пар атомов углерода и водорода можно показать с помощью электронных формул:

Электронные и структурные формулы отражают химическое строение, но не дают представления о пространственном строении молекул, которое существенно влияет на свойства вещества.

Пространственное строение, т.е. взаимное расположение атомов молекулы в пространстве, зависит от направленности атомных орбиталей (АО) этих атомов. В углеводородах главную роль играет пространственная ориентация атомных орбиталей углерода, поскольку сферическая 1s-АО атома водорода лишена определенной направленности.

Пространственное расположение АО углерода в свою очередь зависит от типа его гибридизации (часть I, раздел 4.3). Насыщенный атом углерода в алканах связан с четырьмя другими атомами. Следовательно, его состояние соответствует sp3-гибридизации (часть I, раздел 4.3.1). В этом случае каждая из четырех sp3-гибридных АО углерода участвует в осевом (σ-) перекрывании с s-АО водорода или с sp3-АО другого атома углерода, образуя σ-связи С-Н или С-С.

Четыре σ-связи углерода направлены в пространстве под углом 109о28", что соответствует наименьшему отталкиванию электронов. Поэтому молекула простейшего представителя алканов – метана СН4 – имеет форму тетраэдра, в центре которого находится атом углерода, а в вершинах – атомы водорода:

Валентный угол Н-С-Н равен 109о28". Пространственное строение метана можно показать с помощью объемных (масштабных) и шаростержневых моделей.

Для записи удобно использовать пространственную (стереохимическую) формулу.

В молекуле следующего гомолога – этана С2Н6 – два тетраэдрических sp3-атома углерода образуют более сложную пространственную конструкцию:

Для молекул алканов, содержащих свыше 2-х атомов углерода, характерны изогнутые формы.Это можно показать на примере н-бутана (VRML-модель) или н-пентана:

Изомерия алканов

Изомерия – явление существования соединений, которые имеют одинаковый состав (одинаковую молекулярную формулу), но разное строение. Такие соединения называются изомерами .

Различия в порядке соединения атомов в молекулах (т.е. в химическом строении) приводят кструктурной изомерии . Строение структурных изомеров отражается структурными формулами. В ряду алканов структурная изомерия проявляется при содержании в цепи 4-х и более атомов углерода, т.е. начиная с бутана С 4 Н 10 . Если в молекулах одинакового состава и одинакового химического строения возможно различное взаимное расположение атомов в пространстве, то наблюдается пространственная изомерия (стереоизомерия) . В этом случае использование структурных формул недостаточно и следует применять модели молекул или специальные формулы - стереохимические (пространственные) или проекционные.

Алканы, начиная с этана H 3 C–СН 3 , существуют в различных пространственных формах (конформациях ), обусловленных внутримолекулярным вращением по σ-связям С–С, и проявляют так называемую поворотную (конформационную) изомерию .

Кроме того, при наличии в молекуле атома углерода, связанного с 4-мя различными заместителями, возможен еще один вид пространственной изомерии, когда два стереоизомера относятся друг к другу как предмет и его зеркальное изображение (подобно тому, как левая рука относится к правой). Такие различия в строении молекул называют оптической изомерией .

. Структурная изомерия алканов

Структурные изомеры - соединения одинакового состава, отличающиеся порядком связывания атомов, т.е. химическим строением молекул.

Причиной проявления структурной изомерии в ряду алканов являетсяспособность атомов углерода образовывать цепи различного строения.Этот вид структурной изомерии называется изомерией углеродного скелета .

Например, алкан состава C 4 H 10 может существовать в виде двух структурных изомеров:

а алкан С 5 Н 12 – в виде трех структурных изомеров,отличающихся строением углеродной цепи:

С увеличением числа атомов углерода в составе молекул увеличиваютсявозможности дляразветвления цепи, т.е. количество изомеров растет сростом числа углеродных атомов.

Структурные изомеры отличаются физическими свойствами. Алканы с разветвленным строением из-за менее плотной упаковки молекул и,соответственно, меньших межмолекулярных взаимодействий, кипят при болеенизкой температуре, чем их неразветвленные изомеры.

Приемы построения структурных формул изомеров

Рассмотрим на примере алкана С 6 Н 14 .

1. Сначала изображаем молекулу линейного изомера (ее углеродный скелет)

2. Затем цепь сокращаем на 1 атом углерода и этот атом присоединяем к какому-либо атому углерода цепи как ответвление от нее, исключая крайние положения:

Если присоединить углеродный атом к одному из крайних положений, то химическое строение цепи не изменится:

Кроме того, нужно следить, чтобы не было повторов. Так, структура идентична структуре (2).

3. Когда все положения основной цепи исчерпаны, сокращаем цепь еще на 1 атом углерода:

Теперь в боковых ответвлениях разместятся 2 атома углерода. Здесь возможны следующие сочетания атомов:

Боковой заместитель может состоять из 2-х или более последовательно соединенных атомов углерода, но для гексана изомеров с такими боковыми ответвлениями не существует, и структура идентична структуре (3).

Боковой заместитель  СС можно размещать только в цепи, содержащей не меньше 5-ти углеродных атомов и присоединять его можно только к 3-му и далее атому от конца цепи.

4. После построения углеродного скелета изомера необходимо дополнить все углеродные атомы в молекуле связями с водородом, учитывая, что углерод четырехвалентен.

Итак, составу С 6 Н 14 соответствует 5 изомеров: 1) 2)3)4)5)

Номенклатура

Номенклатура органических соединений – система правил, позволяющих дать однозначное название каждому индивидуальному веществу.

Это язык химии, который используется для передачи в названиях соединений информации о их строении. Соединению определенного строения соответствует одно систематическое название, и по этому названию можно представить строение соединения (его структурную формулу).

В настоящее время общепринятой является систематическая номенклатура ИЮПАК (IUPAC – International Union of the Pure and Applied Chemistry – Международный союз теоретической и прикладной химии).

Наряду с систематическими названиями используются также тривиальные (обыденные) названия, которые связаны с характерным свойством вещества, способом его получения, природным источником, областью применения и т.д., но не отражают его строения.

Для применения номенклатуры ИЮПАК необходимо знать названия и строение определенных фрагментов молекул – органических радикалов.

Термин "органический радикал" является структурным понятием и его не следует путать с термином "свободный радикал", который характеризует атом или группу атомов с неспаренным электроном.

Радикалы в ряду алканов

Если от молекулы алкана "отнять" один атом водоpода, то обpазуется одновалентный "остаток" – углеводоpодный pадикал (R ). Общее название одновалентных радикалов алканов – алкилы – обpазовано заменой суффикса -ан на -ил : метан – метил , этан – этил , пpопан – пpопил и т.д.

Одновалентные pадикалы выpажаются общей фоpмулой С n Н 2n+1 .

Двухвалентный радикал получается, если удалить из молекулы 2 атома водорода. Например, из метана можно образовать двухвалентный радикал –СН 2 – метилен . В названиях таких радикалов используется суффикс -илен .

Названия радикалов, особенно одновалентных, используются при образовании названий разветвленных алканов и других соединений. Такие радикалы можно рассматривать как составные части молекул, их конструкционные детали. Чтобы дать название соединению необходимо представить, из каких "деталей"-радикалов составлена его молекула.

Метану СН 4 соответствует один одновалентный радикал метил СН 3 .

От этана С 2 Н 6 можно произвести также только один радикал - этил CH 2 CH 3 (или  C 2 H 5 ).

Пропану СН 3 –СН 2 –СН 3 соответствуют два изомерных радикала  С 3 Н 7 :

Радикалы подразделяются на первичные , вторичные и третичные в зависимости от того, укакого атома углерода (первичного, вторичного или третичного) находится свободная валентность. По этому признаку н-пропил относится к первичным радикалам, а изопропил – к вторичным.

Двум алканам С 4 Н 10 (н -бутан и изобутан) соответствует 4 одновалентных радикала –С 4 Н 9 :

От н -бутана производятся н-бутил (первичный радикал) и втор-бутил (вторичный радикал), - от изобутана – изобутил (первичный радикал) и трет-бутил (третичный радикал).

Таким образом, в ряду радикалов также наблюдается явление изомерии, но при этом число изомеров больше, чем у соответствующих алканов.

Конструирование молекул алканов из радикалов

Например, молекулу

можно "собрать" тремя способами из различных пар одновалентных радикалов:

Такой подход используется в некоторых синтезах органических соединений, например:

где R – одновалентный углеводородный радикал (реакция Вюрца).

Правила построения названий алканов по систематической международной номенклатуре ИЮПАК

Для простейших алканов (С 1 -С 4) приняты тpивиальные названия: метан, этан, пpопан, бутан, изобутан.

Начиная с пятого гомолога, названия нормальных (неpазветвленных) алканов стpоят в соответствии с числом атомов углеpода, используя гpеческие числительные и суффикс -ан : пентан, гексан, гептан, октан, нонан, декан и далее...

В основе названия разветвленного алкана лежит название входящего в его конструкцию нормального алкана с наиболее длинной углеродной цепью. При этом углеводоpод с pазветвленной цепью pассматpивают как пpодукт замещения атомов водоpода в ноpмальном алкане углеводоpодными pадикалами.

Например, алкан

рассматривается как замещенный пентан , в котором два атома водорода замещены на радикалы –СН 3 (метил ).

Порядок построения названия разветвленного алкана

Выбрать в молекуле главную углеродную цепь. Во-первых, она должна быть самой длинной. Во-вторых, если имеются две или более одинаковые по длине цепи, то из них выбирается наиболее разветвленная. Например, в молекуле есть 2 цепи с одинаковым числом (7) атомов С (выделены цветом):

В случае (а) цепь имеет 1 заместитель, а в (б) – 2. Поэтому следует выбрать вариант (б).

Пронумеровать атомы углерода в главной цепи так, чтобы атомы С, связанные с заместителями, получили возможно меньшие номера. Поэтому нумерацию начинают с ближайшего к ответвлению конца цепи. Например:

Назвать все радикалы (заместители), указав впереди цифры, обозначающие их местоположение в главной цепи. Если есть несколько одинаковых заместителей, то для каждого из них через запятую записывается цифра (местоположение), а их количество указывается приставками ди -, три -, тетра -, пента - и т.д. (например, 2,2-диметил или2,3,3,5-тетраметил ).

Названия всех заместителей расположить в алфавитном порядке (так установлено последними правилами ИЮПАК).

Назвать главную цепь углеродных атомов, т.е. соответствующий нормальный алкан.

Таким образом, в названии разветвленного алкана

корень+суффикс – название нормального алкана (греч. числительное+суффикс "ан" ), приставки – цифры и названия углеводородных радикалов .

Пример построения названия:

Химические свойства алканов

Химические свойства любого соединения определяются его строением, т.е. природой входящих в его состав атомов и характером связей между ними.

Исходя из этого положения и справочных данных о связях С–С и С–Н, попробуем предсказать, какие реакции характерны для алканов.

Во-первых, предельная насыщенность алканов не допускает реакций присоединения, но не препятствует реакциям разложения, изомеризации и замещения (см. часть I, раздел 6.4 "Типы реакций" ). Во-вторых, симметричность неполярных С–С и слабополярных С–Н ковалентных связей (см. в таблице значения дипольных моментов) предполагает их гомолитический (симметричный) разрыв на свободные радикалы (часть I, раздел 6.4.3 ). Следовательно, для реакций алканов характерен радикальный механизм . Поскольку гетеролитический разрыв связей С–С и С–Н в обычных условиях не происходит, то в ионные реакции алканы практически не вступают. Это проявляется в их устойчивости к действию полярных реагентов (кислот, щелочей, окислителей ионного типа: КMnO 4 , К 2 Сr 2 O 7 и т.п.). Такая инертность алканов в ионных реакциях и послужила ранее основанием считать их неактивными веществами и назвать парафинами. Видеоопыт "Отношение метана к раствору перманганата калия и бромной воде". Итак, алканы проявляют свою реакционную способность в основном в радикальных реакциях.

Условия проведения таких реакций: повышенная температура (часто реакцию проводят в газовой фазе), действие света или радиоактивного излучения, присутствие соединений – источников свободных радикалов (инициаторов), неполярные растворители.

В зависимости от того, какая связь в молекуле разрывается в первую очередь, реакции алканов подразделяются на следующие типы. С разрывом связей С–С происходят реакции разложения (крекинг алканов) и изомеризации углеродного скелета. По связям С–Н возможны реакции замещения атома водорода или его отщепления (дегидрирование алканов). Кроме того, атомы углерода в алканах находятся в наиболее восстановленной форме (степень окисления углерода, например, в метане равна –4, в этане –3 и т.д.) и в присутствии окислителей в определенных условиях будут происходить реакции окисления алканов с участием связей С–С и С–Н.

Крекинг алканов

Крекинг – процесс термического разложения углеводородов, в основе которого лежат реакции расщепления углеродной цепи крупных молекул с образованием соединений с более короткой цепью.

Крекинг алканов является основой переработки нефти с целью получения продуктов меньшей молекулярной массы, которые используются в качестве моторных топлив, смазочных масел и т.п., а также сырья для химической и нефтехимической промышленности. Для осуществления этого процесса используются два способа: термический крекинг (при нагревании без доступа воздуха) и каталитический крекинг (более умеренное нагревание в присутствии катализатора).

Термический крекинг . При температуре 450–700 o С алканы распадаются за счет разрыва связей С–С (более прочные связи С–Н при такой температуре сохраняются) и образуются алканы и алкены с меньшим числом углеродных атомов.

Например:

C 6 H 14 C 2 H 6 + C 4 H 8

Распад связей происходит гомолитически с образованием свободных радикалов:

Свободные радикалы очень активны. Один из них (например, этил) отщепляет атомарный водород Н от другого (н -бутила) и превращается в алкан (этан). Другой радикал, став двухвалентным, превращается в алкен (бутен-1) за счет образования π–связи при спаривании двух электронов у соседних атомов:

Анимация (работа Литвишко Алексея, ученика 9 кл. школы №124 г. Самары)

Разрыв С–С-связи возможен в любом случайном месте молекулы. Поэтому образуется смесь алканов и алкенов с меньшей, чем у исходного алкана, молекулярной массой.

В общем виде этот процесс можно выразить схемой:

C n H 2n+2 C m H 2m + C p H 2p+2 , где m + p = n

При более высокой температуре (свыше 1000С) происходит разрыв не только связей С–С,но и более прочных связей С–Н. Например, термический крекинг метана используется для получения сажи (чистыйуглерод) и водорода:

СН 4 C + 2H 2

Термический крекинг был открыт русским инженером В.Г. Шуховым в 1891 г.

Каталитический крекинг проводят в присутствии катализаторов (обычно оксидов алюминия и кремния) при температуре 500С и атмосферном давлении. При этом наряду с разрывом молекул происходят реакции изомеризации и дегидрирования. Пример: крекинг октана (работа Литвишко Алексея, ученика 9 кл. школы №124 г. Самары). При дегидрировании алканов образуются циклические углеводороды (реакциядегидроциклизации , раздел 2.5.3 ). Наличие в составе бензина разветвлённых и циклических углеводородов повышает его качество (детонационную устойчивость, выражаемую октановым числом). При крекинг-процессах образуется большое количество газов, которые содержат главным образом предельные и непредельные углеводороды. Эти газы используются в качестве сырья для химической промышленности. Основополагающие работы по каталитическому крекингу в присутствии хлорида алюминия проведены Н.Д. Зелинским .

Изомеризация алканов

Алканы нормального строения под влиянием катализаторов и при нагревании способны превращаться в разветвленные алканы без изменения состава молекул, т.е. вступать в реакции изомеpизации. В этих pеакциях участвуют алканы, молекулы которых содержат не менее 4-х углеродных атомов.

Например, изомеризация н-пентана в изопентан (2-метилбутан) происходит при 100С в присутствии катализатора хлорида алюминия:

Исходное вещество и продукт реакции изомеризации имеют одинаковые молекулярные формулы и являются структурными изомерами (изомерия углеродного скелета).

Дегидрирование алканов

При нагревании алканов в присутствии катализаторов (Pt, Pd, Ni, Fe, Cr 2 O 3 , Fe 2 O 3 , ZnO) происходит их каталитическое дегидрирование – отщепления атомов водорода за счет разрыва связей С-Н.

Строение продуктов дегидрирования зависит от условий реакции и длины основной цепи в молекуле исходного алкана.

1. Низшие алканы, содержащие в цепи от 2-х до 4-х атомов углерода, при нагревании над Ni-катализатором отщепляют водород от соседних углеродных атомов и превращаются в алкены :

Наряду с бутеном-2 в этой реакции образуется бутен-1 CH 2 =CH-CH 2 -CH 3 . В присутствии катализатора Cr 2 O 3 /Al 2 O 3 при 450-650 С из н -бутана получают также бутадиен-1,3 CH 2 =CH-CH=CH 2 .

2. Алканы, содержащие в основной цепи больше 4-х атомов углерода, используются для получения циклических соединений. При этом происходит дегидроциклизация – реакция дегидрирования, которая приводит к замыканию цепи в устойчивый цикл.

Если основная цепь молекулы алкана содержит 5 (но не более) атомов углерода (н -пентан и его алкильные производные), то при нагревании над Pt-катализатором атомы водорода отщепляются от концевых атомов углеродной цепи, и образуется пятичленный цикл (циклопентан или его производные):

Алканы с основной цепью в 6 и более атомов углерода также вступают в реакцию дегидроциклизации, но всегда образуют 6-членный цикл (циклогексан и его производные). В условиях реакции этот цикл подвергается дальнейшему дегидрированию и превращается в энергетически более устойчивый бензольный цикл ароматического углеводорода (арена). Например:

Эти реакции лежат в основе процесса риформинга – переработки нефтепродуктов с целью получения аренов (ароматизация предельных углеводородов) и водорода. Превращение н- алканов в арены ведет к улучшению детонационной стойкости бензина.

3. При 1500 С происходит межмолекулярное дегидрирование метана по схеме:

Данная реакция (пиролиз метана ) используется для промышленного получения ацетилена.

Реакции окисления алканов

В органической химии реакции окисления и восстановления рассматриваются как реакции, связанные с потерей и приобретением органическим соединением атомов водорода и кислорода. Эти процессы, естественно, сопровождаются изменением степеней окисления атомов (часть I, раздел 6.4.1.6 ).

Окисление органического вещества - введение в его состав кислорода и (или) отщепление водорода. Восстановление - обратный процесс (введение водорода и отщепление кислорода). Учитывая состав алканов (С n H 2n+2), можно сделать вывод о их неспособности вступать в реакции восстановления, но возможности участвовать в реакциях окисления.

Алканы - соединения с низкими степенями окисления углерода, и в зависимости от условий реакции они могут окисляться с образованием различных соединений.

При обычной температуре алканы не вступают в реакции даже с сильными окислителями (Н 2 Cr 2 O 7 , KMnO 4 и т.п.). При внесении в открытое пламя алканы горят. При этом в избытке кислорода происходит их полное окисление до СО 2 , где углерод имеет высшую степень окисления +4, и воды. Горение углеводородов приводит к разрыву всех связей С-С и С-Н и сопровождается выделением большого количества тепла (экзотермическая реакция).

Низшие (газообразные) гомологи – метан, этан, пропан, бутан – легко воспламеняются и образуют с воздухом взрывоопасные смеси, что необходимо учитывать при их использовании. С увеличением молекулярной массы алканы загораются труднее. Видеоопыт "Взрыв смеси метана с кислородом". Видеоопыт "Горение жидких алканов". Видеоопыт "Горение парафина".

Процесс горения углеводородов широко используется для получения энергии (в двигателях внутреннего сгорания, в тепловых электростанциях и т.п.).

Уравнение реакции горения алканов в общем виде:

Из этого уравнения следует, что с увеличением числа углеродных атомов (n ) в алкане увеличивается количество кислорода, необходимого для его полного окисления. При горении высших алканов (n >>1) кислорода, содержащегося в воздухе, может оказаться недостаточно для их полного окисления до СО 2 . Тогда образуются продукты частичного окисления: угарный газ СО (степень окисления углерода +2), сажа (мелкодисперсный углерод, нулевая степень окисления). Поэтому высшие алканы горят на воздухе коптящим пламенем, а выделяющийся попутно токсичный угарный газ (без запаха и цвета) представляет опасность для человека.

Алканы - соединения гомологического ряда метана. Это насыщенные нециклические углеводороды. Химические свойства алканов зависят от строения молекулы и физического состояния веществ.

Строение алканов

Молекула алкана состоит из атомов углерода и водорода, которые образуют метиленовые (-CH 2 -) и метильные (-CH 3) группы. Углерод может создавать четыре ковалентные неполярные связи с соседними атомами. Именно наличие прочных σ-связей -С-С- и -С-Н обуславливает инертность гомологического ряда алканов.

Рис. 1. Строение молекулы алкана.

Соединения реагируют на свету или при нагревании. Реакции протекают по цепному (свободно-радикальному) механизму. Таким образом, связи способны расщепляться только под действием свободных радикалов. В результате замещения водорода образуются галогеналканы, соли, циклоалканы.

Алканы относятся к предельным или насыщенным углеродам. Это значит, что молекулы содержат максимальное количество атомов водорода. Из-за отсутствия свободных связей реакции присоединения для алканов не характерны.

Химические свойства

Общие свойства алканов приведены в таблице.

Типы химических реакций

Описание

Уравнение

Галогенирование

Реагируют с F 2 , Cl 2 , Br 2 . Реакция с йодом не идёт. Галогены замещают атом водорода. Реакция с фтором сопровождается взрывом. Хлорирование и бромирование происходит при температуре 300-400°C. В результате образуются галогеналканы

CH 4 + Cl 2 → CH 3 Cl + HCl

Нитрование (реакция Коновалова)

Взаимодействие с разбавленной азотной кислотой при температуре 140°C. Атом водорода замещается нитрогруппой NO 2 . В результате образуются нитроалканы

CH 3 -CH 3 +HNO 3 → CH 3 -CH 2 -NO 2 + H 2 O

Сульфохлорирование

Сопровождается окислением с образованием алкансульфонилхлоридов

R-H + SO 2 + Cl 2 → R-SO 3 Cl + HCl

Сульфоокисление

Образование алкансульфоновых кислот в избытке кислорода. Атом водорода замещается группой SO 3 H

C 5 H 10 + HOSO 3 H → C 5 H 11 SO 3 H + H 2 O

Происходит в присутствии катализатора при высоких температурах. В результате разрыва связей С-С образуются алканы и алкены

C 4 H 10 → C 2 H 6 + C 2 H 4

В избытке кислорода происходит полное окисление до углекислого газа. При недостатке кислорода происходит неполное окисление с образованием угарного газа, сажи

CH 4 + 2O 2 → CO 2 + 2H 2 O;

2CH 4 + 3O 2 → 2CO + 4H 2 O

Каталитическое окисление

Происходит частичное окисление алканов при небольшой температуре и в присутствии катализаторов. Могут образовываться кетоны, альдегиды, спирты, карбоновые кислоты

C 4 H 10 → 2CH 3 COOH + H 2 O

Дегидрирование

Отщепление водорода в результате разрыва связей С-Н в присутствии катализатора (платины, оксида алюминия, оксида хрома) при температуре 400-600°С. Образуются алкены

C 2 H 6 → C 2 H 4 + H 2

Ароматизация

Реакция дегидрирования с образованием циклоалканов

C 6 H 14 → C 6 H 6 + 4H 2

Изомеризация

Образование изомеров под действием температуры и катализаторов

C 5 H 12 → CH 3 -CH(CH 3)-CH 2 -CH 3

Чтобы понимать, как проходит реакция и какие радикалы замещаются, рекомендуется записывать структурные формулы.

Рис. 2. Структурные формулы.

Применение

Алканы широко применяются в промышленной химии, косметологии, строительстве. Из соединений изготавливают:

  • топливо (бензин, керосин);
  • асфальт;
  • смазочные масла;
  • вазелин;
  • парафин;
  • мыло;
  • лаки;
  • краски;
  • эмали;
  • спирты;
  • синтетические ткани;
  • каучук;
  • адьдегиды;
  • пластмассы;
  • моющие средства;
  • кислоты;
  • пропелленты;
  • косметические средства.

Рис. 3. Продукция, получаемая из алканов.

Что мы узнали?

Узнали о химических свойствах и применении алканов. Из-за прочных ковалентных связей между атомами углерода, а также между атомами углерода и водорода, алканы проявляют инертность. Возможны реакции замещения и разложения в присутствии катализатора при высоких температурах. Алканы - предельные углеводороды, поэтому реакции присоединения невозможны. Алканы используются для производства материалов, моющих средств, органических соединений.

Тест по теме

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 227.

Нелишне будет начать с определения понятия алканов. Это насыщенные либо предельные Также можно сказать, что это углероды, в которых соединение атомов C осуществляется посредством простых связей. Общая формула имеет вид: CnH₂n+ 2.

Известно, что соотношение количества атомов H и C в их молекулах максимально, если сравнивать с другими классами. Ввиду того что все валентности заняты либо C, либо H, химические свойства алканов выражены недостаточно ярко, поэтому их вторым названием выступает словосочетание предельные либо насыщенные углеводороды.

Также существует более древнее наименование, которое лучше всего отражает их относительную химинертность - парафины, что в переводе означает «лишенные сродства».

Итак, тема нашего сегодняшнего разговора: «Алканы: гомологический ряд, номенклатура, строение, изомерия». Также будут представлены данные касательно их физических свойств.

Алканы: строение, номенклатура

В них атомы C пребывают в таком состоянии, как sp3-гибридизация. В связи с этим молекулу алканов можно продемонстрировать в качестве набора тетраэдрических структур C, которые связаны не только между собой, но и с H.

Между атомами C и H присутствуют прочные, весьма малополярные s-связи. Атомы же вокруг простых связей всегда вращаются, ввиду чего молекулы алканов принимают разнообразные формы, причем длина связи, угол между ними - постоянные величины. Формы, которые трансформируются друг в друга из-за вращения молекулы, происходящего вокруг σ-связей, принято называть ее конформациями.

В процессе отрыва атома H от рассматриваемой молекулы сформировываются 1-валентные частицы, называемые углеводородными радикалами. Они появляются в результате соединений не только но и неорганических. Если отнять 2 атома водорода от молекулы предельного углеводорода, то получатся 2-валентные радикалы.

Таким образом, номенклатура алканов может быть:

  • радиальной (старый вариант);
  • заместительной (международная, систематическая). Она предложена ИЮПАК.

Особенности радиальной номенклатуры

В первом случае номенклатура алканов характеризуется следующим:

  1. Рассмотрение углеводородов в качестве производных метана, у которого замещен 1 либо несколько атомов H радикалами.
  2. Высокая степень удобства в случае с не очень сложными соединениями.

Особенности заместительной номенклатуры

Заместительная номенклатура алканов имеет следующие особенности:

  1. Основа для названия - 1 углеродная цепь, остальные же молекулярные фрагменты рассматриваются в качестве заместителей.
  2. При наличии нескольких идентичных радикалов перед их наименованием указывается число (строго прописью), а радикальные номера разделяются запятыми.

Химия: номенклатура алканов

Для удобства информация представлена в виде таблицы.

Название вещества

Основа названия (корень)

Молекулярная формула

Название углеродного заместителя

Формула углеродного заместителя

Вышеуказанная номенклатура алканов включает названия, которые сложились исторически (первые 4 члена ряда предельных углеводородов).

Наименования неразвернутых алканов с 5 и более атомами C образованы от греческих числительных, которые отражают данное число атомов C. Так, суффикс -ан говорит о том, что вещество из ряда насыщенных соединений.

При составлении названий развернутых алканов в роли основной цепи выбирается та, которая содержит максимальное количество атомов C. Она нумеруется так, чтобы заместители были с наименьшим номером. В случае двух и более цепей одинаковой длины главной становится та, которая содержит наибольшее количество заместителей.

Изомерия алканов

В качестве углеводорода-родоначальника их ряда выступает метан CH₄. С каждым последующим представителем метанового ряда наблюдается отличие от предыдущего на метиленовую группу - CH₂. Данная закономерность прослеживается во всем ряду алканов.

Немецкий ученый Шиль выдвинул предложение назвать этот ряд гомологическим. В переводе с греческого означает «сходный, подобный».

Таким образом, гомологический ряд - набор родственных органических соединений, имеющих однотипную структуру с близкими химсвойствами. Гомологи - члены данного ряда. Гомологическая разность - метиленовая группа, на которую отличаются 2 соседних гомолога.

Как уже упоминалось ранее, состав любого насыщенного углеводорода может быть выражен посредством общей формулы CnH₂n + 2. Так, следующим за метаном членом гомологического ряда является этан - C₂H₆. Чтобы вывести его структуру из метановой, необходимо заменить 1 атом H на CH₃ (рисунок ниже).

Структура каждого последующего гомолога может быть выведена из предыдущего таким же образом. В итоге из этана образуется пропан - C₃H₈.

Что такое изомеры?

Это вещества, которые имеют идентичный качественный и количественный молекулярный состав (идентичную молекулярную формулу), однако различное химическое строение, а также обладающие разными химсвойствами.

Вышерассмотренные углеводороды отличаются по такому параметру, как температура кипения: -0,5° - бутан, -10° - изобутан. Данный вид изомерии именуется как изомерия углеродистого скелета, она относится к структурному типу.

Число структурных изомеров растет быстрыми темпами с увеличением количества углеродных атомов. Таким образом, C₁₀H₂₂ будет соответствовать 75 изомерам (не включая пространственные), а для C₁₅H₃₂ уже известны 4347 изомеров, для C₂₀H₄₂ - 366 319.

Итак, уже стало понятно, что такое алканы, гомологический ряд, изомерия, номенклатура. Теперь стоит перейти к правилам составления названий по ИЮПАК.

Номенклатура ИЮПАК: правила образования названий

Во-первых, необходимо отыскать в углеводородной структуре углеродную цепь, которая наиболее длинна и содержит максимальное количество заместителей. Затем требуется пронумеровать атомы C цепи, начиная с конца, к которому ближе всего расположен заместитель.

Во-вторых, основа - название неразветвленного насыщенного углеводорода, которому по количеству атомов C соответствует самая главная цепь.

В-третьих, перед основой необходимо указать номера локантов, возле которых расположены заместители. За ними записываются через дефис названия заместителей.

В-четвертых, в случае наличия идентичных заместителей при разных атомах C локанты объединяются, при этом перед названием появляется умножающая приставка: ди - для двух идентичных заместителей, три - для трех, тетра - четырех, пента - для пяти и т. д. Цифры должны быть отделены друг от друга запятой, а от слов - дефисом.

Если один и тот же атом C содержится сразу два заместителя, локант тоже записывается дважды.

Согласно этим правилам и формируется международная номенклатура алканов.

Проекции Ньюмена

Этот американский ученый предложил для графической демонстрации конформаций специальные проекционные формулы - проекции Ньюмена. Они соответствуют формам А и Б и представлены на рисунке ниже.

В первом случае это А-заслоненная конформация, а во втором - Б-заторможенная. В позиции А атомы H располагаются на минимальном расстоянии друг от друга. Данной форме соответствует самое большое значение энергии, ввиду того что отталкивание между ними наибольшее. Это энергетически невыгодное состояние, вследствие чего молекула стремится покинуть его и перейти к более устойчивому положению Б. Здесь атомы H максимально удалены друг от друга. Так, энергетическая разница этих положений - 12 кДж/моль, благодаря чему свободное вращение вокруг оси в молекуле этана, которая соединяет метильные группы, получается неравномерным. После попадания в энергетически выгодное положение молекула там задерживается, другими словами, «тормозится». Именно поэтому оно и называется заторможенным. Результат - 10 тыс. молекул этана пребывают в заторможенной форме конформации при условии комнатной температуры. Только одна имеет другую форму - заслоненную.

Получение предельных углеводородов

Из статьи уже стало известно, что это алканы (строение, номенклатура их подробно описаны ранее). Будет нелишне рассмотреть способы их получения. Они выделяются из таких природных источников, как нефть, природный, каменный уголь. Применяются также и синтетические методы. Например, H₂ 2H₂:

  1. Процесс гидрирования CnH₂n (алкены)→ CnH₂n+2 (алканы)← CnH₂n-2 (алкины).
  2. Из смеси монооксида C и H - синтез-газа: nCO+(2n+1)H₂→ CnH₂n+2+nH₂O.
  3. Из карбоновых кислот (их солей): электролиз на аноде, на катоде:
  • электролиз Кольбе: 2RCOONa+2H₂O→R-R+2CO₂+H₂+2NaOH;
  • реакция Дюма (сплав со щелочью): CH₃COONa+NaOH (t)→CH₄+Na₂CO₃.
  1. Крекинг нефти: CnH₂n+2 (450-700°)→ CmH₂m+2+ Cn-mH₂(n-m).
  2. Газификация топлива (твердого): C+2H₂→CH₄.
  3. Синтез сложных алканов (галогенопроизводных), которые имеют меньшее количество атомов C: 2CH₃Cl (хлорметан) +2Na →CH₃- CH₃ (этан) +2NaCl.
  4. Разложение водой метанидов (карбидов металлов): Al₄C₃+12H₂O→4Al(OH₃)↓+3CH₄.

Физические свойства предельных углеводородов

Для удобства данные сгруппированы в таблицу.

Формула

Алкан

Температура плавления в °С

Температура кипения в °С

Плотность, г/мл

0,415 при t = -165°С

0,561 при t= -100°C

0,583 при t = -45°C

0,579 при t =0°C

2-Метилпропан

0,557 при t = -25°C

2,2-Диметил-пропан

2-Метилбутан

2-Метилпентан

2,2,3,3-Тетра-метилбутан

2,2,4-Триметил-пентан

н-C₁₀H₂₂

н-C₁₁H₂₄

н-Ундекан

н-C₁₂H₂₆

н-Додекан

н-C₁₃H₂₈

н-Тридекан

н-C₁₄H₃₀

н-Тетрадекан

н-C₁₅H₃₂

н-Пентадекан

н-C₁₆H₃₄

н-Гексадекан

н-C₂₀H₄₂

н-Эйкозан

н-C₃₀H₆₂

н-Триаконтан

1 мм рт. ст

н-C₄₀H₈₂

н-Тетраконтан

3 мм рт. ст.

н-C₅₀H₁₀₂

н-Пентаконтан

15 мм рт. ст.

н-C₆₀H₁₂₂

н-Гексаконтан

н-C₇₀H₁₄₂

н-Гептаконтан

н-C₁₀₀H₂₀₂

Заключение

В статье было рассмотрено такое понятие, как алканы (строение, номенклатура, изомерия, гомологический ряд и пр.). Немного рассказано об особенностиях радиальной и заместительной номенклатур. Описаны способы получения алканов.

Кроме того, в статье подробно перечислена вся номенклатура алканов (тест может помочь усвоить полученную информацию).