Однородные уравнения 1 порядка косинусов. Тригонометрические уравнения

Раз ты зашел сюда, то уже, наверное, успел увидеть в учебнике эту формулу

и сделать вот такое лицо:

Друг, не переживай! На самом деле все просто до безобразия. Ты обязательно все поймешь. Только одна просьба – прочитай статью не торопясь , старайся понять каждый шаг. Я писал максимально просто и наглядно, но вникнуть в идею всё равно надо. И обязательно реши задания из статьи.

Что такое сложная функция?

Представь, что ты переезжаешь в другую квартиру и поэтому собираешь вещи в большие коробки. Пусть надо собрать какие-нибудь мелкие предметы, например, школьные письменные принадлежности. Если просто скидать их в огромную коробку, то они затеряются среди других вещей. Чтобы этого избежать, ты сначала кладешь их, например, в пакет, который затем укладываешь в большую коробку, после чего ее запечатываешь. Этот "сложнейший" процесс представлен на схеме ниже:

Казалось бы, причем здесь математика? Да притом, что сложная функция формируется ТОЧНО ТАКИМ ЖЕ способом! Только «упаковываем» мы не тетради и ручки, а \(x\), при этом «пакетами» и «коробками» служат разные .

Например, возьмем x и «запакуем» его в функцию :


В результате получим, ясное дело, \(\cos⁡x\). Это наш «пакет с вещами». А теперь кладем его в «коробку» - запаковываем, например, в кубическую функцию.


Что получится в итоге? Да, верно, будет «пакет с вещами в коробке», то есть «косинус икса в кубе».

Получившаяся конструкция и есть сложная функция. Она отличается от простой тем, что к одному иксу применяется НЕСКОЛЬКО «воздействий» (упаковок) подряд и получается как бы «функция от функции» - «упаковка в упаковке».

В школьном курсе видов этих самых «упаковок» совсем мало, всего четыре:

Давай теперь «упакуем» икс сначала в показательную функцию с основанием 7, а потом в тригонометрическую функцию . Получим:

\(x → 7^x → tg⁡(7^x)\)

А теперь «упакуем» икс два раза в тригонометрические функции, сначала в , а потом в :

\(x → sin⁡x → ctg⁡ (sin⁡x)\)

Просто, правда?

Напиши теперь сам функции, где икс:
- сначала «упаковывается» в косинус, а потом в показательную функцию с основанием \(3\);
- сначала в пятую степень, а затем в тангенс;
- сначала в логарифм по основанию \(4\) , затем в степень \(-2\).

Ответы на это задание посмотри в конце статьи.

А можем ли мы «упаковать» икс не два, а три раза? Да, без проблем! И четыре, и пять, и двадцать пять раз. Вот, например, функция, в которой икс «упакован» \(4\) раза:

\(y=5^{\log_2⁡{\sin⁡(x^4)}}\)

Но такие формулы в школьной практике не встретятся (студентам повезло больше - у них может быть и посложнее☺).

«Распаковка» сложной функции

Посмотри на предыдущую функцию еще раз. Сможешь ли ты разобраться в последовательности «упаковки»? Во что икс запихнули сначала, во что потом и так далее до самого конца. То есть - какая функция вложена в какую? Возьми листок и запиши, как ты считаешь. Можно сделать это цепочкой со стрелками как мы писали выше или любым другим способом.

Теперь правильный ответ: сначала икс «упаковали» в \(4\)-ую степень, потом результат упаковали в синус, его в свою очередь поместили в логарифм по основанию \(2\), и в конце концов всю эту конструкцию засунули в степень пятерки.

То есть разматывать последовательность надо В ОБРАТНОМ ПОРЯДКЕ. И тут подсказка как это делать проще: сразу смотри на икс – от него и надо плясать. Давай разберем несколько примеров.

Например, вот такая функция: \(y=tg⁡(\log_2⁡x)\). Смотрим на икс – что с ним происходит сначала? Берется от него. А потом? Берется тангенс от результата. Вот и последовательность будет такая же:

\(x → \log_2⁡x → tg⁡(\log_2⁡x)\)

Еще пример: \(y=\cos⁡{(x^3)}\). Анализируем – сначала икс возвели в куб, а потом от результата взяли косинус. Значит, последовательность будет: \(x → x^3 → \cos⁡{(x^3)}\). Обрати внимание, функция вроде бы похожа на самую первую (там, где с картинками). Но это совсем другая функция: здесь в кубе икс (то есть \(\cos⁡{(x·x·x)})\), а там в кубе косинус \(x\) (то есть, \(\cos⁡x·\cos⁡x·\cos⁡x\)). Эта разница возникает из-за разных последовательностей «упаковки».

Последний пример (с важной информацией в нем): \(y=\sin⁡{(2x+5)}\). Понятно, что здесь сначала сделали арифметические действия с иксом, потом от результата взяли синус: \(x → 2x+5 → \sin⁡{(2x+5)}\). И это важный момент: несмотря на то, что арифметические действия функциями сами по себе не являются, здесь они тоже выступают как способ «упаковки». Давай немного углубимся в эту тонкость.

Как я уже говорил выше, в простых функциях икс «упаковывается» один раз, а в сложных - два и более. При этом любая комбинация простых функций (то есть их сумма, разность, умножение или деление) - тоже простая функция. Например, \(x^7\) – простая функция и \(ctg x\) - тоже. Значит и все их комбинации являются простыми функциями:

\(x^7+ ctg x\) - простая,
\(x^7· ctg x\) – простая,
\(\frac{x^7}{ctg x}\) – простая и т.д.

Однако если к такой комбинации применить еще одну функцию – будет уже сложная функция, так как «упаковок» станет две. Смотри схему:



Хорошо, давай теперь сам. Напиши последовательность «заворачивания» функций:
\(y=cos{⁡(sin⁡x)}\)
\(y=5^{x^7}\)
\(y=arctg⁡{11^x}\)
\(y=log_2⁡(1+x)\)
Ответы опять в конце статьи.

Внутренняя и внешняя функции

Зачем же нам нужно разбираться во вложенности функций? Что нам это дает? Дело в том, что без такого анализа мы не сможем надежно находить производные разобранных выше функций.

И для того, чтобы двигаться дальше, нам будут нужны еще два понятия: внутренняя и внешняя функции. Это очень простая вещь, более того, на самом деле мы их уже разобрали выше: если вспомнить нашу аналогию в самом начале, то внутренняя функция - это «пакет», а внешняя – это «коробка». Т.е. то, во что икс «заворачивают» сначала – это внутренняя функция, а то, во что «заворачивают» внутреннюю – уже внешняя. Ну, понятно почему – она ж снаружи, значит внешняя.

Вот в этом примере: \(y=tg⁡(log_2⁡x)\), функция \(\log_2⁡x\) – внутренняя, а
- внешняя.

А в этом: \(y=\cos⁡{(x^3+2x+1)}\), \(x^3+2x+1\) - внутренняя, а
- внешняя.

Выполни последнюю практику анализа сложных функций, и перейдем, наконец, к тому, ради чего всё затевалось - будем находить производные сложных функций:

Заполни пропуски в таблице:


Производная сложной функции

Браво нам, мы всё ж таки добрались до «босса» этой темы – собственно, производной сложной функции, а конкретно, до той самой ужасной формулы из начала статьи.☺

\((f(g(x)))"=f"(g(x))\cdot g"(x)\)

Формула эта читается так:

Производная сложной функции равна произведению производной внешней функции по неизменной внутренней на производную внутренней функции.

И сразу смотри схему разбора, по словам, чтобы, понимать, что к чему относиться:

Надеюсь, термины «производная» и «произведение» затруднений не вызывают. «Сложную функцию» - мы уже разобрали. Загвоздка в «производной внешней функции по неизменной внутренней». Что это такое?

Ответ: это обычная производная внешней функции, при которой изменяется только внешняя функция, а внутренняя остается такой же. Все равно непонятно? Хорошо, давай на примере.

Пусть у нас есть функция \(y=\sin⁡(x^3)\). Понятно, что внутренняя функция здесь \(x^3\), а внешняя
. Найдем теперь производную внешней по неизменной внутренней.

Начальный уровень

Производная функции. Исчерпывающее руководство (2019)

Представим себе прямую дорогу, проходящую по холмистой местности. То есть она идет то вверх, то вниз, но вправо или влево не поворачивает. Если ось направить вдоль дороги горизонтально, а - вертикально, то линия дороги будет очень похожа на график какой-то непрерывной функции:

Ось - это некий уровень нулевой высоты, в жизни мы используем в качестве него уровень моря.

Двигаясь вперед по такой дороге, мы также движемся вверх или вниз. Также можем сказать: при изменении аргумента (продвижение вдоль оси абсцисс) изменяется значение функции (движение вдоль оси ординат). А теперь давай подумаем, как определить «крутизну» нашей дороги? Что это может быть за величина? Очень просто: на сколько изменится высота при продвижении вперед на определенное расстояние. Ведь на разных участках дороги, продвигаясь вперед (вдоль оси абсцисс) на один километр, мы поднимемся или опустимся на разное количество метров относительно уровня моря (вдоль оси ординат).

Продвижение вперед обозначим (читается «дельта икс»).

Греческую букву (дельта) в математике обычно используют как приставку, означающую «изменение». То есть - это изменение величины, - изменение; тогда что такое? Правильно, изменение величины.

Важно: выражение - это единое целое, одна переменная. Никогда нельзя отрывать «дельту» от «икса» или любой другой буквы! То есть, например, .

Итак, мы продвинулись вперед, по горизонтали, на. Если линию дороги мы сравниваем с графиком функции, то как мы обозначим подъем? Конечно, . То есть, при продвижении вперед на мы поднимаемся выше на.

Величину посчитать легко: если в начале мы находились на высоте, а после перемещения оказались на высоте, то. Если конечная точка оказалась ниже начальной, будет отрицательной - это означает, что мы не поднимаемся, а спускаемся.

Вернемся к «крутизне»: это величина, которая показывает, насколько сильно (круто) увеличивается высота при перемещении вперед на единицу расстояния:

Предположим, что на каком-то участке пути при продвижении на км дорога поднимается вверх на км. Тогда крутизна в этом месте равна. А если дорога при продвижении на м опустилась на км? Тогда крутизна равна.

А теперь рассмотрим вершину какого-нибудь холма. Если взять начало участка за полкилометра до вершины, а конец - через полкилометра после него, видно, что высота практически одинаковая.

То есть, по нашей логике выходит, что крутизна здесь почти равна нулю, что явно не соответствует действительности. Просто на расстоянии в км может очень многое поменяться. Нужно рассматривать более маленькие участки для более адекватной и точной оценки крутизны. Например, если измерять изменение высоты при перемещении на один метр, результат будет намного точнее. Но и этой точности нам может быть недостаточно - ведь если посреди дороги стоит столб, мы его можем просто проскочить. Какое расстояние тогда выберем? Сантиметр? Миллиметр? Чем меньше, тем лучше!

В реальной жизни измерять расстояние с точностью до милиметра - более чем достаточно. Но математики всегда стремятся к совершенству. Поэтому было придумано понятие бесконечно малого , то есть величина по модулю меньше любого числа, которое только можем назвать. Например, ты скажешь: одна триллионная! Куда уж меньше? А ты подели это число на - и будет еще меньше. И так далее. Если хотим написать, что величина бесконечно мала, пишем так: (читаем «икс стремится к нулю»). Очень важно понимать, что это число не равно нулю! Но очень близко к нему. Это значит, что на него можно делить.

Понятие, противоположное бесконечно малому - бесконечно большое (). Ты уже наверняка сnалкивался с ним, когда занимался неравенствами: это число по модулю больше любого числа, которое только можешь придумать. Если ты придумал самое большое из возможных чисел, просто умножь его на два, и получится еще больше. А бесконечность еще больше того, что получится. Фактически бесконечно большое и бесконечно малое обратны друг другу, то есть при, и наоборот: при.

Теперь вернемся к нашей дороге. Идеально посчитанная крутизна - это куртизна, вычисленная для бесконечно малого отрезка пути, то есть:

Замечу, что при бесконечно малом перемещении изменение высоты тоже будет бесконечно мало. Но напомню, бесконечно малое - не значит равное нулю. Если поделить друг на друга бесконечно малые числа, может получиться вполне обычное число, например, . То есть одна малая величина может быть ровно в раза больше другой.

К чему все это? Дорога, крутизна… Мы ведь не в автопробег отправляемся, а математику учим. А в математике все точно так же, только называется по-другому.

Понятие производной

Производная функции это отношение приращения функции к приращению аргумента при бесконечно малом приращение аргумента.

Приращением в математике называют изменение. То, насколько изменился аргумент () при продвижении вдоль оси, называется приращением аргумента и обозначается То, насколько изменилась функция (высота) при продвижении вперед вдоль оси на расстояние, называется приращением функции и обозначается.

Итак, производная функции - это отношение к при. Обозначаем производную той же буквой, что и функцию, только со штрихом сверху справа: или просто. Итак, запишем формулу производной, используя эти обозначения:

Как и в аналогии с доро́гой здесь при возрастании функции производная положительна, а при убывании - отрицательна.

А бывает ли производная равна нулю? Конечно. Например, если мы едем по ровной горизонтальной дороге, крутизна равна нулю. И правда, высота ведь не совсем меняется. Так и с производной: производная постоянной функции (константы) равна нулю:

так как приращение такой функции равно нулю при любом.

Давай вспомним пример с вершиной холма. Там получалось, что можно так расположить концы отрезка по разные стороны от вершины, что высота на концах оказывается одинаковой, то есть отрезок располагается параллельно оси:

Но большие отрезки - признак неточного измерения. Будем поднимать наш отрезок вверх параллельно самому себе, тогда его длина будет уменьшаться.

В конце концов, когда мы будем бесконечно близко к вершине, длина отрезка станет бесконечно малой. Но при этом он остался параллелен оси, то есть разность высот на его концах равна нулю (не стремится, а именно равна). Значит, производная

Понять это можно так: когда мы стоим на самой вершине, меленькое смещение влево или вправо изменяет нашу высоту ничтожно мало.

Есть и чисто алгебраическое объяснение: левее вершины функция возрастает, а правее - убывает. Как мы уже выяснили ранее, при возрастании функции производная положительна, а при убывании - отрицательна. Но меняется она плавно, без скачков (т.к. дорога нигде не меняет наклон резко). Поэтому между отрицательными и положительными значениями обязательно должен быть. Он и будет там, где функция ни возрастает, ни убывает - в точке вершины.

То же самое справедливо и для впадины (область, где функция слева убывает, а справа - возрастает):

Немного подробнее о приращениях.

Итак, мы меняем аргумент на величину. Меняем от какого значения? Каким он (аргумент) теперь стал? Можем выбрать любую точку, и сейчас будем от нее плясать.

Рассмотрим точку с координатой. Значение функции в ней равно. Затем делаем то самое приращение: увеличиваем координату на. Чему теперь равен аргумент? Очень легко: . А чему теперь равно значение функции? Куда аргумент, туда и функция: . А что с приращением функции? Ничего нового: это по-прежнему величина, на которую изменилась функция:

Потренируйся находить приращения:

  1. Найди приращение функции в точке при приращении аргумента, равном.
  2. То же самое для функции в точке.

Решения:

В разных точках при одном и том же приращении аргумента приращение функции будет разным. Значит, и производная в каждой точке своя (это мы обсуждали в самом начале - крутизна дороги в разных точках разная). Поэтому когда пишем производную, надо указывать, в какой точке:

Степенная функция.

Степенной называют функцию, где аргумент в какой-то степени (логично, да?).

Причем - в любой степени: .

Простейший случай - это когда показатель степени:

Найдем ее производную в точке. Вспоминаем определение производной:

Итак, аргумент меняется с до. Каково приращение функции?

Приращение - это. Но функция в любой точке равна своему аргументу. Поэтому:

Производная равна:

Производная от равна:

b) Теперь рассмотрим квадратичную функцию (): .

А теперь вспомним, что. Это значит, что значением приращения можно пренебречь, так как оно бесконечно мало, и поэтому незначительно на фоне другого слагаемого:

Итак, у нас родилось очередное правило:

c) Продолжаем логический ряд: .

Это выражение можно упростить по-разному: раскрыть первую скобку по формуле сокращенного умножения куб суммы, или же разложить все выражение на множители по формуле разности кубов. Попробуй сделать это сам любым из предложенных способов.

Итак, у меня получилось следующее:

И снова вспомним, что. Это значит, что можно пренебречь всеми слагаемыми, содержащими:

Получаем: .

d) Аналогичные правила можно получить и для больших степеней:

e) Оказывается, это правило можно обобщить для степенной функции с произвольным показателем, даже не целым:

(2)

Можно сформулировать правило словами: «степень выносится вперед как коэффициент, а потом уменьшается на ».

Докажем это правило позже (почти в самом конце). А сейчас рассмотрим несколько примеров. Найди производную функций:

  1. (двумя способами: по формуле и используя определение производной - посчитав приращение функции);
  1. . Не поверишь, но это степенная функция. Если у тебя возникли вопросы типа «Как это? А где же степень?», вспоминай тему « »!
    Да-да, корень - это тоже степень, только дробная: .
    Значит, наш квадратный корень - это всего лишь степень с показателем:
    .
    Производную ищем по недавно выученной формуле:

    Если в этом месте снова стало непонятно, повторяй тему « »!!! (про степень с отрицательным показателем)

  2. . Теперь показатель степени:

    А теперь через определение (не забыл еще?):
    ;
    .
    Теперь, как обычно, пренебрегаем слагаемым, содержащим:
    .

  3. . Комбинация предыдущих случаев: .

Тригонометрические функции.

Здесь будем использовать один факт из высшей математики:

При выражение.

Доказательство ты узнаешь на первом курсе института (а чтобы там оказаться, надо хорошо сдать ЕГЭ). Сейчас только покажу это графически:

Видим, что при функция не существует - точка на графике выколота. Но чем ближе к значению, тем ближе функция к. Это и есть то самое «стремится».

Дополнительно можешь проверить это правило с помощью калькулятора. Да-да, не стесняйся, бери калькулятор, мы ведь не на ЕГЭ еще.

Итак, пробуем: ;

Не забудь перевести калькулятор в режим «Радианы»!

и т.д. Видим, что чем меньше, тем ближе значение отношения к.

a) Рассмотрим функцию. Как обычно, найдем ее приращение:

Превратим разность синусов в произведение. Для этого используем формулу (вспоминаем тему « »): .

Теперь производная:

Сделаем замену: . Тогда при бесконечно малом также бесконечно мало: . Выражение для принимает вид:

А теперь вспоминаем, что при выражение. А также, что если бесконечно малой величиной можно пренебречь в сумме (то есть при).

Итак, получаем следующее правило: производная синуса равна косинусу :

Это базовые («табличные») производные. Вот они одним списком:

Позже мы к ним добавим еще несколько, но эти - самые важные, так как используются чаще всего.

Потренируйся:

  1. Найди производную функции в точке;
  2. Найди производную функции.

Решения:

  1. Сперва найдем производную в общем виде, а затем подставим вместо его значение:
    ;
    .
  2. Тут у нас что-то похожее на степенную функцию. Попробуем привести ее к
    нормальному виду:
    .
    Отлично, теперь можно использовать формулу:
    .
    .
  3. . Ээээээ….. Что это????

Ладно, ты прав, такие производные находить мы еще не умеем. Здесь у нас комбинация нескольких типов функций. Чтобы работать с ними, нужно выучить еще несколько правил:

Экспонента и натуральный логарифм.

Есть в математике такая функция, производная которой при любом равна значению самой функции при этом же. Называется она «экспонента», и является показательной функцией

Основание этой функции - константа - это бесконечная десятичная дробь, то есть число иррациональное (такое как). Его называют «число Эйлера», поэтому и обозначают буквой.

Итак, правило:

Запомнить очень легко.

Ну и не будем далеко ходить, сразу же рассмотрим обратную функцию. Какая функция является обратной для показательной функции? Логарифм:

В нашем случае основанием служит число:

Такой логарифм (то есть логарифм с основанием) называется «натуральным», и для него используем особое обозначение: вместо пишем.

Чему равен? Конечно же, .

Производная от натурального логарифма тоже очень простая:

Примеры:

  1. Найди производную функции.
  2. Чему равна производная функции?

Ответы: Экспонента и натуральный логарифм - функции уникально простые с точки зрения производной. Показательные и логарифмические функции с любым другим основанием будут иметь другую производную, которую мы с тобой разберем позже, после того как пройдем правила дифференцирования.

Правила дифференцирования

Правила чего? Опять новый термин, опять?!...

Дифференцирование - это процесс нахождения производной.

Только и всего. А как еще назвать этот процесс одним словом? Не производнование же... Дифференциалом математики называют то самое приращение функции при. Происходит этот термин от латинского differentia — разность. Вот.

При выводе всех этих правил будем использовать две функции, например, и. Нам понадобятся также формулы их приращений:

Всего имеется 5 правил.

Константа выносится за знак производной.

Если - какое-то постоянное число (константа), тогда.

Очевидно, это правило работает и для разности: .

Докажем. Пусть, или проще.

Примеры.

Найдите производные функций:

  1. в точке;
  2. в точке;
  3. в точке;
  4. в точке.

Решения:

  1. (производная одинакова во всех точках, так как это линейная функция, помнишь?);

Производная произведения

Здесь все аналогично: введем новую функцию и найдем ее приращение:

Производная:

Примеры:

  1. Найдите производные функций и;
  2. Найдите производную функции в точке.

Решения:

Производная показательной функции

Теперь твоих знаний достаточно, чтобы научиться находить производную любой показательной функции, а не только экспоненты (не забыл еще, что это такое?).

Итак, где - это какое-то число.

Мы уже знаем производную функции, поэтому давай попробуем привести нашу функцию к новому основанию:

Для этого воспользуемся простым правилом: . Тогда:

Ну вот, получилось. Теперь попробуй найти производную, и не забудь, что эта функция - сложная.

Получилось?

Вот, проверь себя:

Формула получилась очень похожая на производную экспоненты: как было, так и осталось, появился только множитель, который является просто числом, но не переменной.

Примеры:
Найди производные функций:

Ответы:

Это просто число, которое невозможно посчитать без калькулятора, то есть никак не записать в более простом виде. Поэтому в ответе его в таком виде и оставляем.

Производная логарифмической функции

Здесь аналогично: ты уже знаешь производную от натурального логарифма:

Поэтому, чтобы найти произвольную от логарифма с другим основанием, например, :

Нужно привести этот логарифм к основанию. А как поменять основание логарифма? Надеюсь, ты помнишь эту формулу:

Только теперь вместо будем писать:

В знаменателе получилась просто константа (постоянное число, без переменной). Производная получается очень просто:

Производные показательной и логарифмической функций почти не встречаются в ЕГЭ, но не будет лишним знать их.

Производная сложной функции.

Что такое «сложная функция»? Нет, это не логарифм, и не арктангенс. Данные функции может быть сложны для понимания (хотя, если логарифм тебе кажется сложным, прочти тему «Логарифмы» и все пройдет), но с точки зрения математики слово «сложная» не означает «трудная».

Представь себе маленький конвейер: сидят два человека и проделывают какие-то действия с какими-то предметами. Например, первый заворачивает шоколадку в обертку, а второй обвязывает ее ленточкой. Получается такой составной объект: шоколадка, обернутая и обвязанная ленточкой. Чтобы съесть шоколадку, тебе нужно проделать обратные действия в обратном порядке.

Давай создадим подобный математический конвейер: сперва будем находить косинус числа, а затем полученное число возводить в квадрат. Итак, нам дают число (шоколадка), я нахожу его косинус (обертка), а ты затем возводишь то, что у меня получилось, в квадрат (обвязываешь ленточкой). Что получилось? Функция. Это и есть пример сложной функции: когда для нахождения ее значения мы проделываем первое действие непосредственно с переменной, а потом еще второе действие с тем, что получилось в результате первого.

Мы вполне можем проделывать те же действия и в обратном порядке: сначала ты возводишь в квадрат, а я затем ищу косинус полученного числа: . Несложно догадаться, что результат будет почти всегда разный. Важная особенность сложных функций: при изменении порядка действий функция меняется.

Другими словами, сложная функция - это функция, аргументом которой является другая функция : .

Для первого примера, .

Второй пример: (то же самое). .

Действие, которое делаем последним будем называть «внешней» функцией , а действие, совершаемое первым - соответственно «внутренней» функцией (это неформальные названия, я их употребляю только для того, чтобы объяснить материал простым языком).

Попробуй определить сам, какая функция является внешней, а какая внутренней:

Ответы: Разделение внутренней и внешней функций очень похоже на замену переменных: например, в функции

  1. Первым будем выполнять какое действие? Сперва посчитаем синус, а только потом возведем в куб. Значит, внутренняя функция, а внешняя.
    А исходная функция является их композицией: .
  2. Внутренняя: ; внешняя: .
    Проверка: .
  3. Внутренняя: ; внешняя: .
    Проверка: .
  4. Внутренняя: ; внешняя: .
    Проверка: .
  5. Внутренняя: ; внешняя: .
    Проверка: .

производим замену переменных и получаем функцию.

Ну что ж, теперь будем извлекать нашу шоколадку - искать производную. Порядок действий всегда обратный: сначала ищем производную внешней функции, затем умножаем результат на производную внутренней функции. Применительно к исходному примеру это выглядит так:

Другой пример:

Итак, сформулируем, наконец, официальное правило:

Алгоритм нахождения производной сложной функции:

Вроде бы все просто, да?

Проверим на примерах:

Решения:

1) Внутренняя: ;

Внешняя: ;

2) Внутренняя: ;

(только не вздумай теперь сократить на! Из под косинуса ничего не выносится, помнишь?)

3) Внутренняя: ;

Внешняя: ;

Сразу видно, что здесь трехуровневая сложная функция: ведь - это уже сама по себе сложная функция, а из нее еще извлекаем корень, то есть выполняем третье действие (шоколадку в обертке и с ленточкой кладем в портфель). Но пугаться нет причин: все-равно «распаковывать» эту функцию будем в том же порядке, что и обычно: с конца.

То есть сперва продифференцируем корень, затем косинус, и только потом выражение в скобках. А потом все это перемножим.

В таких случаях удобно пронумеровать действия. То есть, представим, что нам известен. В каком порядке будем совершать действия, чтобы вычислить значение этого выражения? Разберем на примере:

Чем позже совершается действие, тем более «внешней» будет соответствующая функция. Последовательность действий - как и раньше:

Здесь вложенность вообще 4-уровневая. Давай определим порядок действий.

1. Подкоренное выражение. .

2. Корень. .

3. Синус. .

4. Квадрат. .

5. Собираем все в кучу:

ПРОИЗВОДНАЯ. КОРОТКО О ГЛАВНОМ

Производная функции - отношение приращения функции к приращению аргумента при бесконечно малом приращении аргумента:

Базовые производные:

Правила дифференцирования:

Константа выносится за знак производной:

Производная суммы:

Производная произведения:

Производная частного:

Производная сложной функции:

Алгоритм нахождения производной от сложной функции:

  1. Определяем «внутреннюю» функцию, находим ее производную.
  2. Определяем «внешнюю» функцию, находим ее производную.
  3. Умножаем результаты первого и второго пунктов.

«Величие человека в его способности мыслить».
Блез Паскаль.

Цели урока:

1) Обучающие – познакомить учащихся с однородными уравнениями, рассмотреть методы их решения, способствовать формированию навыков решения ранее изученных видов тригонометрических уравнений.

2) Развивающие – развивать творческую активность учащихся, их познавательную деятельность, логическое мышление, память, умение работать в проблемной ситуации, добиваться умения правильно, последовательно, рационально излагать свои мысли, расширить кругозор учащихся, повышать уровень их математической культуры.

3) Воспитательные – воспитывать стремление к самосовершенствованию, трудолюбие, формировать умение грамотно и аккуратно выполнять математические записи, воспитывать активность, содействовать побуждению интереса к математике.

Тип урока: комбинированный.

Оборудование:

  1. Перфокарты для шести учащихся.
  2. Карточки для самостоятельной и индивидуальной работы учащихся.
  3. Стенды «Решение тригонометрических уравнений», «Числовая единичная окружность».
  4. Электрифицированные таблицы по тригонометрии.
  5. Презентация к уроку (Приложение 1) .

Ход урока

1. Организационный этап (2 минуты)

Взаимное приветствие; проверка подготовленности учащихся к уроку (рабочее место, внешний вид); организация внимания.

Учитель сообщает учащимся тему урока, цели (слайд 2) и поясняет, что во время урока будет использоваться тот раздаточный материал, который находится на партах.

2. Повторение теоретического материала (15 минут)

Задания на перфокартах (6 человек). Время работы по перфокартам – 10 мин (Приложение 2)

Решив задания, учащиеся узнают, где применяются тригонометрические вычисления. Получаются такие ответы: триангуляция (техника, позволяющая измерять расстояния до недалеких звезд в астрономии), акустика, УЗИ, томография, геодезия, криптография.

(слайд 5)

Фронтальный опрос.

  1. Какие уравнения называются тригонометрическими?
  2. Какие виды тригонометрических уравнений вы знаете?
  3. Какие уравнения называются простейшими тригонометрическими уравнениями?
  4. Какие уравнения называются квадратными тригонометрическими?
  5. Сформулировать определение арксинуса числа а.
  6. Сформулировать определение арккосинуса числа а.
  7. Сформулировать определение арктангенса числа а.
  8. Сформулировать определение арккотангенса числа а.

Игра «Отгадайте зашифрованное слово»

Когда-то Блез Паскаль сказал, что математика – наука настолько серьёзная, что нельзя упускать случая, сделать её немного более занимательной. Поэтому я предлагаю поиграть. Решив примеры, определите последовательность цифр, по которой составлено зашифрованное слово. По латыни это слово означает «синус». (слайд 3)

2) arc tg (-√3)

4) tg (arc cos (1/2))

5) tg (arc ctg √3)

Ответ: «Изгиб»

Игра «Рассеянный математик »

На экран проектируются задания для устной работы:

Проверьте правильность решения уравнений. (правильный ответ появляется на слайде после ответа учащегося). (слайд 4)

Ответы с ошибками

Правильные ответы

х = ±π/6 +2πn

х = ±π/3 +2πn

х = π/3 +πn

х = (-1) nπ/3 +πn

tg x = π/4

х = 1 +πn

tg x =1, х = π/4+πn

х = ±π/6+π n

х = ±π/6 +n

х = (-1)n arcsin1/3+ 2πn

х = (-1)n arcsin1/3+ πn

х = ±π/6 +2πn

х = ±5π/6 +2πn

cos x = π/3

х = ±1/2 +2πn

cos x = 1/2, х = ±π/3 +2πn

Проверка домашнего задания.

Преподаватель установливает правильность и осознанность выполнения домашнего задания всеми учащимися; выявляет пробелы в знаниях; совершенствует знания, умения и навыки учащихся в области решения простейших тригонометрических уравнений.

1 уравнение. Учащийся комментирует решение уравнения, строки которого появляются на слайде в порядке следования комментария). (слайд 6)

√3tg2x = 1;

tg2x =1/√3 ;

2х= arctg 1/√3 +πn, n Z.

2х= π/6 +πn, n Z.

х= π/12 + π/2 n, n Z .

2 уравнение . Решение з аписывается учащимся на доске.

2 sin 2 x + 3 cosx = 0.

3. Актуализация новых знаний (3 минуты)

Учащиеся по просьбе учителя вспоминают способы решения тригонометрических уравнений. Они выбирают те уравнения, которые уже умеют решать, называют способ решения уравнения и получившийся результат. Ответы появляются на слайде. (слайд 7) .

Введение новой переменной:

№1. 2sin 2 x – 7sinx + 3 = 0.

Пусть sinx = t, тогда:

2t 2 – 7t + 3 = 0.

Разложение на множители:

№2. 3sinx cos4x – cos4x = 0;

сos4x(3sinx – 1) = 0;

cos4x = 0 или 3 sinx – 1 = 0; …

№3. 2 sinx – 3 cosx = 0,

№4. 3 sin 2 x – 4 sinx cosx + cos 2 x = 0.

Преподаватель: Последние два вида уравнений вы решать еще не умеете. Оба они одного вида. Их нельзя свести к уравнению относительно функций sinx или cosx. Называются однородными тригонометрическими уравнениями. Но только первое – однородное уравнение первой степени, а второе – однородное уравнение второй степени. Сегодня на уроке предстоит познакомиться с такими уравнениями и научиться их решать.

4. Объяснение нового материала (25 минут)

Преподаватель дает учащимся определения однородных тригонометрических уравнений, знакомит со способами их решения.

Определение. Уравнение вида a sinx + b cosx =0, где a ≠ 0, b ≠ 0 называется однородным тригонометрическим уравнением первой степени. (слайд 8)

Примером такого уравнения является уравнение №3. Выпишем общий вид уравнения и проанализируем его.

а sinx + b cosx = 0.

Если cosx = 0, то sinx = 0.

– Может ли получиться такая ситуация?

– Нет. Получили противоречие основному тригонометрическому тождеству.

Значит, cosx ≠ 0. Выполним почленное деление на cosx:

а · tgx + b = 0

tgx = –b / а – простейшее тригонометрическое уравнение.

Вывод: Однородные тригонометрические уравнения первой степени решаются делением обеих частей уравнения на cosx (sinx).

Например: 2 sinx – 3 cosx = 0,

Т.к. cosx ≠ 0, то

tgx = 3/2;

х = arctg (3/2) +πn, n ∈Z.

Определение. Уравнение вида a sin 2 x + b sinx cosx + c cos 2 x = 0 , где a ≠ 0, b ≠ 0, c ≠ 0 называется тригонометрическим уравнением второй степени. (слайд 8)

Примером такого уравнения является уравнение №4. Выпишем общий вид уравнения и проанализируем его.

a sin 2 x + b sinx cosx + c cos 2 x = 0.

Если cosx = 0, то sinx = 0.

Опять получили противоречие основному тригонометрическому тождеству.

Значит, cosx ≠ 0. Выполним почленное деление на cos 2 x:

а tg 2 x + b tgx + c = 0 – уравнение, сводящееся к квадратному.

Вывод: О днородные тригонометрические уравнения второй степени решаются делением обеих частей уравнения на cos 2 x (sin 2 x).

Например: 3 sin 2 x – 4 sinx cosx + cos 2 x = 0.

Т.к. cos 2 x ≠ 0, то

3tg 2 x – 4 tgx + 1 = 0 (Предложить ученику выйти к доске и дорешать уравнение самостоятельно).

Замена: tgx = у. 3у 2 – 4 у + 1 = 0

D = 16 – 12 = 4

y 1 = 1 или y 2 = 1/3

tgx = 1 или tgx = 1/3

x = arctg (1/3) + πn, n ∈Z.

х = arctg1 + πn, n ∈Z.

x = π/4 + πn, n ∈Z.

5. Этап проверки понимания учащимися нового материала (1 мин.)

Выберите лишнее уравнение:

sinx = 2cosx; 2sinx + cosx = 2;

√3sinx + cosx = 0; sin 2 x – 2 sinx cosx + 4cos 2 x = 0;

4cosx + 5sinx = 0; √3sinx – cosx = 0.

(слайд 9)

6. Закрепление нового материала (24 мин).

Учащиеся вместе с отвечающими у доски решают уравнения на новый материал. Задания написаны на слайде в виде таблицы. При решении уравнения открывается соответствующая часть картинки на слайде. В результате выполнения 4-х уравнений перед учащимися открывается портрет математика, оказавшего значительное влияние на развитие тригонометрии. (ученики узнают портрет Франсуа Виета – великого математика, внесшего большой вклад в тригонометрию, открывшего свойство корней приведенного квадратного уравнения и занимавшегося криптографией). (слайд 10)

1) √3sinx + cosx = 0,

Т.к. cosx ≠ 0, то

√3tgx + 1 = 0;

tgx = –1/√3;

х = arctg (–1/√3) + πn, n ∈Z.

х = –π/6 + πn, n ∈Z.

2) sin 2 x – 10 sinx cosx + 21cos 2 x = 0.

Т.к. cos 2 x ≠ 0, то tg 2 x – 10 tgx + 21 = 0

Замена: tgx = у.

у 2 – 10 у + 21 = 0

у 1 = 7 или у 2 = 3

tgx = 7 или tgx = 3

х = arctg7 + πn, n ∈Z

х = arctg3 + πn, n ∈Z

3) sin 2 2x – 6 sin2x cos2x + 5cos 2 2x = 0.

Т.к. cos 2 2x ≠ 0, то 3tg 2 2x – 6tg2x +5 = 0

Замена: tg2x = у.

3у 2 – 6у + 5 = 0

D = 36 – 20 = 16

у 1 = 5 или у 2 = 1

tg2x = 5 или tg2x = 1

2х = arctg5 + πn, n ∈Z

х = 1/2 arctg5 + π/2 n, n ∈Z

2х = arctg1 + πn, n ∈Z

х = π/8 + π/2 n, n ∈Z

4) 6sin 2 x + 4 sin(π-x) cos(2π-x) = 1.

6sin 2 x + 4 sinx cosx = 1.

6sin 2 x + 4 sinx cosx – sin 2 x – cos 2 x = 0.

5sin 2 x + 4 sinx cosx – cos 2 x = 0.

Т.к. cos 2 x ≠0, то 5tg 2 x + 4 tgx –1 = 0

Замена: tg x = у.

5у 2 + 4у – 1 = 0

D = 16 + 20 = 36

у 1 = 1/5 или у 2 = –1

tg x = 1/5 или tg x = –1

х = arctg1/5 + πn, n ∈Z

х = arctg(–1) + πn, n ∈Z

х = –π/4 + πn, n ∈Z

Дополнительно (на карточке):

Решить уравнение и, выбрав один вариант из четырех предложенных, отгадать имя математика, который вывел формулы приведения:

2sin 2 x – 3 sinx cosx – 5cos 2 x = 0.

Варианты ответов:

х = arctg2 + 2πn, n ∈Z х = –π/2 + πn, n ∈Z – П.Чебышев

х = arctg 12,5 + 2πn, n ∈Z х = –3π/4 + πn, n ∈Z – Евклид

х = arctg 5 + πn, n ∈Z х = –π/3 + πn, n ∈Z – Софья Ковалевская

х = arctg2,5 + πn, n ∈Z х = –π/4 + πn, n ∈Z – Леонард Эйлер

Правильный ответ: Леонард Эйлер.

7. Дифференцированная самостоятельная работа (8 мин.)

Великий математик и философ более 2500 лет назад подсказал способ развития мыслительных способностей. «Мышление начинается с удивления» – сказал он. В правильности этих слов мы сегодня неоднократно убеждались. Выполнив самостоятельную работу по 2-м вариантам, вы сможете показать, как усвоили материал и узнать имя этого математика. Для самостоятельной работы используйте раздаточный материал, который находится у вас на столах. Вы можете сами выбрать одно из трех предложенных уравнений. Но помните, что решив уравнение, соответствующее желтому цвету, вы сможете получить только «3»,решив уравнение, соответствующее зеленому цвету – «4», красному цвету – «5». (Приложение 3)

Какой бы уровень сложности не выбрали учащиеся, после правильного решения уравнения у первого варианта получается слово «АРИСТ», у второго – «ОТЕЛЬ». На слайде получается слово: «АРИСТ-ОТЕЛЬ». (слайд 11)

Листочки с самостоятельной работой сдаются на проверку. (Приложение 4)

8. Запись домашнего задания (1 мин)

Д/з: §7.17. Составить и решить 2 однородных уравнения первой степени и 1 однородное уравнение второй степени (используя для составления теорему Виета). (слайд 12)

9. Подведение итогов урока, выставление оценок (2 минуты)

Учитель еще раз обращает внимание, на те типы уравнений и те теоретические факты, которые вспоминали на уроке, говорит о необходимости выучить их.

Учащиеся отвечают на вопросы:

  1. С каким видом тригонометрических уравнений мы познакомились?
  2. Как решаются эти уравнения?

Учитель отмечает наиболее успешную работу на уроке отдельных учащихся, выставляет отметки.

Тип урока: обяснение нового материала. Работа проходит в группах. В каждой группе есть эксперт, который контролирует и направляет работу учащихся. Помогает слабым учащимся поверить в свои силы при решении данных уравнений.

Скачать:


Предварительный просмотр:

Урок по теме

" Однородные тригонометрические уравнения"

(10-й класс)

Цель:

  1. ввести понятие однородных тригонометрических уравнений I и II степени;
  2. сформулировать и отработать алгоритм решения однородных тригонометрических уравнений I и II степени;
  3. научить учащихся решать однородные тригонометрических уравнений I и II степени;
  4. развивать умение выявлять закономерности, обобщать;
  5. стимулировать интерес к предмету, развивать чувство солидарности и здорового соперничества.

Тип урока : урок формирования новых знаний.

Форма проведения : работа в группах.

Оборудование: компьютер, мультимедийная установка

Ход урока

I. Организационный момент

На уроке рейтинговая система оценки знаний (учитель поясняет систему оценки знаний, заполнение оценочного листа независимым экспертом, выбранным учителем из числа учащихся). Урок сопровождается презентацией. Приложение 1.

Оценочный лист№

п\п

Фамилия имя

Домашнее задание

Познавательная активность

Решение уравнений

Самостоятельная

работа

Оценка

II. Актуализация опорных знаний..

Мы продолжаем изучение темы “Тригонометрические уравнения”. Сегодня на уроке мы познакомимся с вами с еще одним видом тригонометрических уравнений и методами их решения и поэтому повторим изученное. Все виды тригонометрических уравнений при решении сводятся к решению простейших тригонометрических уравнений. Вспомним основные виды простейших тригонометрических уравнений. Поставьте с помощью стрелок соответствии между выражениями.

III. Мотивация обучения.

Нам предстоит работа по разгадыванию кроссворда. Разгадав его, мы узнаем название нового вида уравнений, которые научимся решать сегодня на уроке.

Вопросы спроецированы на доску. Учащиеся отгадывают, независимый эксперт заносит в оценочный лист баллы отвечающим учащимся.

Разгадав кроссворд, ребята прочитают слово “однородные”.

Кроссворд.

Если вписать верные слова, то получится название одного из видов тригонометрических уравнений.

1.Значение переменной, обращающее уравнение в верное равенство? (Корень)

2.Единица измерения углов? (Радиан)

3.Числовой множитель в произведении? (Коэффициент)

4.Раздел математики, изучающий тригонометрические функции? (Тригонометрия)

5.Какая математическая модель необходима для введения тригонометрических функций? (Окружность)

6.Какая из тригонометрических функций четная? (Косинус)

7.Как называется верное равенство? (Тождество)

8.Равенство с переменной? (Уравнение)

9.Уравнения, имеющие одинаковые корни? (Равносильные)

10.Множество корней уравнения? (Решение)

IV. Объяснение нового материала.

Тема урока “Однородные тригонометрические уравнения”. (Презентация)

Примеры:

  1. sin x + cos x = 0
  2. √3cos x + sin x = 0
  3. sin 4x = cos 4x
  4. 2sin 2 x + 3 sin x cos x + cos 2 x = 0
  5. 4 sin 2 x – 5 sin x cos x – 6 cos 2 x = 0
  6. sin 2 x + 2 sin x cos x – 3cos 2 x + 2 = 0
  7. 4sin 2 x – 8 sin x cos x + 10 cos 2 x = 3
  8. 1 + 7cos 2 x = 3 sin 2x
  9. sin 2x + 2cos 2x = 1

V. Самостоятельная работа

Задачи: всесторонне проверить знания учащихся при решении всех видов тригонометрических уравнений, стимулировать учащихся к самоанализу, самоконтролю.
Учащимся предлагается выполнить письменную работу на 10 минут.
Учащиеся выполняют на чистых листочках под копировку. По истечении времени собираются вершки самостоятельной работы, а решения под копировку остаются у учащихся.
Проверка самостоятельной работы (3 мин) проводится взаимопроверкой.
. Учащиеся цветной ручкой проверяют письменные работы своего соседа и записывают фамилию проверяющего. Затем сдают листочки.

Потом сдают независимому эксперту.

1 вариант: 1) sin x = √3cos x

2) 3sin 2 x – 7sin x cos x + 2 cos 2 x = 0

3) 3sin x – 2sin x cos x = 1

4) sin 2x⁄sin x =0

2 вариант: 1) cosx + √3sin x = 0

2)2sin 2 x + 3sin x cos x – 2 cos 2 x = 0

3)1 + sin 2 x = 2 sin x cos x

4) cos 2x ⁄ cos x = 0

VI. Подведение итогов урока

VII. Задание на дом:

Домашнее задание – 12 баллов (на дом было задано 3 уравнения 4 х 3 = 12)

Активность уч-ся – 1ответ – 1 балл (4 балла максимально)

Решение уравнений 1 балл

Самостоятельная работа – 4 балла


Последняя деталь, как решать задания С1 из ЕГЭ по математике - решение однородных тригонометрических уравнений. Как их решать мы расскажем в этом завершающем уроке.

Что же представляют из себя эти уравнения? Давайте запишем их в общем виде.

$$a\sin x + b\cos x = 0,$$

где `a` и `b` - некоторые константы. Это уравнение называется однородным тригонометрическим уравнением первой степени.

Однородное тригонометрическое уравнение первой степени

Чтобы решить такое уравнение, нужно поделить его на `\cos x`. Тогда оно примет вид

$$\newcommand{\tg}{\mathop{\mathrm{tg}}} a \tg x + b = 0.$$

Ответ такого уравнения легко записывается через арктангенс.

Обратите внимание, что `\cos x ≠0`. Чтобы убедиться в этом, подставим в уравнение вместо косинуса ноль и получим, что синус тоже должен быть равен нулю. Однако одновременно нулю они равны быть не могут, значит, косинус - не ноль.

Некоторые задания реального экзамена этого года сводились к однородному тригонометрическому уравнению. Перейдите по ссылке, чтобы . Мы же возьмем чуть упрощенный вариант задачи.

Первый пример. Решение однородного тригонометрического уравнения первой степени

$$\sin x + \cos x = 0.$$

Разделим на `\cos x`.

$$\tg x + 1 = 0,$$

$$x = -\frac{\pi}{4}+\pi k.$$

Повторюсь, подобное задание было на ЕГЭ:) конечно, нужно еще выполнить отбор корней, но это тоже не должно вызвать особых трудностей.

Давайте теперь перейдем к следующему типу уравнений.

Однородное тригонометрическое уравнение второй степени

В общем виде оно выглядит так:

$$a\sin^2 x + b\sin x \cos x + c\cos^2 x =0,$$

где `a, b, c` - некоторые константы.

Такие уравнения решаются делением на `\cos^2 x` (который вновь не равен нулю). Давайте сразу разберем пример.

Второй пример. Решение однородного тригонометрического уравнения второй степени

$$\sin^2 x - 2\sin x \, \cos x - 3\cos^2 x = 0.$$

Разделим на `\cos^2 x`.

$${\tg}^2 x - 2\tg x -3 =0.$$

Заменим `t = \tg x`.

$$t^2 - 2t -3 = 0,$$

$$t_1 = 3, \ t_2 = -1.$$

Обратная замена

$$\tg x = 3, \text{ или } \tg x = -1,$$

$$x = \arctan{3}+\pi k, \text{ или } x= -\frac{\pi}{4}+ \pi k.$$

Ответ получен.

Третий пример. Решение однородного тригонометрического уравнения второй степени

$$-\sin^2 x + \frac{2\sqrt{2}}{3}\sin x \cos x - 3\cos^2 x = -2.$$

Все бы ничего, но это уравнение не однородное - нам мешает `-2` в правой части. Что делать? Давайте воспользуемся основным тригонометрическим тождеством и распишем с его помощью `-2`.

$$-\sin^2 x + \frac{2\sqrt{2}}{3}\sin x \cos x - 3\cos^2 x = -2(\sin^2 x + \cos^2 x),$$

$$-\sin^2 x + \frac{2\sqrt{2}}{3}\sin x \cos x - 3\cos^2 x + 2\sin^2 x + 2\cos^2 x = 0,$$

$$\sin^2 x + \frac{2\sqrt{2}}{3}\sin x \cos x - \cos^2 x = 0.$$

Разделим на `\cos^2 x`.

$${\tg}^2 x + \frac{2\sqrt{2}}{3} \tg x - 1 = 0,$$

Замена `t= \tg x`.

$$t^2 + \frac{2\sqrt{2}}{3} t - 1 = 0,$$

$$t_1 = \frac{\sqrt{3}}{3},\ t_2 = -\sqrt{3}.$$

Выполнив обратную замену, получим:

$$\tg x = \frac{\sqrt{3}}{3} \text{ или } \tg x = -\sqrt{3}.$$

$$x =-\frac{\pi}{3} + \pi k,\ x = \frac{\pi}{6}+ \pi k.$$

Это последний пример в этом уроке.

Как обычно, напомню: тренировка, это наше все. Каким бы гениальным ни был человек, без тренировки навыки не разовьются. На экзамене это черевато волнением, ошибками, потерей времени (продолжите этот список самостоятельно). Обязательно занимайтесь!

Тренировочные задания

Решите уравнения:

  • `10^{\sin x} = 2^{\sin x} \cdot 5^{-\cos x}`. Это задание из реального ЕГЭ 2013. Знание свойств степеней никто не отменял, но если забыли, подсмотреть ;
  • `\sqrt{3} \sin x + \sin^2 \frac{x}{2} = \cos^2 \frac{x}{2}`. Пригодится формула из седьмого урока .
  • `\sqrt{3} \sin 2x + 3 \cos 2x = 0`.

На этом все. И как обычно напоследок: задаем вопросы в комментариях, ставим лайки, смотрим видео, учимся решать ЕГЭ.