Научная картина мира содержание. Понятие научной картины мира

Современная естественно-научная картина мира

Здесь собраны наиболее типичные сведения о современной естественнонаучной картине мира, приводимые в большинстве пособий и учебников. Насколько во многом эти представления ограниченны, а порой просто не соответствуют опыту и фактам, читатели могут судить сами.

Понятие мифологической, религиозной и философской картины мира

Картина мира это - система взглядов на объективный мир и место в нем человека.

Выделяют следующие картины мира:

 мифологическую;

 религиозную;

 философскую;

 научную.

Рассмотрим особенности мифологической (М ithos - предание, logos - учение) картины мира.

Мифологическая картина мира определяется художественно-эмоциональным переживанием мира, его чувственным восприятием и как результат нерационального восприятия - общественные иллюзии. Происходящие вокруг события объяснялись с помощью мифических персонажей, например, гроза -результат гнева Зевса в греческой мифологии.

Свойства мифологической картины мира:

очеловечивание природы ( курсив наш, обращаем внимание на широчайшее распространение в нынешней науке такого очеловечивания. Например, вера в существование объективных законов Вселенной, несмотря на то, что само понятие «закон» придумано человеком, а не обнаружено в эксперименте, да ещё и законов, однозначно выразимых в человеческих понятиях) , когда природные объекты наделяются способностями человека, например, «море разбушевалось»;

 наличие фантастических, т.е. не имеющих прообраза в действительности богов, например, кентавры; или антропоморфных богов, имеющих сходство с человеком, например, Венера (курсив наш, обращаем внимание на распространённую в науке общую антропоморфность Вселенной, выражающуюся, например, в вере в её познаваемость человеком );

 взаимодействие богов с человеком, т.е. возможность контакта в различных сферах жизнедеятельности, например, Ахиллес, Геракл, считавшиеся детьми бога и человека;

 отсутствие абстрактных размышлений, т.е. мир воспринимался как совокупность «сказочных» образов, не требовавших рационального осмысления ( курсив наш, как не требуют сегодня рационального осмысления фундаментальные научные постулаты) ;

 практическая направленность мифа, которая проявлялась в том, что для достижения определенного результата предполагался набор конкретных действий , например, жертвоприношение (курсив наш, как и поныне в науке не признаётся результат, не полученный путём строго зафиксированных процедур ).

У каждого народа есть своя мифологическая система, объясняющая происхождение мира, его устройство, место и роль человека в мире.

На следующем этапе развития человечества, с появлением мировых религий, зарождается религиозная картина мира.

Религиозная (religio - святость) картина мира основана на вере в существование сверхъестественного, например, Бога и дьявола, рая и ада; не требует доказательств , рационального обоснования своих положений; истины веры считаются выше истин разума (курсив наш, как не требуют доказательств фундаментальные научные постулаты ).

Религиозная картина мира определяется специфическими свойствами религии. Это наличие веры как способа существования религиозного сознания и культа как системы утвердившихся ритуалов, догматов, являющихся внешней формой проявления веры (курсив наш, точно также как в науке вера в познаваемость Вселенной, роль догматов-постулатов и научных ритуалов «извлечения истины» ).

Характеристики религиозной картины мира :

 сверхъестественное занимает главенствующую роль в мироздании и жизни людей. Бог создает мир и управляет ходом истории и жизнью отдельного человека;

 разделено «земное» и сакральное, т.е. невозможен прямой контакт человека с Богом, в отличие от мифологической картины мира.

Религиозные картины мира различаются в зависимости от особенностей той или иной религии. В современном мире выделяют три мировые религии: буддизм, христианство, ислам.

Философская картина мира основана на знании, а не на вере или вымысле, как мифологическая и религиозная. Она предполагает рефлексию, т.е. содержит в себе размышления над собственными представлениями о мире и о месте в нем человека. В отличие от предыдущих картин, философская картина мира логична, имеет внутреннее единство и систему, объясняет мир, опираясь на четкие понятия и категории. Ей присущи свободомыслие и критичность, т.е. отсутствие догм, проблемное восприятие мира.

Представления о реальности в рамках философской картины мира формируются на основе философских методов. Методология - система принципов, обобщенных способов организации и построения теоретической действительности, а также учение об этой системе.

Основные методы философии:

1. Диалектика - метод, в рамках которого вещи и явления рассматриваются гибко, критически, последовательно, с учетом их внутренних противоречий и изменений (курсив наш, благая идея, заложенная в диалектический метод на практике трудновыполнима в силу крайней ограниченности существующих знаний, зачастую диалектика в науке выкипает в обычную вкусовщину )

2. Метафизика - метод, противоположный диалектике, при котором объекты рассматриваются обособленно, статично и однозначно (ведется поиск абсолютной истины ) (курсив наш, хотя формально современная наука признаёт, что любая «истина» является временной и частной, тем не менее провозглашает что этот процесс со временем сходится к некоему пределу, играющему de facto роль абсолютной истины ).

Философские картины мира могут различаться в зависимости от исторического типа философии, ее национальной принадлежности, специфики философского направления. Изначально формируются две основные ветви философии: Восточная и Западная. Восточная философия в основном представлена философией Китая и Индии. Западная философия, господствующая в современных естественнонаучных представлениях, зародившаяся в Древней Греции, проходит несколько этапов в своем развитии, каждый из которых определял специфику философской картины мира.

Представления о мире, сформировавшиеся в рамках философской картины мира, легли в основу научной картины мира.

Научная картина мира как теоретический конструкт

Научная картина мира - особая форма представления о мире, основанная на научном знании, которая зависит от исторического периода и уровня развития науки. На каждом историческом этапе развития научного знания существует попытка обобщить полученные знания для формирования целостного представления о мире, что называется «общая научная картина мира». Научная картина мира различается в зависимости от предмета исследования. Такая картина мира называется специальной научной картиной мира, например, физическая картина мира, биологическая картина мира.

Научная картина мира формируется в процессе становления научного знания.

Наука - форма духовной деятельности людей, направленная на производство знаний о природе, обществе и о самом познании, имеющая целью постижение истины (курсив наш, мы подчёркиваем заложенную здесь веру в существование какой-то объективной, не зависящей от человека, истины ) и открытие объективных законов (курсив наш, обращаем внимание на веру в существование «законов» вне нашего разума ).

Этапы становления современной науки

    Классическая наука (XVII-XIX вв.), исследуя свои объекты, стремилась при их описании и теоретическом объяснении устранить по возможности все, что относится к субъекту, средствам, приемам и операциям его деятельности. Такое устранение рассматривалось как необходимое условие получения объективных и истинных знаний о мире. Здесь господствует объектный стиль мышления, стремление познать предмет сам по себе, безотносительно к условиям его изучения субъектом.

    Неклассическая наука (первая половина ХХ в.), исходный пункт которой связан с разработкой релятивистской и квантовой теории, отвергает объективизм классической науки, отбрасывает представление реальности как чего-то не зависящего от средств ее познания, субъективного фактора. Она осмысливает связи между знаниями объекта и характером средств и операций деятельности субъекта. Экспликация этих связей рассматривается в качестве условий объективного и истинного описания и объяснения мира.

    Постнеклассическая наука (вторая половина ХХ - начало ХХI вв.) характеризуется постоянной включенностью субъективной деятельности в «тело знания». Она учитывает соотнесенность характера получаемых знаний об объекте не только с особенностью средств и операций деятельности познающего субъекта, но и с ее ценностно-целевыми структурами.

Каждая из названных стадий имеет свою парадигму (совокупность теоретико-методологических и иных установок), свою картину мира, свои фундаментальные идеи.

Классическая стадия имеет своей парадигмой механику, ее картина мира строится на принципе жесткого (лапласовского) детерминизма, ей соответствует образ мироздания как часового механизма. (до сих пор механистические представления занимают примерно 90% объёма в учёных умах, что легко установить, просто поговорив с ними )

С неклассической наукой связана парадигма относительности, дискретности, квантования, вероятности, дополнительности. (как ни удивительно, но идея относительности до сих пор занимает ничтожное место в практической деятельности учёных, даже о простой относительности движения/неподвижности вспоминают редко, а иногда и прямо её отрицают )

Постнеклассической стадии соответствует парадигма становления и самоорганизации. Основные черты нового (постнеклассического) образа нaуки выражаются синергетикой, изучающей общие принципы процессов самоорганизации, протекающих в системах самой различной природы (физических, биологических, технических, социальных и др.). Ориентация на «синергетическое движение» - это ориентация на историческое время, системность и развитие как важнейшие характеристики бытия. (эти концепции пока что доступны для настоящего понимания и практического использования лишь ничтожному количеству учёных, но те, кто их освоил и реально использует, как правило пересматривают своё вульгарно-пренебрежительное отношение к духовным практикам, религии, мифологии )

В результате развития науки сформировалась научная картина мира .

Научная картина мира отличается от остальных картин мира, тем, что строит свои представления о мире на основе причинно-следственных связей, т. е. все явления окружающего мира имеют свои причины и развиваются по определенным законам.

Специфика научной картины мира определяется особенностями научного познания. Характеристики науки.

 Деятельность по получению новых знаний.

 Самоценность - познание ради самого познания (курсив наш, по факту - познание ради признания, должностей, премий, финансирования ).

 Рациональный характер, опора на логику и доказательства.

 Создание целостного, системного знания.

 Положения науки обязательны для всех людей (курсив наш, положения религии в средние века точно также почитались обязательными ).

 Опора на экспериментальный метод.

Различают общие и специальные картины мира.

Специальные научные картины мира репрезентируют предметы каждой отдельной науки (физики, биологии, социальных наук и т.д.). В общей научной картине мира представлены наиболее важные системно-структурные характеристики предметной области научного познания как целого.

Общая научная картина мира является особой формой теоретического знания. Она интегрирует наиболее важные достижения естественных, гуманитарных и технических наук. Это, например, представления о кварках (курсив наш, оказывается кварки, никогда и никем не выделенные из элементарных частиц и даже полагающиеся принципиально неотделимыми являются «наиболее важным достижением»! ) и синергетических процессах, о генах, экосистемах и биосфере, об обществе как целостной системе и т.п. Вначале они развиваются как фундаментальные идеи и представления соответствующих дисциплин, а затем включаются в общую научную картину мира.

Так как же выглядит современная картина мира?

Современная картина мира создана на основе классической, неклассической и постнеклассической картин, причудливо переплетающихся и занимающих разные уровни, в соответствии со степенью познания тех или иных областей.

Новая картина мира только формируется, она еще должна обрести универсальный язык, адекватный Природе. И. Тамм говорил, что наша первейшая задача - научиться слушать природу, чтобы понять ее язык. Картина мира, рисуемая современным естествознанием, необыкновенно сложна и одновременно проста. Ее сложность состоит в том, что она может поставить в тупик человека, привыкшего мыслить классическими представлениями с их наглядной интерпретацией явлений и процессов, происходящих в природе. С такой точки зрения современные представления о мире выглядят в какой-то мере ”безумными”. Но, тем не менее, современное естествознание показывает, что в природе реализуется все, что не запрещено ее законами, каким бы безумным и невероятным это ни казалось. В то же время современная картина мира достаточна проста и стройна, поскольку для ее понимания требуется не так много принципов и гипотез. Эти качества ей придают такие ведущие принципы построения и организации современного научного знания, как системность, глобальный эволюционизм, самоорганизация и историчность.

Системность отражает воспроизведение наукой того факта, что Вселенная предстает перед нами как самая крупная из известных нам систем, состоящая из огромного множества подсистем различного уровня сложности и упорядоченности. Эффект системности состоит в появлении у системы новых свойств, которые возникают благодаря взаимодействию ее элементов между собой. Другое ее важнейшее свойство - иерархичность и субординация, т.е. последовательное включение систем нижних уровней в системы более высоких уровней, что отражает их принципиальное единство, так как каждый элемент системы оказывается связанным со всеми другими элементами и подсистемами. Именно такой принципиально единый характер демонстрирует нам Природа. Подобным же образом организуется и современное естествознание. В настоящее время можно утверждать, что практически вся современная картина мира пронизана и преобразована физикой и химией. Более того, она включает в себя наблюдателя, от присутствия которого зависит наблюдаемая картина мира.

Глобальный эволюционизм означает признание того факта, что Вселенная имеет эволюционный характер - Вселенная и все, что в ней существует, постоянно развивается и эволюционирует, т.е. в основе всего сущего лежат эволюционные, необратимые процессы. Это свидетельствует о принципиальном единстве мира, каждая составная часть которого есть историческое следствие эволюционного процесса, начатого Большим взрывом. Идея глобального эволюционизма позволяет также изучать все процессы, протекающие в мире, с единой точки зрения как составляющие общего мирового процесса развития. Поэтому основным объектом изучения естествознания становится единая неделимая самоорганизующаяся Вселенная, развитие которой определяется универсальными и практически неменяющимися законами Природы.

Самоорганизация - это способность материи к самоусложнению и созданию все более упорядоченных структур в ходе эволюции. По-видимому, образование все более сложных структур самой различной природы происходит по единому механизму, который является универсальным для систем всех уровней.

Историчность заключается в признании принципиальной незавершенности настоящей научной картины мира. И действительно, развитие общества, изменение его ценностных ориентаций, осознание важности исследования уникальности всей совокупности природных систем, в которые составной частью включен и человек, будут непрерывно менять стратегию научного поиска и наше отношение к миру, потому что весь окружающий нас мир находится в состоянии постоянного и необратимого исторического развития.

Одной из главных особенностей современной картины мира является ее абстрактный характер и отсутствие наглядности , особенно на фундаментальном уровне. Последнее обусловлено тем, что на этом уровне мы познаем мир не с помощью чувств, а используя разнообразные приборы и устройства. При этом мы уже принципиально не можем игнорировать те физические процессы, с помощью которых получаем сведения об изучаемых объектах. В результате оказалось, что мы не можем говорить об объективной реальности, существующей независимо от нас, как таковой. Нам доступна лишь физическая реальность как часть объективной реальности, которую мы познаем с помощью опыта и нашего сознания, т.е. факты и числа, получаемые с помощью приборов. При углублении и уточнении системы научных понятий мы вынуждены все дальше уходить от чувственных восприятий и от понятий, которые возникли на их основе.

Данные современного естествознания все больше подтверждают, что реальный мир бесконечно многообразен . Чем глубже мы проникаем в тайны строения Вселенной, тем более многообразные и тонкие связи обнаруживаем.

Коротко сформулируем те черты, которые составляют основу современной естественно-научной картины мира.

. Пространство и время в современной картине мира

Суммируем кратко, как и почему изменялись и развивались наши, казалось бы, очевидные и интуитивные представления о пространстве и времени с физической точки зрения.

Уже в античном мире были выработаны первые материалистические представления о пространстве и времени. В дальнейшем они прошли сложный путь развития, особенно в ХХ в. Специальная теория относительности установила неразрывную связь пространства и времени, а общая теория относительности показала зависимость этого единства от свойств материи. С открытием расширения Вселенной и предсказанием черных дыр пришло понимание, что во Вселенной имеются состояния материи, в которых свойства пространства и времени должны кардинально отличаться от привычных нам в земных условиях.

Время часто сравнивают с рекой. Извечная река времени течет сама по себе строго равномерно. ”Время течет” - таково наше ощущение времени, и в этот поток вовлечены все события. Опыт человечества показал, что поток времени неизменен: его нельзя ни ускорить, ни замедлить, ни обратить назад. Он кажется независимым от событий и выступает как ни от чего не зависящая длительность. Так возникло представление об абсолютном времени, которое, наряду с абсолютным пространством, где происходит движение всех тел, составляет основу классической физики.

Ньютон считал, что абсолютное, истинное, математическое время, взятое само по себе без отношения к какому-нибудь телу, протекает единообразно и равномерно. Общую картину мира, нарисованную Ньютоном, коротко можно выразить так: в бесконечном и абсолютном неизменном пространстве с течением времени происходит движение миров. Оно может быть весьма сложным, процессы на небесных телах разнообразны, но это никак не влияет на пространство - “сцену”, где развертывается в неизменном времени драма событий Вселенной. Поэтому ни у пространства, ни у времени не может быть границ, или, образно говоря, река времени не имеет истоков (начала). В противном случае это бы нарушало принцип неизменности времени и означало бы ”создание” Вселенной. Отметим, что уже философам-материалистам Древней Греции тезис о бесконечности мира представлялся доказанным.

В ньютоновской картине не возникало вопроса ни о структуре времени и пространства, ни о их свойствах. Кроме длительности и протяженности, у них других свойств не было. В этой картине мира такие понятия, как ”сейчас”, ”раньше” и ”позже”, были абсолютно очевидными и понятными. Ход земных часов не изменится, если перенести их на любое космическое тело, а события, случившиеся при одинаковом показании часов где бы то ни было, надо считать синхронными для всей Вселенной. Поэтому можно использовать одни часы, чтобы установить однозначную хронологию. Однако, как только часы отдаляются на все большие расстояния L, возникают трудности из-за того, что скорость света c хоть и велика, но конечна. Действительно, если наблюдать за отдаленными часами, например, в телескоп, то мы заметим, что они отстают на величину L/c. Это отражает тот факт, что “единого мирового потока времени” просто нет.

Специальная теория относительности обнаружила еще один парадокс. При изучении движения со скоростями, сравнимыми со скоростью света, выяснилось, что река времени не так проста, как думали раньше. Эта теория показала, что понятия ”сейчас”, ”позже” и ”раньше” имеют простой смысл только для событий, которые происходят недалеко друг от друга. Когда сравниваемые события происходят далеко, то эти понятия однозначны только в том случае, если сигнал, идущий со скоростью света, успел дойти от места одного события до места, где произошло другое. Если это не так, то соотношение “раньше”-“позже” неоднозначно и зависит от состояния движения наблюдателя. То, что было ”раньше” для одного наблюдателя, может быть ”позже” для другого. Такие события не могут влиять друг на друга, т.е. не могут быть причинно связанными. Это обусловлено тем, что скорость света в пустоте всегда постоянна. Она не зависит от движения наблюдателя и является предельно большой. Ничто в природе не может двигаться быстрее света. Еще более удивительным оказалось то, что течение времени зависит от скорости движения тела, т.е. секунда на движущихся часах становится ”длиннее”, чем на неподвижных. Время течет тем медленнее, чем быстрее по отношению к наблюдателю движется тело. Этот факт надежно измерен и в опытах с элементарными частицами, и в прямых опытах с часами на летящем самолете. Таким образом, свойства времени только казались неизменными. Релятивистская теория установила неразрывную связь времени с пространством. Изменение временных свойств процессов всегда связаны с изменением пространственных свойств.

Дальнейшее развитие понятие времени получило в общей теории относительности, которая показала, что на темп времени влияет поле тяготения. Чем сильнее гравитация, тем медленнее течет время по сравнению с его течением вдали от тяготеющих тел, т.е. время зависит от свойств движущейся материи. Наблюдаемое извне время на планете течет тем медленнее, чем она массивнее и плотнее. Этот эффект имеет абсолютный характер. Таким образом, время является локально неоднородным и на его ход можно оказывать влияние. Правда, наблюдаемый эффект обычно мал.

Теперь уже река времени скорее представляется текущей не везде одинаково и величаво: быстро в сужениях, медленно на плесах, разбитой на множество рукавов и ручейков с разной скоростью течения в зависимости от условий.

Теория относительности подтвердила философскую идею, согласно которой время лишено самостоятельной физической реальности и вместе с пространством является лишь необходимым средством наблюдения и познания окружающего мира разумными существами. Таким образом, концепция абсолютного времени как единого потока, равномерно текущего независимо от наблюдателя, была разрушена. Абсолютного времени как оторванной от материи сущности нет, но есть абсолютная скорость любого изменения и даже абсолютный возраст мироздания, рассчитанный учеными. Скорость света сохраняет свое постоянство даже в неоднородном времени.

Дальнейшие изменения в представлениях о времени и пространстве произошли в связи с открытием черных дыр и теории расширения Вселенной. Оказалось, что в сингулярности пространство и время перестают существовать в обычном смысле этого слова. Сингулярность - это место, где разрушается классическая концепция пространства и времени, так же как и все известные законы физики. В сингулярности свойства времени кардинально изменяются и приобретают квантовые черты. Как образно написал один из известнейших физиков современности С. Хокинг: “...непрерывный поток времени состоит из ненаблюдаемого истинно дискретного процесса, подобно рассматриваемому издали непрерывному потоку песка в песочных часах, хотя этот поток состоит из дискретных песчинок - река времени дробится здесь на неделимые капли...” (Хокинг, 1990).

Но нельзя считать, что сингулярность - это граница времени, за которой существование материи происходит уже вне времени. Просто здесь пространственно-временные формы существования материи приобретают совсем необычный характер, а многие привычные понятия становятся порой бессмысленными. Однако при попытке представить себе, что это такое, мы попадаем в затруднительное положение из-за особенностей нашего мышления и языка. ”Здесь перед нами вырастает психологический барьер, связанный с тем, что мы не знаем, как воспринимать понятия пространства и времени на этом этапе, когда они еще не существовали в нашем традиционном понимании. У меня при этом появляется такое ощущение, как будто я внезапно попал в густой туман, в котором предметы теряют свои привычные очертания” (Б. Ловелл).

О характере законов природы в сингулярности пока только догадываются. Это передний край современной науки, и многое здесь будет еще уточняться. Время и пространство приобретают в сингулярности совсем другие свойства. Они могут быть квантовыми, могут иметь сложное топологическое строение и т.д. Но в настоящее время понять это детально не представляется возможным не только потому, что очень сложно, но и потому, что специалисты сами не очень хорошо знают, что все это может означать, тем самым подчеркивая, что наглядные интуитивные представления о времени и пространстве как неизменной длительности всего сущего правильны лишь в определенных условиях. При переходе к другим условиям должны быть существенно изменены и наши представления о них.

. Поле и вещество, взаимодействие

Сформировавшиеся в рамках электромагнитной картины понятия поля и вещества получили дальнейшее развитие в современной картине мира, где содержание этих понятий существенно углубилось и обогатилось. Вместо двух видов полей, как в электромагнитной картине мира, теперь рассматривается четыре, при этом электромагнитное и слабое взаимодействия удалось описать единой теорией электрослабых взаимодействий. Все четыре поля на корпускулярном языке интерпретируются как фундаментальные бозоны (всего 13 бозонов). Каждый предмет природы является сложным образованием, т.е. имеет структуру (состоит из какихлибо частей). Вещество состоит из молекул, молекулы - из атомов, атомы - из электронов и ядер. Атомные ядра состоят из протонов и нейтронов (нуклонов), которые, в свою очередь, состоят из кварков и антикварков. Последние сами по себе - в свободном состоянии, не существуют и не имеют никаких отдельных частей, как электроны и позитроны. Но по современным представлениям они потенциально могут содержать в себе целые замкнутые миры, имеющие собственную внутреннюю структуру. В конечном счете вещество состоит из фундаментальных фермионов - шести лептонов и шести кварков (не считая антилептонов и антикварков).

В современной картине мира основным материальным объектом является вездесущее квантовое поле, переход его из одного состояния в другое меняет число частиц. Здесь уже нет непроходимой границы между веществом и полем. На уровне элементарных частиц постоянно происходят взаимопревращения поля и вещества.

Согласно современным взглядам взаимодействие любого вида имеет своего физического посредника. Такое представление основано на том, что скорость передачи воздействия ограничена фундаментальным пределом - скоростью света. Поэтому притяжение или отталкивание передается через вакуум. Упрощенную современную модель процесса взаимодействия можно представить следующим образом. Заряд-фермион создает вокруг частицы поле, порождающее присущие ему частицы-бозоны. По своей природе это поле близко к тому состоянию, которое физики приписывают вакууму. Можно сказать, что заряд возмущает вакуум, и это возмущение с затуханием передается на определенное расстояние. Частицы поля являются виртуальными - они существуют очень короткое время и в эксперименте не наблюдаются. Две частицы, оказавшись в радиусе действия своих зарядов, начинают обмениваться виртуальными частицами: одна частица испускает бозон и тут же поглощает идентичный бозон, испущенный другой частицей, с которой она взаимодействует. Обмен бозонами создает эффект притяжения или отталкивания между взаимодействующими частицами. Таким образом, каждой частице, участвующей в одном из фундаментальных взаимодействий, соответствует своя бозонная частица, переносящая это взаимодействие. Каждому фундаментальному взаимодействию присущи свои переносчики-бозоны. Для гравитации - это гравитоны, для электромагнитных взаимодействий - фотоны, сильное взаимодействие обеспечивается глюонами, слабое - тремя тяжелыми бозонами. Эти четыре типа взаимодействий лежат в основе всех других известных форм движения материи. Более того, имеются основания считать, что все фундаментальные взаимодействия не независимы, а могут быть описаны в рамках единой теории, которую называют суперобъединением. Это еще одно доказательство единства и целостности природы.

. Взаимопревращения частиц

Взаимопревращаемость - характерная черта субатомных частиц. Электромагнитной картине мира была присуща стабильность; недаром в ее основе лежат стабильные частицы - электрон, позитрон и фотон. Но стабильные элементарные частицы - это исключение, а правилом является нестабильность. Почти все элементарные частицы нестабильны - они самопроизвольно (спонтанно) распадаются и превращаются в другие частицы. Взаимопревращения происходят и при столкновениях частиц. Для примера покажем возможные превращения при столкновении двух протонов при различных (возрастающих) уровнях энергии:

p + p → p + n + π+, p + p → p +Λ0 + K+, p + p → p +Σ+ + K0, p + p → n +Λ0 + K+ + π+, p + p → p +Θ0 + K0 + K+, p + p → p + p + p +¯p.

Здесь p¯ - антипротон.

Подчеркнем, что при столкновениях в действительности происходит не расщепление частиц, а рождение новых частиц; они рождаются за счет энергии сталкивающихся частиц. При этом возможны не любые превращения частиц. Способы преобразования частиц при столкновениях подчиняются определенным законам, которые могут быть использованы для описания мира субатомных частиц. В мире элементарных частиц действует правило: разрешено все, что не запрещают законы сохранения. Последние играют роль правил запрета, регулирующих взаимопревращения частиц. Прежде всего, это законы сохранения энергии, импульса и электрического заряда. Эти три закона объясняют стабильность электрона. Из закона сохранения энергии и импульса следует, что суммарная масса продуктов распада меньше массы покоя распадающейся частицы. Существует много специфических ”зарядов”, сохранение которых также регулируют взаимопревращения частиц: барионный заряд, четность (пространственная, временная и зарядовая), странность, очарование и др. Некоторые из них не сохраняются при слабых взаимодействиях. Законы сохранения связаны с симметрией, которая, как считают многие физики, является отражением гармонии фундаментальных законов природы. Видимо, не зря еще философы древности рассматривали симметрию как воплощение красоты, гармонии и совершенства. Можно даже сказать, что симметрия в единстве с асимметрией правят миром.

Квантовая теория показала, что вещество постоянно находится в движении, не оставаясь в состоянии покоя ни на мгновение. Это говорит о фундаментальной подвижности материи, ее динамизме. Материя не может существовать без движения и становления. Частицы субатомного мира активны не потому, что они очень быстро движутся, но потому, что они - процессы сами по себе.

Поэтому говорят, что вещество имеет динамическую природу, а составные части атома, субатомные частицы, существуют не в виде самостоятельных единиц, а в виде неотъемлемых компонентов неразрывной сети взаимодействий. Эти взаимодействия питает бесконечный поток энергии, проявляющийся в обменах частицами, динамическом чередовании стадий созидания и разрушения, а также в беспрестанных изменениях энергетических структур. В результате взаимодействий образуются устойчивые единицы, из которых и состоят материальные тела. Эти единицы также ритмически колеблются. Все субатомные частицы имеют релятивистскую природу, и их свойства невозможно понять вне их взаимодействий. Все они неразрывно связаны с окружающим их пространством, и не могут рассматриваться в отрыве от него. С одной стороны, частицы оказывают влияние на пространство, с другой - они являются не самостоятельными частицами, а, скорее, сгустками поля, пронизывающими пространство. Изучение субатомных частиц и их взаимодействий открывает нашему взору не мир хаоса, а в высшей степени упорядоченный мир, несмотря на то, что в этом мире безраздельно властвует ритм, движение и непрестанное изменение.

Динамическая природа мироздания проявляется не только на уровне бесконечно малого, но и при изучении астрономических явлений. Мощные телескопы помогают ученым следить за непрестанным движением вещества в космосе. Вращающиеся облака газообразного водорода, сгущаясь, уплотняются и постепенно превращаются в звезды. При этом температура их сильно возрастает, они начинают светиться. Со временем водородное топливо выгорает, звезды увеличиваются в размерах, расширяются, затем сжимаются и заканчивают свою жизнь гравитационным коллапсом, при этом некоторые из них превращаются в черные дыры. Все эти процессы происходят в различных уголках расширяющейся Вселенной. Таким образом, вся Вселенная вовлечена в бесконечный процесс движения или, говоря словами восточных философов, в постоянный космический танец энергии.

. Вероятность в современной картине мира

Механическая и электромагнитные картины мира построены на динамических закономерностях. Вероятность там допускается лишь в связи с неполнотой наших знаний, подразумевая, что с ростом знаний и уточнением деталей вероятностные законы уступят место динамическим. В современной картине мира ситуация принципиально иная - здесь фундаментальными являются вероятностные закономерности, несводимые к динамическим. Нельзя точно предсказать, какое превращение частиц произойдет, можно говорить только о вероятности того или иного превращения; нельзя предсказать момент распада частицы и т.д. Но это не означает, что атомные явления протекают совершенно произвольным образом. Поведение любой части целого обусловлено ее многочисленными связями с последним, а поскольку об этих связях мы, как правило, не знаем, нам приходится от классических понятий причинности перейти к представлениям о статистической причинности.

Законы атомной физики имеют природу статистических закономерностей, согласно которым вероятность атомных явлений определяется динамикой всей системы. Если в классической физике свойства и поведение целого определяются свойствами и поведением его отдельных частей, то в квантовой физике все обстоит совершенно иначе: поведение частей целого определяется самим целым. В современной картине мира случайность стала принципиально важным атрибутом; она выступает здесь в диалектической взаимосвязи с необходимостью, что и предопределяет фундаментальность вероятностных закономерностей. Случайность и неопределенность лежат в основе природы вещей, поэтому язык вероятности стал нормой при описании физических законов. Господство вероятности в современной картине мира подчеркивает ее диалектичность, а стохастичность и неопределенность являются важными атрибутами современного рационализма.

. Физический вакуум

Фундаментальные бозоны представляют возбуждения силовых полей. Когда все поля находятся в основном (невозбужденном) состоянии, то говорят, что это и есть физический вакуум. В прежних картинах мира вакуум рассматривался просто как пустота. В современной - это не пустота в обычном смысле, а основное состояние физических полей, вакуум ”заполнен” виртуальными частицами. Понятие ”виртуальная частица” тесно связано с соотношением неопределенностей для энергии и времени. Она принципиально отличается от обычной частицы, которую можно наблюдать в эксперименте.

Виртуальная частица существует столь малое время ∆t, что определяемая соотношением неопределенностей энергия ∆E = ~/∆t оказывается достаточной для ”рождения” массы, равной массе виртуальной частицы. Эти частицы появляются сами по себе и тут же исчезают, считается, что они не требуют затрат энергии. По замечанию одного из физиков, виртуальная частица ведет себя как кассир-мошенник, регулярно успевающий вернуть взятые из кассы деньги, прежде чем это заметят. В физике мы не так редко встречаемся с вполне реально существующим, но до случая себя не проявляющим. Например, атом в основном состоянии не испускает излучения. Значит, если на него не действовать, он останется ненаблюдаемым. Говорят, что виртуальные частицы ненаблюдаемы. Но они ненаблюдаемы до тех пор, пока на них определенным образом не подействовать. Когда же они сталкиваются с реальными частицами, имеющие соответствующую энергию, то происходит рождение реальных частиц, т.е. виртуальные частицы превращаются в реальные.

Физический вакуум представляет собой пространство, в котором рождаются и уничтожаются виртуальные частицы. В этом смысле физический вакуум обладает определенной энергией, соответствующей энергии основного состояния, которая постоянно перераспределяется между виртуальными частицами. Но воспользоваться энергией вакуума мы не можем, потому что это самое низкое энергетическое состояние полей, соответствующее самой минимальной энергии (меньше быть не может). При наличии внешнего источника энергии можно реализовать возбужденные состояния полей - тогда будут наблюдаться обычные частицы. С этой точки зрения обычный электрон теперь представляется как бы окруженным ”облаком” или ”шубой” виртуальных фотонов. Обычный фотон движется ”в сопровождении” виртуальных электрон-позитронных пар. Рассеяние электрона на электроне можно рассматривать как обмен виртуальными фотонами. Точно так же каждый нуклон окружен облаками мезонов, которые существуют очень недолго.

При некоторых обстоятельствах виртуальные мезоны могут превратиться в реальные нуклоны. Виртуальные частицы спонтанно возникают из пустоты и снова в ней растворяются, даже если поблизости нет других частиц, которые могут участвовать в сильных взаимодействиях. Это также свидетельствует о неразрывном единстве вещества и пустого пространства. Вакуум содержит бесчисленное множество беспорядочно возникающих и исчезающих частиц. Связь между виртуальными частицами и вакуумом имеет динамическую природу; образно говоря, вакуум есть ”живая пустота” в полном смысле этого слова, в его пульсациях берут начало бесконечные ритмы рождений и разрушений.

Как показывают эксперименты, виртуальные частицы в вакууме вполне реально воздействуют на реальные объекты, например, на элементарные частицы. Физики знают, что отдельные виртуальные частицы вакуума невозможно обнаружить, но их суммарное воздействие на обычные частицы опыт замечает. Все это соответствует принципу наблюдаемости.

Многие физики считают открытие динамической сущности вакуума одним из важнейших достижений современной физики. Из пустого вместилища всех физических явлений пустота превратилась в динамическую сущность огромной важности. Физический вакуум принимает непосредственное участие в формировании качественных и количественных свойств физических объектов. Такие свойства, как спин, масса, заряд, проявляются именно при взаимодействии с вакуумом. Поэтому любой физический объект в настоящее время рассматривается как момент, элемент космической эволюции Вселенной, а вакуум считается мировым материальным фоном. Современная физика демонстрирует, что на уровне микромира материальные тела не имеют собственной сущности, они являются неразрывно связанными со своим окружением: их свойства могут восприниматься только в терминах их воздействий с окружающим миром. Таким образом, неразрывное единство мироздания проявляется не только в мире бесконечно малого, но и в мире сверхбольшого - этот факт получает признание в современной физике и космологии.

В отличие от предыдущих картин мира, современная естественно-научная картина рассматривает мир на существенно более глубоком, более фундаментальном уровне. Атомистическая концепция присутствовала во всех прежних картинах мира, но только в XX в. удалось создать теорию атома, позволившую объяснить периодическую систему элементов, образование химической связи и т.д. Современная картина объяснила мир микроявлений, исследовала необычные свойства микрообъектов и радикальным образом воздействовала на наши представления, которые вырабатывались веками, заставила кардинально пересмотреть их и решительно порвать с некоторыми традиционными взглядами и подходами.

Все прежние картины мира страдали метафизичностью; они исходили из четкого разграничения всех исследуемых сущностей, стабильности, статичности. Сначала преувеличивалась роль механических движений, все сводилось к законам механики, затем - к электромагнетизму. Современная картина мира порвала с такой ориентацией. В ее основе лежат взаимопревращения, игра случая, многообразие явлений. Основанная на вероятностных законах, современная картина мира диалектична; она значительно точнее, чем прежние картины, отражает диалектически противоречивую действительность.

Раньше вещество, поле и вакуум рассматривали раздельно. В современной картине мира вещество, как и поле, состоит из элементарных частиц, которые взаимодействуют друг с другом, взаимопревращаются. Вакуум ”превратился” в одну из разновидностей материи и ”состоит” из виртуальных частиц, взаимодействующих друг с другом и с обычными частицами. Таким образом, исчезает граница между веществом, полем и вакуумом. На фундаментальном уровне все грани в природе действительно оказываются условными.

В современной картине мира физика тесно объединяется с другими естественными науками - она фактически сливается с химией и выступает в тесном союзе с биологией; недаром эту картину мира называют естественно-научной. Для нее характерно стирание всех и всяческих граней. Здесь пространство и время выступают как единый пространственно-временной континуум, масса и энергия взаимосвязаны, волновое и корпускулярное движение объединяются и образуют единый объект, вещество и поле взаимопревращаются. Исчезают границы между традиционными разделами внутри самой физики, а, казалось бы, такие далекие дисциплины, как физика элементарных частиц и астрофизика, оказываются настолько связанными, что многие говорят о революции в космологии.

Мир, в котором мы живем, состоит из разномасштабных открытых систем, развитие которых подчиняется общим закономерностям. При этом он имеет свою историю, в общих чертах известную современной науке, начиная от Большого взрыва. Науке известны не только “даты”, но и во многом сами механизмы эволюции Вселенной от Большого взрыва до наших дней. Краткая хронология

20 млрд лет назад Большой взрыв

3 минуты спустя Образование вещественной основы Вселенной

Через несколько сотен лет Появление атомов (легких элементов)

19-17 млрд лет назад Образование разномасштабных структур (галактик)

15 млрд лет назад Появление звезд первого поколения, образование тяжелых атомов

5 млрд лет назад Рождение Солнца

4,6 млрд лет назад Образование Земли

3,8 млрд лет назад Зарождение жизни

450 млн лет назад Появление растений

150 млн лет назад Появление млекопитающих

2 млн лет назад Начало антропогенеза

наиболее важных событий приведена в таблице 9.1 (взята из книги ). Здесь мы обратили внимание в первую очередь на данные физики и космологии, потому что именно эти фундаментальные науки формируют общие контуры научной картины мира.

Смена естественно-научной традиции

Разум есть способность видеть связь общего с частным.

Достижения естествознания, и прежде всего физики, в свое время убедили человечество, что окружающий нас мир можно объяснить и предсказать его развитие, абстрагируясь от Бога и человека. Лапласовский детерминизм сделал человека сторонним наблюдателем, для него было создано отдельное - гуманитарное знание. В результате все прежние картины мира создавались как бы извне: исследователь изучал окружающий мир отстраненно, вне связи с собой, в полной уверенности, что можно исследовать явления, не нарушая их течения. Н. Моисеев пишет: ”В науке прошлого с ее стремлением к прозрачным и ясным схемам, с ее глубокой убежденностью, что мир в своей основе достаточно прост, человек превратился в стороннего наблюдателя, изучающего мир ”извне”. Возникло странное противоречие - человек все же существует, но существует как бы сам по себе. А космос, природа - тоже сами по себе. И объединились они, если это можно назвать объединением, только на основе религиозных воззрений”.

(Моисеев, 1988.)

В процессе создания современной картины мира эта традиция решительно ломается. Она сменяется принципиально иным подходом к изучению природы; теперь научная картина мира создается уже не ”извне”, а ”изнутри”, сам исследователь становится неотъемлемой частью создаваемой им картины. Об этом хорошо сказал В. Гейзенберг: ”В поле зрения современной науки прежде всего - сеть взаимоотношений человека с природой, те связи, в силу которых мы, телесные существа, представляем собой часть природы, зависящую от других ее частей, и в силу которых сама природа оказывается предметом нашей мысли и действия только вместе с человеком. Наука уже не занимает позиции только наблюдателя природы, она осознает себя как частный вид взаимодействия человека с природой. Научный метод, сводившийся к изоляции, аналитическому объединению и упорядочению, натолкнулся на свои границы. Оказалось, что его действие изменяет и преобразует предмет познания, вследствие чего сам метод уже не может быть отстранен от предмета. В результате, естественно-научная картина мира, по-существу, перестает быть только естественнонаучной.” (Гейзенберг, 1987.)

Таким образом, познание природы предполагает присутствие человека, и надо ясно осознавать, что мы, как выразился Н. Бор, не только зрители спектакля, но одновременно и действующие лица драмы. Необходимость отказа от существующей естественно-научной традиции, когда человек отстранился от природы и мысленно бесконечно детально готов был ее препарировать, хорошо осознавал уже 200 лет назад Гете:

Во всем подслушать жизнь стремясь,

Спешат явленья обездушить,

Забыв, что если в них нарушить

Одушевляющую связь,

То больше нечего и слушать. (”Фауст”.)

Особенно ярко новый подход к исследованию природы продемонстрировал В. Вернадский, создавший учение о ноосфере - сфере Разума - биосфере, развитие которой целенаправленно управляется человеком. В. Вернадский рассматривал человека как важнейшее звено в эволюции природы, который не только подвергается влиянию природных процессов, но и, будучи носителем разума, способен целенаправленно воздействовать на эти процессы. Как отмечает Н. Моисеев, ”учение о ноосфере оказалось как раз тем звеном, которое позволило связать картину, рожденную современной физикой, с общей панорамой развития жизни - не только биологической эволюции, но и общественного прогресса... Очень многое нам еще не ясно и скрыто от нашего взора. Тем не менее сейчас перед нами развертывается грандиозная гипотетическая картина процесса самоорганизации материи от Большого взрыва до современного этапа, когда материя познает себя, когда ей становится присущ разум, способный обеспечить ее целенаправленное развитие”. (Моисеев, 1988.)

Современный рационализм

В XX в. физика возвысилась до уровня науки об основах бытия и его становления в живой и неживой природе. Но это не означает, что все формы существования материи сводятся к физическим основаниям, речь идет о принципах и подходах к моделированию и освоению целостного мира человеком, который и сам является его частью, и осознает себя таковым. Мы уже отмечали, что в основе всякого научного знания лежит рациональное мышление. Развитие естествознания привело к новому пониманию научной рациональности. Согласно Н. Моисееву, различают: классический рационализм, т.е. классическое мышление,- когда человек ”задает” вопросы Природе, а Природа отвечает, как она устроена; неклассический (квантово-физический) или современный рационализм - человек задает Природе вопросы, но ответы уже зависят не только от того, как она устроена, но и от способа постановки этих вопросов (относительность к средствам наблюдения). Пробивает дорогу третий тип рациональности - постнеклассическое или эволюционно-синергетическое мышление, когда ответы зависят и от того, как был задан вопрос, и от того, как устроена Природа, и какова ее предыстория. Сама же постановка вопроса человеком зависит от уровня его развития, его культурных ценностей, которые, по сути, определяются всей историей цивилизации.

. Классический рационализм

Рационализм есть система взглядов и суждений об окружающем мире, которая основывается на выводах и логических заключениях разума. При этом не исключается влияние эмоций, интуитивных прозрений и т.п. Но всегда можно отличить рациональный образ мышления, рациональные суждения от иррациональных. Истоки рационализма как образа мышления лежат в глубокой древности. Весь строй античного мышления был рационалистичен. Рождение современного научного метода связывают с революцией Коперника-Галилея-Ньютона. В этот период подверглись коренному слому взгляды, утвердившиеся со времен античности, сформировалось понятие современной науки. Именно отсюда родился научный метод формирования утверждений о природе взаимосвязей в окружающем мире, который опирается на цепочки логических заключений и эмпирический материал. В результате сформировался образ мышления, который теперь называют классическим рационализмом. В его рамках утвердился не только научный метод, но и целостное миропонимание - некая целостная картина мироздания и процессов, которые в нем происходят. В ее основе лежало представление о Вселенной, возникшее после революции Коперника-Галилея-Ньютона. После сложной схемы Птолемея Вселенная предстала в своей удивительной простоте, законы Ньютона оказались простыми и понятными. Новые воззрения объяснили, почему все происходит так, а не иначе. Но со временем эта картина усложнилась.

В XIX в. мир уже предстал перед людьми как некий сложный механизм, который однажды был когда-то и кем-то запущен и который действует по вполне определенным, раз и навсегда начертанным и познаваемым законам. В результате возникла вера в неограниченность знаний, которая была основана на успехах науки. Но в этой картине самому человеку места не оказалось. В ней он был лишь только наблюдатель, не способный влиять на всегда определенный ход событий, но способный регистрировать происходящие события, устанавливать связи между явлениями, другими словами, познавать законы, управляющие этим механизмом и, таким образом, предугадывать возникновение тех или иных событий, оставаясь посторонним наблюдателем всего, что происходит во Вселенной. Таким образом, человек эпохи Просвещения - всего лишь посторонний наблюдатель того, что происходит во Вселенной. Для сравнения вспомним, что в античной Греции человек приравнивался к богам, он был в силах вмешиваться в происходящие вокруг него события.

Но человек - не просто наблюдатель, он способен познавать Истину и ставить ее на службу самому себе, предсказывая ход событий. Именно в рамках рационализма возникло представление об Абсолютной истине, т.е. о том, что есть на самом деле - что от человека не зависит. Убежденность в существовании Абсолютной истины позволила Ф. Бэкону сформулировать знаменитый тезис о покорении Природы: знания человеку нужны для того, чтобы ставить себе на службу силы Природы. Изменять законы Природы человек не в состоянии, но заставить их служить человечеству он может. Таким образом, у науки появилась цель - умножать силы человеческие. Природа теперь представляется неисчерпаемым резервуаром, предназначенным для того, чтобы удовлетворять его безгранично растущие потребности. Наука становится средством покорения Природы, источником человеческой активности. Такая парадигма в конечном счете и привела человека на край пропасти.

Классический рационализм установил возможности познания законов Природы и их использования для утверждения могущества человека. Одновременно появились представления о запретах. Оказалось, что существуют и различные ограничения, непреодолимые принципиально. Такими ограничениями является, прежде всего, закон сохранения энергии, который носит абсолютный характер. Энергия может переходить из одной формы в другую, но не может возникать из ничего и не может исчезать. Отсюда вытекает невозможность создания вечного двигателя - это не технические трудности, а запрет Природы. Другой пример - второй закон термодинамики (закон о неубывании энтропии). В рамках классического рационализма человек осознает не только свое могущество, но и собственную ограниченность. Классический рационализм - детище европейской цивилизации, его корни уходят в античный мир. Это величайший прорыв человечества, открывший горизонты современной науки. Рационализм - есть некий образ мышления, чье влияние испытали на себе и философия, и религия.

В рамках рационализма сложился один из важнейших подходов к изучению сложных явлений и систем - редукционизм, суть которого состоит в том, что, зная свойства отдельных элементов, составляющих систему, и особенности их взаимодействия, можно предсказать свойства всей системы. Другими словами, свойства системы выводятся из свойств элементов и структуры взаимодействия и являются их следствием. Таким образом, изучение свойств системы сводят к изучению взаимодействия отдельных ее элементов. Это и составляет основу редукционизма. При таком подходе решено множество важнейших проблем естествознания, он часто дает хорошие результаты. Когда говорят слово “редукционизм”, то имеют в виду также и попытки заменить исследование сложного реального явления некоторой сильно упрощенной моделью, его наглядной интерпретацией. Построение такой модели - достаточно простой для изучения ее свойств и одновременно отражающей определенные и важные свойства для исследования реальности, всегда является искусством, и каких-либо общих рецептов наука предложить не может. Идеи редукционизма оказались весьма плодотворными не только в механике и физике, но и в химии, биологии и других областях естествознания. Классический рационализм и идеи редукционизма, сводящие изучение сложных систем к анализу отдельных их составляющих и структуры их взаимодействий, представляют важный этап в истории не только науки, но и всей цивилизации. Именно им в первую очередь обязано современное естествознание своими основными успехами. Они были необходимым и неизбежным этапом развития естествознания и истории мысли, но, будучи плодотворными в определенных сферах, эти идеи оказались не универсальными.

Несмотря на успехи рационализма и связанное с ним бурное развитие естественных наук, рационализм как образ мышления и основа миропонимания не превратился в некую универсальную веру. Дело в том, что в любом научном анализе присутствуют элементы чувственного начала, интуиции исследователя и далеко не всегда чувственное переводится в логическое, так как при этом теряется часть информации. Наблюдение за природой и успехи естествознания постоянно стимулировали рационалистическое мышление, которое, в свою очередь, способствовало развитию естествознания. Сама реальность (т.е. воспринимаемый человеком окружающий мир) порождала рациональные схемы. Они рождали методы и формировали методологию, которая и становилась инструментом, позволявшим рисовать картину мира.

Разделение духа и материи - наиболее слабое место в концепции классического рационализма. Кроме этого, он привел к тому, что в сознании ученых глубоко укоренилась убежденность в том, что окружающий мир прост: он прост потому, что такова реальность, а любая сложность от нашего неумения связать наблюдаемое в простую схему. Именно эта простота позволяла строить рациональные схемы, получать практически важные следствия, объяснять происходящее, строить машины, облегчать жизнь людей и т.д. В основе простоты реальности, которую изучало естествознание, лежали такие, казалось, ”очевидности”, как представления об универсальности времени и пространства (время всюду и всегда течет одинаково, пространство однородно) и т.п. Не всегда эти представления могли быть объяснены, но они всегда казались простыми и понятными, как говорят, само собой разумеющимися и не нуждающимися в обсуждении. Ученые были убеждены, что это есть аксиомы, раз и навсегда определенные, потому что в реальности происходит так, а не иначе. Классическому рационализму была присуща парадигма абсолютного знания, которое утверждалось всей эпохой Просвещения.

. Современный рационализм

В ХХ в. от этой простоты, от того, что казалось само собой разумеющимся и понятным, пришлось отказаться и принять, что мир устроен гораздо сложнее, что все может быть совсем иначе, чем привыкли думать ученые, опираясь на реальность окружающего, что классические представления - всего лишь частные случаи того, что может быть на самом деле.

Существенный вклад в это внесли и русские ученые. Основатель русской школы физиологии и психиатрии И. Сеченов постоянно подчеркивал, что человека можно познать только в единстве его плоти, души и Природы, которая его окружает. Постепенно в сознании научного сообщества утверждалось представление о единстве окружающего мира, о включенности человека в Природу, о том, что человек и Природа представляют собой нерасторжимое единство. Человека нельзя мыслить только наблюдателем - он сам действующий субъект системы. Такое мировосприятие русской философской мысли называют русским космизмом.

Одним из первых, кто способствовал разрушению естественной простоты окружающего мира, был Н. Лобаческий. Он открыл, что кроме геометрии Евклида могут существовать и другие непротиворечивые и логически стройные геометрии - неевклидовы геометрии. Это открытие означало, что ответ на вопрос, какова геометрия реального мира, вовсе не прост, и что она может быть отличной от евклидовой. На этот вопрос должна ответить экспериментальная физика.

В конце XIX в. было разрушено еще одно из основополагающих представлений классического рационализма - закон сложения скоростей. Также было показано, что скорость света не зависит от того, направлен световой сигнал вдоль скорости движения Земли или против (эксперименты Майкельсона-Морли). Чтобы это както интерпретировать, пришлось признать как аксиому существование предельной скорости распространения любого сигнала. В начале XX в. рухнул еще целый ряд опор классического рационализма, среди которых особое значение имело изменение представления об одновременности. Все это привело к окончательному крушению обыденности и очевидности.

Но это не означает крушение рационализма. Рационализм перешел в новую форму, которую называют теперь неклассическим или современным рационализмом. Он разрушил кажущуюся простоту окружающего мира, привел к крушению обыденности и очевидности. В результате прекрасная в своей простоте и логичности картина мира теряет свою логичность и, главное, - наглядность. Очевидное перестает быть не только просто понятным, а иногда и просто неверным: очевидное становится невероятным. Научные революции ХХ в. привели к тому, что человек уже готов к встрече с новыми сложностями, новыми невероятностями, еще более не соответствующими реальности и противоречащими обычному здравому смыслу. Но рационализм остается рационализмом, так как в основе картин мира, создаваемых человеком, остаются схемы, созданные его разумом на основе эмпирических данных. Они остаются рациональной или логически строгой интерпретацией опытных данных. Только современный рационализм приобретает более раскрепощенный характер. Запретов на то, что этого не может быть, становится меньше. Но зато исследователю чаще приходится задумываться над смыслом тех понятий, которые до сих пор казались очевидными.

Новое понимание места человека в Природе начало формироваться с 20-х годов ХХ в. с появлением квантовой механики. Она наглядно продемонстрировала то, что Э. Кант и И. Сеченов давно подозревали, а именно принципиальную неразделимость объекта исследования и изучающего этот объект субъекта. Она объяснила и показала на конкретных примерах, что опора на гипотезу о возможности разделения субъекта и объекта, которая казалась очевидной, никаких знаний не несет. Оказалось, что мы, люди, тоже являемся не просто зрителями, но и участниками мирового эволюционного процесса.

Научное мышление очень консервативно, и утверждение новых взглядов, формирование нового отношения к научным знаниям, представлениям об истине и новой картине мира проходили в научном мире медленно и непросто. Однако при этом старое полностью не отбрасывается, не перечеркивается, ценности классического рационализма и сейчас сохраняют свое значение для человечества. Поэтому современный рационализм - это новый синтез обретенных знаний или новых эмпирических обобщений, это попытка расширить традиционное понимание и включить схемы классического рационализма в качестве удобных интерпретаций, годных и полезных, но только в определенных и весьма ограниченных рамках (годных для решения почти всей повседневной практики). Тем не менее это расширение абсолютно фундаментально. Оно заставляет видеть мир и человека в нем в совершенно ином свете. К нему надо привыкнуть, и это требует немалых усилий.

Таким образом, первоначальная система взглядов на устройство окружающего мира постепенно усложнялась, исчезало первоначальное представление о простоте картины мира, его структуре, геометрии, представлениях, которые возникли в эпоху Просвещения. Но происходило не только усложнение: многое из того, что раньше представлялось очевидным и обыденным, оказалось на самом деле просто неверным. Осознать это было наиболее трудным. Исчезло разграничение между материей и энергией, между материей и пространством. Они оказались связанными с характером движения.

Не надо забывать, что все отдельные представления - это части единого неразрывного целого, а наши определения их являются крайне условными. А отделение человека-наблюдателя от объекта исследования вовсе не универсально, оно тоже условно. Это всего лишь удобный прием, хорошо работающий в определенных условиях, а не универсальный метод познания. Исследователь начинает привыкать, что в природе все может происходить самым невероятным, алогичным образом, потому что в действительности все между собой каким-то образом связано. Не всегда понятно как, но связано. И человек тоже погружен в эти связи. В основе современного рационализма лежит утверждение (или постулат системности, согласно Н.Моисееву): Вселенная, Мир представляют собой некую единую систему (Универсум), все элементы явления которой так или иначе связаны между собой. Человек выступает неотделимой частью Универсума. Это утверждение не противоречит нашему опыту и нашим знаниям и является эмпирическим обобщением.

Современный рационализм качественно отличается от классического рационализма XVIII в. не только тем, что вместо классических представлений Евклида и Ньютона пришло гораздо более сложное видение мира, в котором классические представления являются приближенным описанием очень частных случаев, относящихся преимущественно к макромиру. Основное отличие состоит в понимании принципиального отсутствия внешнего Абсолютного наблюдателя, которому постепенно открывается Абсолютная Истина, равно как отсутствие самой Абсолютной Истины. С точки зрения современного рационализма исследователь и объект связаны нерасторжимыми узами. Это экспериментально доказано в физике и естествознании в целом. Но при этом рационализм продолжает оставаться рационализмом, ибо логика была и остается единственным средством построения умозаключений.


1. Введение
2. Особенности научной картины мира
3. Основные принципы построения научной картины мира
4. Общие контуры современной научной картины мира
5. Заключение
6. Список литературы

Введение

Познание единичных вещей и процессов невозможно без одновременного познания всеобщего, а последнее в свою очередь познается только через первое. Сегодня это должно быть ясно каждому образованному уму. Точно также и целое постижимо лишь в органическом единстве с его частями, а часть может быть понята лишь в рамках целого. И любой открытый нами "частный" закон - если он действительно закон, а не эмпирическое правило - есть конкретное проявление всеобщности. Нет такой науки, предметом которой было бы исключительно всеобщее без познания единичного, как невозможна и наука, ограничивающая себя лишь познанием особенного.
Всеобщая связь явлений - наиболее общая закономерность существования мира, представляющая собой результат и проявление универсального взаимодействия всех предметов и явлений и воплощающаяся в качестве научного отражения в единстве и взаимосвязи наук. Она выражает внутреннее единство всех элементов структуры и свойств любой целостной системы, а также бесконечное разнообразие отношений данной системы с другими окружающими ее системами или явлениями. Без понимания принципа всеобщей связи не может быть истинного знания. Осознание универсальной идеи единства всего живого со всем мирозданием входит в науку, хотя уже более полувека назад в своих лекциях, читанных в Сорбонне, В.И.Вернадский отмечал, что ни один живой организм в свободном состоянии на Земле не находится, но неразрывно связан с материально–энергетической средой. "В нашем столетии биосфера получает совершенно новое понимание. Она выявляется как планетное явление космического характера".
Естественнонаучное миропонимание (ЕНМП) - система знаний о природе, образующаяся в сознании учащихся в процессе изучения естественнонаучных предметов, и мыслительная деятельность по созданию этой системы.
Понятие "картина мира" является одним из фундаментальных понятий философии и естествознания и выражает общие научные представления об окружающей действительности в их целостности. Понятие "картина мира" отражает мир в целом как единую систему, то есть "связное целое", познание которого предполагает "познание всей природы и истории..." (Маркс К., Энгельс Ф., собр. соч., 2-е изд. том 20, с.630).
Особенности научной картины мира
Научная картина мира – это одна из возможных картин мира, поэтому ей присуще как что-то общее со всеми остальными картинами мира – мифологической, религиозной, философской, - так и нечто особенное, что выделяет именно научную картину мира из многообразия всех остальных образов мира. Как и все остальные картины мира, научная картина мира содержит определенные представления о структуре пространства и времени, объектах и их взаимодействиях, законах и месте человека в мире. Это то общее, что присутствует во всякой картине мира. Главное же, что выделяет именно научную картину мира из всех остальных картин мира, - это конечно же "научность” этой картины мира. Поэтому, чтобы понять особенность научной картины мира, необходимо понять особенность науки как специального вида человеческой деятельности. Уже около века существует в философии особое направление, которое называется "философия и методология науки”. Это направление пытается понять, что же такое наука? Вначале философы думали, что наука принципиально отличается от ненаучных видов знания, и научному знанию принадлежит такой признак, как "критерий демаркации”.Он показывает, что за ним начинается наука, а все, что по другую сторону, - это нечто ненаучное. Разные философы предлагали разные признаки в качестве "критерия демаркации”. Например, одни говорили, что главное в науке – это использование особого метода мышления, который называется "индукция”, т.е. переход от частных фактов к их обобщениям в общих суждениях. Другие говорили, что главное в науке – это использование математики, третьи утверждали, что только наука использует такие суждения, из которых можно вывести следствия и проверить или опровергнуть эти следствия в опыте. Все предлагаемые признаки в той или иной мере оказались принадлежащими и ненаучным видам знания. Тогда философы решили, что наука не резко отличается от ненауки, а постепенно вырастает из ненаучных видов знания, усиливая одни признаки и ослабляя другие. Основным признаком науки является не что-то одно, а целая система свойств, которая в некотором специальном сочетании и пропорциях присуща именно научному знанию, хотя каждый отдельный элемент этой системы можно встретить и далеко за пределами науки. Все те признаки, которые раньше предлагались в качестве "критерия демаркации”, они все понемногу верны, но теперь их следует рассмотреть вместе,как отдельные стороны. Одна из самых больших проблем человеческого мышления – это проблема соединения фактов и идей. Есть, с одной стороны, то, что мы наблюдаем через наши органы чувств – это так называемое "чувственное познание”, и есть мысли, идеи, логика – это область "рационального познания”. Обычно люди либо ограничиваются только чувственным познанием, либо отрываются от фактов и наблюдений и используют оторванные от жизни гипотезы. Первая особенность науки – это соединение чувственного и рационального видов познания. В науке нужно не просто выдумывать гипотезы, а только такие гипотезы, которые можно было бы либо подтвердить, либо опровергнуть на фактах. С другой стороны, и сами факты должны быть объективными, т.е. проверяемыми многими людьми и выражающими некоторые закономерности и теоретические модели. Приближая факты к теории, наука рассматривает факты как следствия теорий ("дедукция”), сближая теорию с фактами, наука использует такие теории, которые получаются на основе обобщения (индукции) фактов. Единство индуктивных и дедуктивных методов в знании повышают научность этого знания, сближая рациональные и чувственные формы познания. Один из признаков научности знания – использование математических методов. Математика – это наука о структурах. Структура – это, например, множество натуральных чисел вместе с операциями и отношениями на нем, множество векторов в трехмерном пространстве. Математика исследует различные структуры и строит теории об этих структурах – вводит понятия и их определения, аксиомы, доказывает теоремы. Теории о структурах строятся с использованием специальных символических языков и строгих логических рассуждений (логических доказательств). Структуры в чистом виде нигде нельзя наблюдать через наши органы чувств, например, нигде нельзя увидеть числа "два” или "три”, мы всегда видим какие-то конкретные два или три предмета, например, два яблока, три дерева, и т.д. В то же время нельзя сказать, что число "два” не имеет никакого отношения к двум яблокам. Например, если мы к числу "два” прибавим число "три”, то получим число "пять” – и все это происходит пока только в рамках чистой математической структуры. Но оказывается, что если к двум яблокам прибавить три яблока, то также получится пять яблок. Таким образом, число яблок подчиняется тем же законам, что и числа вообще, - это законы структуры. Итак, число яблок – это в какой-то мере и просто число, и в этом смысле можно изучать различные числа предметов, изучая число вообще. Математическая структура может реализовывать себя в чувственном мире. Реализация структуры – это уже как бы частный случай структуры, когда элементы структуры даны в виде конкретных наблюдаемых предметов. Но операции, свойства и отношения остаются в этом случае теми же, что и в математической структуре. Так наука открыла, что окружающий нас мир может быть представлен как реализации множества различных математических структур, и следующая особенность науки – исследование окружающего нас мира как реализаций математических структур. Отсюда понятна такая большая важность математики для превращения обычного знания в науку. Настоящая наука немыслима без научного эксперимента, но понять, что такое научный эксперимент не так уж просто. Начнем здесь с примера. Вплоть до открытия Галилеем закона инерции в физике господствовала механика Аристотеля. Великий древнегреческий философ Аристотель полагал, что сила пропорциональна не ускорению, как это позднее предположил Ньютон, а скорости, т.е. F=mv. Например, если лошадь тащит телегу с грузом, то до тех пор пока лошадь прикладывает силу, телега движется, т.е. скорость не равна нулю. Если же лошадь перестанет тянуть телегу, то телега остановится – ее скорость будет равна нулю. Теперь-то мы знаем, что на самом деле здесь присутствует не одна, но две силы – сила, с которой лошадь тянет телегу, и сила трения, но Аристотель думал иначе. Галилей, размышляя над проблемой механического движения, построил такой мысленный эксперимент. Галилей представлял, что будет с телом, которое получило толчок и движется по гладкой поверхности. Получив толчок, тело продолжает некоторое время двигаться и затем останавливается. Если поверхность делать все более и более гладкой, то от одного и того же толчка тело будет проходить все большее расстояние до остановки. И тогда Галилей, представив последовательность таких ситуаций, в которых тело движется по все более гладкой поверхности, переходит к пределу – к случаю такой идеальной ситуации, когда поверхность уже абсолютно гладкая. Доводя тенденцию все далее двигаться после толчка до предела, Галилей теперь утверждает, что на идеально гладкой поверхности тело после толчка уже никогда не остановится. Но после толчка на тело сила не действует, следовательно, тело будет бесконечно долго двигаться, скорость не равна нулю в этом случае, а сила будет равна нулю. Таким образом, сила не пропорциональна скорости, как это считал Аристотель, и возможно бессиловое движение, которое мы сегодня называем равномерным прямолинейным движением. Обобщая этот пример, можно сделать такой вывод. Эксперимент предполагает некоторое преобразование реальной ситуации, и в этом преобразовании реальная ситуация в той или иной степени приближается к некоторому идеальному пределу. Важно, чтобы в эксперименте можно было бы достигать все большей идеализации реальной ситуации, выстраивая как бы предельную последовательность экспериментальных ситуаций, стремящихся к некоторому идеалу-пределу. Эксперимент и играет в научном познании роль своего рода "выделителя” предельных состояний из реальных природных ситуаций. Эти пределы обычно называются "моделями” и являются реализациями тех или иных математических структур. Таким образом, еще одна особенность науки – это использование таких структур, которые получены как пределы экспериментальных ситуаций. Итак, научная картина мира предполагает, что окружающий нас мир состоит из двух начал – формы и материи. Формы – это просто другое название для различных математических структур, составляющих как бы закономерный и логический скелет всех процессов и явлений в мире. Таким образом, в основе всего лежат структурные формы, выражающие себя в числах, операциях и отношениях. Такого рода философия близка к философии "пифагореизма”, названной так по имени великого древнегреческого философа Пифагора, который учил, что в основе всего лежат числовые структуры. Научная картина мира предполагает далее, что структуры-формы облекаются в материю и реализуются таким образом в виде бесконечного разнообразия чувственно воспринимаемых явлений и процессов. Структуры не просто повторяют себя в чувственно-материальном мире, они во многом преобразуются, ослабляются и смешиваются. Поэтому нужен специальный метод, который бы мог позволить увидеть чистые структуры за их материальными реализациями. Это метод эксперимента, метод единства индукции и дедукции, метод математики. Научная картина мира предполагает, что мы можем понять окружающий нас мир лишь в той мере, в какой мы сможем увидеть за ним лежащие в основе формы-структуры. Структуры составляют постигаемую для нашего разума часть мира. Формы-структуры составляют логическую основу не только лежащей вне нашего сознания реальности, но они же являются логическим фундаментом человеческого разума. Структурное единство человеческого разума и мира – это условие познаваемости мира, причем, познаваемости его именно через структуры. Наука – это во многом особый метод познания, своеобразный способ получения структурного знания. Но в науке всегда есть и другая составляющая, которая предполагает ту или иную философию или даже религию. Например, в эпоху Возрождения наука была тесно связана с так называемым "пантеизмом” - представлением о Боге как проникающем собою любую часть мира и совпадающим с бесконечным Космосом. Позднее наука приняла философию материализма и атеизма. Можно поэтому говорить о двух видах принципов научной картины мира: 1)внутренние принципы науки, обеспечивающие научный метод познания как описанный выше метод восстановления структур, лежащих за видимой оболочкой чувственного мира, 2)внешние принципы науки, определяющие соединение науки как метода познания с той или картиной мира. Наука может соединиться с любой картиной мира, лишь бы не были разрушены внутренние принципы науки. С этой точки зрения чистой (т.е. построенной только на основе внутренних принципов) научной картины мира не существует. Во всех тех случаях, когда мы говорим о научной картине мира, всегда существует та или иная картина мира (как система внешних принципов науки), которая согласована с внутренними принципами науки. С этой точки зрения можно говорить о трех научных картинах мира: 1)пантеистической научной картине мира – здесь внутренние принципы науки соединяются с пантеизмом (это картина мира эпохи Возрождения), 2)деистической научной картине мира – здесь внутренние принципы науки соединяются с деизмом ("деизм”, или "учение о двойной истине” - это учение о том, что Бог вмешался в мир только в начале его сотворения, а затем Бог и Мир существуют совершенно независимо друг от друга, поэтому истины религии и науки также не зависят друг от друга. Такая картина мира принималась в эпоху Просвещения), 3)атеистической научной картине мира – здесь внутренние принципы науки соединяются с атеизмом и материализмом (такова современная научная картина мира). В Средние века господствующая религиозная картина мира слишком подавляла существование и развитие внутренних принципов науки, в связи с чем мы не можем назвать средневековую картину мира научной. Но это еще совсем не означает, что невозможность соединения христианской картины мира и научного метода познания в Средние века является окончательным аргументом против возможности согласования внутренних принципов науки и христианства в общем случае. В связи с этим можно было бы представить сбе возможность и четвертого варианта научной картины мира: 4)теистической научной картины мира ("теизм” – это учение о сотворении мира Богом и постоянной зависимости мира от Бога). Развитие современной научной картины мира говорит за то, что постепенно изменяются внешние принципы науки, ослабляется влияние атеизма и материализма в современной научной картине мира. Одним из наиболее весомых аргументов защитников атеистической научной картины мира является принцип объективности. Научное знание – это знание объективное, а объективно то, что не зависит от человеческого сознания. Поэтому научное знание должно предполагать выход за рамки человеческой субъективности, как бы выбрасывание из сферы научного знания всего того, что относится к психологии, сознанию и вообще гуманитарным наукам. Принцип объективности представляется сторонниками атеистической научной картины мира как один из принципов материализма и уже затем в таком виде подается как один из наиболее существенных внутренних принципов науки, как необходимое условие познаваемости структур реальности. Это можно попытаться разъяснить разделением двух принципов объективности – структурного и материалистического. Структурный принцип объективности – это один из внутренних принципов науки, предполагающий построение научного знания на основе именно объективных структур, единых для человека и природы. Материалистический принцип объективности – это внешний принцип науки, ограничивающий область объективных структур только рамками преимущественно неорганических структур, т.е. структур, реализующих себя в материально-чувственном мире на неорганических процессах и явлениях. Более того, развитие современной науки приводит ко все большему сближению естественнонаучного и гуманитарного знания, показывая на практике, что возможно построение научного знания, а следовательно и выполнение принципа объективности, не только в сфере мертвой природы, но и в области гуманитарного знания. Причем, проникновение научных методов исследования в гуманитарные дисциплины достигается в последнее время не за счет редукции к неорганическим структурам, но на основе гуманизации самих методов и средств научного познания. Итак, можно заключить, что научная картина мира всегда состоит из двух видов принципов – внутренних и внешних. То, что объединяет все научные картины мира, - это именно наличие в них внутренних принципов науки, обеспечивающих ее как специфический, структурно-эмпирический метод познания и предполагающий философию материи и формы-структуры. Различие научных картин мира вытекает из возможности принятия разных внешних принципов научного знания, согласующихся с его внутренними принципами. С этой точки зрения мы выделили пантеистическую, деистическую, атеистическую и теистическую научные картины мира. Можно предполагать, что развитие современной научной картины мира постепенно приводит к отходу от внешних принципов атеизма и материализма и возникновению некоторой 5)синтетической научной картины мира, в которой согласование внутренних принципов науки, по-видимому, будет достигаться с внешними принципами, выражающими синтез внешних принципов отдельных (аналитических) научных картин мира.
Основные принципы построения научной картины мира

Ведущими принципами построения современной научной картины мира являются: принцип глобального эволюционизма, принцип самоорганизации (синергетика), принцип системности и историчности.
Глобальный эволюционизм-это признание невозможности существования Вселенной и всех порождаемых ею менее масштабных систем вне развития, эволюции. Эволюционирующий характер Вселенной также свидетельствует о принципиальном единстве мира, каждая составная часть которого есть историческое следствие глобольного эволюционного процесса, начатого Большим взрывом.
Одна из важнейших идей европейской цивилизации - идея развития мира. В своих простейших и неразвитых формах (преформизм, эпигенез, кантовская космогония) она начала проникать в естествознание еще в ХVIII веке. И уже ХIХ век по праву может быть назван веком эволюции. Сначала геология, затем биология и социология стали уделять теоретическому моделированию развивающихся объектов все большее и большее внимание. Но в науках о неорганической природе идея развития пробивала себе дорогу очень сложно. Вплоть до второй половины ХХ века в ней господствовала исходная абстракция закрытой обратимой системы, в которой фактор времени не играет никакой роли. Даже переход от классической ньютоновской физики к неклассической (релятивистской и квантовой) в этом отношении ничего не изменил. Правда, некоторый робкий прорыв в этом направлении был сделан классической термодинамикой, которая ввела понятие энтропии и представление о необратимых процессах, зависящих от времени. Так в науки о неорганической природе была введена "стрела времени”. Но, в конечном счете, и классическая термодинамика изучала лишь закрытые равновесные системы. А на неравновесные процессы смотрели как на возмущения, второстепенные отклонения, которыми следует пренебречь в окончательном описании познаваемого объекта - закрытой равновесной системы. А, с другой стороны, проникновение идеи развития в геологию, биологию, социологию, гуманитарные науки в ХIХ и первой половине ХХ века осуществлялось независимо в каждой из этих отраслей познания. Философский принцип развития мира (природы, общества, человека) общего, стержневого для всего естествознания (а также для всей науки) выражения не имел. В каждой отрасли естествознания он имел свои (независимые от другой отрасли) формы теоретико-методологической конкретизации. И только к концу ХХ века естествознание находит в себе теоретические и методологические средства для создания единой модели универсальной эволюции, выявления общих законов природы, связывающих в единое целое происхождение Вселенной (космогенез), возникновение Солнечной системы и нашей планеты Земля (геогенез), возникновение жизни (биогенез) и, наконец,возникновение человека и общества (антропосоциогенез). Такой моделью является концепция глобального эволюционизма.В концепции глобального эволюционизма Вселенная представляется в качестве развивающегося во времени природного целого. Вся история Вселенной от "Большого взрыва” до возникновения человечества рассматривается в этой концепции как единый процесс, в котором космический, химический, биологический и социальный типы эволюции преемственно и генетически связаны между собой. Космохимия, геохимия, биохимия отражают здесь фундаментальные переходы в эволюции молекулярных систем и неизбежности их превращения в органическую материю.
Принцип самоорганизации(синергетика)-это наблюдаемая способность матарии к самоусложнению и созданию все более упорядоченных структур в ходе эволюции. Механизм перехода материальных систем в более сложное и упорядоченное состояние, по-видимому, сходен для систем всех уровней.
Появление синергетики современном естествознании инициировано, видимо, подготовкой глобального эволюционного синтеза всех естественно-научных дисциплин. Эту тенденцию в немалой степени сдерживало такое обстоятельство, как разительная асимметрия процессов деградации и развития в живой и неживой природе. Для сохранения непротиворечивости общей картины мира необходимо постулировать наличие у материи в целом не только разрушительной, но и созидательной тенденции. Материя способна осуществлять работу и против термодинамического равновесия, самоорганизовываться и самоусложняться.
Постулат о способности материи к саморазвитию в философию был введен достаточно давно. А вот его необходимость в фундаментальных и естественных науках (физике, химии) начали осознавать только сейчас. На этой волне и возникла синергетика - теория самоорганизации. Ее разработка началась несколько десятилетий назад. В настоящее время она развивается по нескольким направлениям: синергетика (Г. Хакен), неравновесная термодинамика (И.Р. Пригожий) и др. Общий смысл развитого ими комплекса идей, называя их синергетическими (термин Г.Хакена).
Главный мировоззренческий сдвиг, произведенный синергетикой, можно выразить следующим образом:
процессы разрушения и созидания, деградации и эволюции во Вселенной равноправны;
процессы созидания (нарастания сложности и упорядоченности) имеют единый алгоритм, независимо от природы систем, в которых они осуществляются.
Под самоорганизацией при этом понимается спонтанный переход открытой неравновесной системы от менее к более сложным и упорядоченным формам организации. Отсюда следует, что объектом синергетики могут быть отнюдь не любые системы, а только те, которые удовлетворяют по меньшей мере двум условиям:
они должны быть открытыми, т.е. обмениваться веществом или энергией с внешней средой;
они должны также быть существенно неравновесными, т.е находиться в
состоянии, далеком от термодинамического равновесия.
Итак, синергетика утверждает, что развитие открытых и сильно неравновесных систем протекает путем нарастающей сложности и упорядоченности. В цикле развития такой системы наблюдаются две фазы:
1. Период плавного эволюционного развития с хорошо предсказуемыми линейными изменениями, подводящими в итоге систему к некоторому неустойчивому критическому состоянию;
2. Выход из критического состояния одномоментно, скачком и переход в новое устойчивое состояние с большей степенью сложности и упорядоченности.
Важная особенность второй фазы заключается в том, что переход системы в новое устойчивое состояние неоднозначен. А отсюда следует, что развитие таких систем имеет принципиально непредсказуемый характер.
Самый популярный и наглядный пример образования структур нарастающей сложности - хорошо изученное в гидродинамике явление, названное ячейками Бенара.
Это хорошо знакомое всем явление с позиций статистической механики невероятно. Ведь оно свидетельствует, что в момент образования ячеек Бенара миллиарды молекул жидкости, как по команде, начинают вести себя скоординированно, согласованно, хотя до этого пребывает в хаотическом движении. (Слово "синергетика", кстати, как раз и означает "совместное действие"). Классические статистические законы здесь явно не работают, это явление иного порядка. Ведь если бы, даже случайно, такая "правильная" и
устойчиво "кооперативная" структура образовалась, что почти невероятно, она тут же бы и распалась. Но она не распадается при соответствующих условиях (приток энергии извне), а, наоборот, устойчив сохраняется. Значит, возникновение структур нарастающей сложности - не случайность, а закономерность.
Поиск аналогичных процессов самоорганизации в других классах открытых неравновесных систем вроде бы обещает быть успешным: механизм действия лазера; рост кристаллов; химические часы (реакция Белоусова-Жаботинского), формирование живого организма, динамика популяций, рыночная экономика - все это примеры самоорганизации систем самой различной природы.
Синергетическая интерпретация такого рода явлений открывает новые возможности и направления их изучения. В обобщенном виде новизну синергетического подхода можно выразить следующими позициями:
Хаос не только разрушителен, но и созидателен, конструктивен; развитие осуществляется через неустойчивость (хаотичность).
Линейный характер эволюции сложных систем, к которому привыкла классическая наука, не правило, а, скорее, исключение; развитие большинства таких систем носит нелинейный характер. А это значит, что для сложных систем всегда существует несколько возможных путей эволюции.
Развитие осуществляется через случайный выбор одной из нескольких разрешенных возможностей дальнейшей эволюции в точке бифуркации.
Следовательно, случайность-не досадное недоразумение, она встроена в механизм эволюции. А ещё это значит, что нынешний путь эволюции системы, возможно, не лучше, чем те, которые были отвергнуты случайным
выбором.
Идеи синергетики носят междисциплинарный характер. Они подводят базу под совершающийся в естествознании глобальный эволюционный синтез. Поэтому в синергетике видят одну из важнейших составляющих современной научной картины мира.
Системность
Системность означает воспроизведение наукой того факта, что Вселенная предстает как наиболее крупная из известных нам систем,состоящая из огромного множества элементов (подсистем) разного уровня сложности и
упорядоченности.
Под системой обычно понимают некое упорядоченное множество взаимосвязанных элементов. Эффект системности обнаруживается в появлении у целостной системы новых свойств, возникающих в результате взаимодействия элементов (атомы водорода и кислорода, например,
объединенные в молекулу воды, радикально меняют свои обычные свойства). Другой важной характеристикой системной организации является иерархичность, субординация - последовательное включение систем нижних уровней в системы более высоких уровней. Системный способ объединения элементов выражает их принципиальное единство: благодаря иерархичному включению систем разных уровней друг в друга каждый элемент любой системы оказывается связан со всеми элементами всех
возможных систем. (Например: человек –биосфера–планета Земля –Солнечная система – Галактика и т. д.) Именно такой принципиально единый характер демонстрирует нам окружающий мир. Таким же образом
организуется соответственно и научная картина мира, и создающее ее естествознание. Все его части ныне теснейшим образом взаимосвязаны – сейчас уже нет практически ни одной "чистой" науки. Все пронизано и
преобразовано физикой и химией.

Историчность

Историчность, а следовательно, принципиальная незавершенность настоящей, да и любой научной картины мира. Та, которая есть сейчас, порождена как предшествующей историей, так и специфическими социокультурными особенностями нашего времени. Развитие общества изменение его ценностных ориентации, осознание важности исследования уникальных природных систем, в которые составной частью включен и сам человек, меняет и стратегию научного поиска, и отношение человека к миру.
Но ведь развивается и Вселенная. Конечно, развитие общества и Вселенной осуществляется в разных темпоритмах. Но их взаимное наложение делает идею создания окончательной, завершенной, абсолютно истинной научной картины мира практически неосуществимой.

Общие контуры современной естественно-научной картины мира

Мир котором мы живем, состоит из разномасштабных открытых систем, развитие которых подчиняется общим закономерностям. При этом он имеет свою долгую историю, в общих чертах известную современной науке. Приведем хронологию наиболее важных событий этой истории:

20 млрд лет назад - Большой взрыв.
3 минуты спустя - образование вещественной основы Вселенной (фотоны, нейтрино и антинейтрино с примесью ядер водорода, гелия и электронов).
Через несколько сотен тысяч лет - появление атомов(легких элементов).
19-17 млрд лет назад – образование разномасштабных структур.
15 млрд лет назад - появление звезд первого поколения, образование атомов тяжелых элементов.
5 млрд лет назад - рождение Солнца.
4,6 млрд лет назад - образование Земли.
3,8 млрд лет назад - зарождение жизни.
450 млн лет назад - появление растений.
150 млн лет назад - появление млекопитающих.
2 млн лет назад - начало антропогенеза.
Мы обращаем внимание в первую очередь на успехи физики и космологии потому, что именно эти фундаментальные науки формируют общие контуры научной картины мира.
Картина мира, рисуемая современным естествознанием, необыкновенно сложна и проста одновременно. Сложна потому, что способна поставить в тупик человека, привыкшего согласующимся со здравым смыслом классическим научным представлениям. Идеи начала времени, корпускулярно-волнового дуализма квантовых объектов, внутренней структуры вакуума, способной рождать виртуальные частицы, и другие подобные новации придают нынешней картине мира немножко "безумный" вид.
Но в то же время эта картина величественно проста, стройна и где-то даже элегантна. Эти качества ей придают в основном уже рассмотренные нами ведущие принципы построения и организации современного научного знания:
системность,
глобальный эволюционизм,
самоорганизация,
историчность.
Данные принципы построения научной картины мира в целом соответствуют фундаментальным закономерностям существования и развития самой Природы.
Эти принципиальные особенности современной естественно-научной картины мира и определяют в главном её общий контур, а также сам способ организации разнообразного научного знания в нечто целое и последовательное.
Заключение

В современном мире научная картина мира вызывает у людей не только восхищение, но и опасения. Часто можно услышать, что наука приносит человеку не только блага, но и величайшие несчастья. Загрязнение атмосферы, катастрофы на атомных станциях, повышение радиоактивного фона в результате испытаний ядерного оружия, «озонная дыра» над планетой, резкое сокращение видов растений и животных-все эти и другие экологические проблемы люди склонны объяснять самим фактором существования науки. Но дело не в науке, а в том, в чьих руках она находится,какие социальные интересы за ней стоят, какие общественные и государственные структуры направляют её развитие.
Нарастание глобальных проблем человечества повышает ответственность ученных за судьбы человечества. Вопрос об исторических судьбах и роли науки в ее отношении к человеку, перспективам его развития никогда так остро не обсуждался, как в настоящее время, в условиях нарастания глобального кризиса цивилизации.
Наука- это социальный институт, он теснейшим образом связан с развитием всего общества. Сложность, противоречивость современной ситуации в том, что наука, причастна к порождению глобальных, экологических проблем цивилизации; и в то же время без науки решение этих проблем в принципе невозможно. Это значит, что роль науки в истории человечества постоянно возрастает.
Я попытались отметить некоторые принципиальные особенности
современной естественно-научной картины мира. Это всего лишь ее общий контур, набросав который можно приступать к более детальному знакомству с конкретными концептуальными новшествами современного естествознания.

Список литературы
1. Концепции современного естествознания. Под ред. Лавриненко В.Н.и Ратникова В.П. М.,2004.
2. Капица С.П. и др. Синергетика и прогнозы будущего. М., 2001.
3. Пахомов Б.Я. Становление современной физической картины мира. М., 1985.
4. Хакен Г. Информация и самоорганизация. Макроскопический подход к сложным системам. - М.,1991.

Научная картина мира (НКМ) включает в себя важнейшие достижения науки, создающие определенное понимание мира и места человека в нем. В нее не входят более частные сведения о свойствах различных природных систем, о деталях самого познавательного процесса.

В отличие от строгих теорий, научная картина мира обладает необходимой наглядностью.

Научная картина мира – это особая форма систематизации знаний, преимущественно качественное их обобщение, мировоззренческий синтез различных научных теорий.

В истории науки научные картины мира не оставались неизменными, а сменяли друг друга, таким образом, можно говорить об эволюции научных картин мира. Наиболее наглядной представляется эволюция физических картин мира : натурфилософской – до XVI – XVII вв., механистической – до второй половины XIX в., термодинамической (в рамках механистической теории) в XIX в, релятивистской и квантово-механической в XX веке. На рисунке схематично представлено развитие и смена научных картин мира в физике.

Физические картины Мира

Существуют общенаучные картины мира и картины мира с точки зрения отдельных наук, например, физическая, биологическая и т.п.

Из истории научных представлений Первобытное знание

Первобытная культура синкретичная – нерасчлененная. В ней тесно переплетаются познавательная, эстетическая, предметно-практическая и другие виды деятельности. Интересна следующая история. В одной центральноавстралийской пустыне заблудилась группа путешественников-европейцев. Ситуация в тех условиях трагическая. Проводник, абориген, успокоил путешественников: «В этой местности я раньше никогда не был, но знаю ее… песню». Следуя словам песни, он вывел путешественников к источнику. Этот пример ярко иллюстрирует единство науки, искусства и повседневного обыденного опыта.

Мифология

В первобытную эпоху отдельные стороны, аспекты мира обобщались не в понятиях, а в чувственно-конкретных, наглядных образах. Совокупность связанных между собой подобных наглядных образов и представляла собой мифологическую картину мира.

Миф есть способ обобщения мира в форме наглядных образов.

Миф несет в себе не только определенное обобщение и понимание мира, но и переживание мира, некоторое мироощущение.

Первобытный миф не только рассказывался, но и воспроизводился ритуальными действиями: плясками, обрядами, жертвоприношениями. Совершая ритуальные действия, человек поддерживал связь с теми силами (существами), которые сотворили мир.

Мифологическое сознание постепенно преобразовывалось рациональными формами. Переход к научному познанию мира требовал появления качественно новых, по сравнению с мифологическими, представлений о мире. В таком немифологическом мире существуют не антропоморфные, а независимые от людей и Богов процессы.

Милетская школа

Естествознание начинается тогда, когда формулируется вопрос: существует ли за многообразием вещей некое единое начало. Возникновение европейской науки принято связывать с Милетской школой. Ее историческая заслуга состояла в постановке первой и важнейшей естественно-научной проблемы – проблемы первоначала. Представители Милетской школы – Фалес, Анаксимандр, Анаксимен – были одновременно и первыми учеными-естествоиспытателями, и первыми философами.

Фалес Милетский вошел в историю науки и как философ, и как математик, который выдвинул идею математического доказательства. Идея математического доказательства – величайшее достижение древнегреческих мыслителей.

Платон

Платон предположил существование двух реальностей, двух миров. Первый мир – это мир множества единичных, изменяющихся, подвижных вещей, материальный мир, который отражается чувствами человека. Второй мир – это мир вечных, общих и неизменных сущностей, мир общих идей, который постигается разумом.

Идея – это то, что видно разумом в вещи. Это некое конструктивное начало, порождающая модель. Это старые мифологические Боги, переведенные на философский язык. Идея – это некоторое общее понятие, некоторое обобщение.

Никто из Богов и героев не пребывал в мире идей. Мир идей первичен по отношению к миру чувственных вещей. Материальный мир производен от идеального.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

НКМ - системное видение мироздания, его основ возникновения, организации и ее структуры, динамики во времени и пространстве. Различают общую (системное знание не только о природе, но и обществе) и естественнонаучную картины мира.
Научная картина мира - широкая панорама знаний о природе и человечестве, включающая в себя наиболее важные теории, гипотезы и факт. Претендует на то, чтобы быть ядром научного мировоззрения. Мировоззрение - система взглядов на мир в целом, сложный сплав традиций, обычаев, норм, установок, знаний и оценок.
Ф-ции НКМ:
1) интегративная: НКМ опирается на достоверные зн. и это не просто сумма или набор фрагментов отдельных дисциплин. Назначение НКМ в обеспечении синтеза новых зн.;
2) системная: построение представления о любой части мира на основе данных, известных на текущий момент, какими бы скромными они ни были;
3) нормативная: НКИ не просто описывает мироздание, но задает системы установок и принципов освоения действительности, влияет на формирование социокультурных и методологических норм н.исследования.
4) парадигмальная. Парадигма - модель (образ) постановки и решения н.проблем. Допарадигм. период - хаотичное накопление фактов. В парадигмальном периоде установлены стандарты н.практики, теоретические постулаты, точная НКМ, соединение теории и метода.
Составляющие: интеллектуальную (охватывается понятием миропонимания) и эмоциональную (через мироощущение и мировосприятие).
Поскольку философия претендует на выражение фундаментальных принципов бытия и мышления, то научное философское мировоззрение правомерно определять как высший, теоретический уровень мировоззрений вообще. Оно представлено стройной, научно обоснованной совокупностью воззрений, дающих представление о закономерностях развивающегося универсума и определяющих жизненные позиции, программы поведения людей. Современной научной картине мира свойственна строгость, достоверность, обоснованность, доказательность. Она представляет мир как совокупность причинно обусловленных событий и процессов, охватываемых закономерностью.
Структура картины мира включает центральное теоретическое ядро, обладающее относительной устойчивостью, фундаментальные допущения, условно принимаемые за неопровержимые, частные теоретические модели, которые постоянно достраиваются. Научная картина мира обладает определенным иммунитетом, направленным на сохранение данного концептуального основания. В ее рамках происходит кумулятивное накопление знания.
Неклассическая картина мира - отсутствие жесткой детерминированности на уровне индивидов сочетается с детерминированностью на уровне системы в целом. Неклассическое сознание постоянно ощущало свою предельную зависимость от социальных обстоятельств и одновременно питало надежды на участие в формировании «созвездия» возможностей.
Постнеклассической картины мира - древовидная ветвящаяся графика. Развитие может пойти в одном из нескольких направлений, что чаще всего определяется каким-нибудь незначительным фактором.

Исторические формы научной картины мира.

1. Классическая научная картина мира (XVI-XVIIвв – к.ХIХв), основана на открытиях

Кеплера, Коперника, Галилея, но главным образом, на принципах механики Ньютона:

Основные положения:

Мир находится в состоянии линейного, прогрессивно направленного развития с жѐстко

предопределѐнной детерминацией; случай несущественен;

Все состояния мира, в том числе и будущее, могут быть просчитаны и предсказаны;

Естественно-научная база – ньютонова Вселенная с еѐ субстанциальными (независимыми

субстанциями, имеющими абсолютные, постоянные, неизменные характеристики) про-

странством и временем в котором помещены материальные объекты (звёзды и т.д.), нахо-

дящиеся в состоянии равномерного движения.

2. Неклассическая научная картина мира (ХХв, Эйнштейн):

Основные положения:

Началось всѐ с термодинамики, утверждающей, что жидкости и газы не есть чисто меха-

нические системы – случайные процессы являются частью их сущности;

Пространство и время на абсолютны, а относительны; их конкретные характеристики

меняются в зависимости от массы материальных объектов и скорости их движения (чем

ближе к скорости света, тем сильнее изменение пространственных и временных парамет-

ров объекта;

Развитие мира может быть представлено в виде магистральной линии, омываемой сину-

соидой, олицетворяющей роль случая;

Детерминация в виде статистической закономерности: система развивается направленно,

но еѐ состояние в каждый данный момент не детерминировано.

3. Постнеклассическая картина мира (конец ХХ в., на основе синергетики):

Основные положения:

Развитие мира может быть представлено в виде ветвящегося дерева;

Отсюда вытекает положение о том, что будущее принципиально непредсказуемо: всегда

есть альтернативы развития, которые часто определяются каким-нибудь случайным, ино-

гда даже незначительным фактором;

Утверждается возможность перескока с одной траектории развития на другую и утраты

системной памяти. В результате прошлое не всегда прямо определяет настоящее, а на-

стоящее – будущее. Отсюда также следует принципиальная непредсказуемость будущего

– возможны лишь более или менее точные прогнозы, основанные на анализе тенденций;

Утверждается, что малым, локальным причинам могут соответствовать глобальные след-

Из всех вышеизложенных положений следует, что неопределённость выступает как ат-

рибут (фундаментальная, основополагающая характеристика) бытия;

Важнейшие понятия современной научной картины мира – порядок и хаос (смотрите об

этом в вопросе о синергетике);

Принцип универсального эволюционизма (основательно обоснован российским академи-

ком Н.Н.Моисеевым. Суть, кратко: любая достаточно сложная система, существующая в

мире – от атома, молекулы, микроорганизма, человека и до Вселенной, есть результат со-

ответствующей эволюции);

Иерархическая структура мира (в неживой природе: поле и вещество – элементарные

частицы – атом – молекула – макротела – звёзды - галактики – метагалактики – вселенная;

в живой природе: клетка – ткани – организм – популяция – биоценоз – биосфера; в обще-

стве – индивид – малые социальные группы – большие социальные группы – человечество в целом).

Научная картина мира

Наименование параметра Значение
Тема статьи: Научная картина мира
Рубрика (тематическая категория) Культура

Наука – специфическая форма духовной деятельности человека, обеспечивающая получение нового знания, вырабатывающая средства воспроизводства и развития познавательного процесса, осуществляющая проверку, систематизацию и распространение его результатов. Современная научная картина мира оказывает огромное влияние на формирование личности. Мировоззренческие образы природы, общества, человеческой деятельности, мышления и т.п. во многом складываются под влиянием представлений научной картины мира, с которыми человек знакомится в процессе обучения математике, естественным и социально-гуманитарным наукам.

Научная картина мира (НКМ) - ϶ᴛᴏ совокупность фундаментальных представлений о законах и структуре мироздания, целостная система взглядов на общие принципы и законы устройства мира.

Этапы развития науки, связанные с перестройкой оснований науки, называются научными революциями. В истории науки можно выделить три научных революции, которые привели к изменению НКМ.

I. Аристотелœевская КМ (VI – IV вв. до н.э.): представление о Земле как центре мироздания (наиболее полно геоцентризм был обоснован Птолемеем). Мир объяснялся умозрительно (так как у древних не было сложных приборов для измерений).

II. Ньютоновская КМ (XVI – XVIII вв): переход от геоцентрической модели мира к гелиоцентрической модели мира. Этот переход был подготовлен исследованиями и открытиями Н.Коперника, Г.Галилея, И.Кеплера, Р.Декарта. Исаак Ньютон подвел итог их исследованиями и сформулировал базовые принципы новой НКМ. Были выделœены объективные количественные характеристики тел (форма, величина, масса, движение), получившие свое выражение в строгих математических закономерностях. Наука стала ориентироваться на эксперимент. Основой для объяснения законов мира стала механика. Эту НКМ можно назвать механистической: убежденность в том, что с помощью простых сил, действующих между неизменными объектами, можно объяснить всœе явления природы.

III. Эйнштейновская КМ (рубеж XIX – XX вв.): ей характерен анти-механицизм: Вселœенная представляет собой нечто неизмеримо более сложное, чем механизм, хотя бы даже грандиозный и совершенный. Сами механические взаимодействия являются следствиями или проявлениями других, более глубоких, фундаментальных взаимодействий (электромагнитных, гравитационных и др.). Основой новой НКМ стали общая и специальная теории относительности и квантовая механика. Данная НКМ отказалась от всякого центризма. Вселœенная безгранична и особого центра у нее нет. Все наши представления и вся НКМ релятивны или относительны.

Современная НКМ - ϶ᴛᴏ результат предшествующего развития науки и глобальной смены научных картин мира. Основные принципы современной НКМ - ϶ᴛᴏ глобальный эволюционизм, антропный принцип, принцип материального единства мира, принцип детерминизма, системности, структурности, развития (диалектики), самоорганизации и другие.

Научная картина мира - понятие и виды. Классификация и особенности категории "Научная картина мира" 2017, 2018.

  • - И современная научная картина мира

    Одйо из центральных мест в современной философии науки занимает концепция глобального (универсального) эволюционизм ма. Весь мир является огромной, эволюционирующей системой. Глобальный эволюционизм опирается на идею о единстве мироз­дания. Выйдя из недр естественных... .


  • - Научная картина мира

    – это целостная система представлений об общих свойствах и закономерностях природы, возникающая в результате обобщения и синтеза основных естественнонаучных понятий, принципов, методологических установок. Различают общенаучную картину мира, картины мира наук, близких... .


  • - Научная картина мира и ее исторические формы.

    Огромное практическое значение науки в XX в. привело к тому, что слово ее стало настолько весомо, что рисуемая ею картина мира часто принимается за точную фотографию реальной действительности. Однако не надо забывать, что наука – развивающаяся и подвижная система знаний,... .


  • - Религиозная, философская и научная картина мира

    Картина мира отводит человеку определенное место во вселенной и помогает ориентироваться в бытии. Она формирует образ вселенной и человека как соизмеримых и взаимозависимых целостностей. Религиозная картина мира такова: в христианской религии Бог творит мир из Ничего,... .


  • -

    Лекция №2 Естественнонаучная картина мира представляет собой систематизированное представление о природе, исторически сформировавшееся в ходе развития естествознания. В эту картину мира входят знания, полученные из всех естественных наук, их фундаментальных... .


  • - Естественнонаучная картина мира

    Человек, познавая окружающий Мир, стремится создать в своем сознании его определенную модель или, как говорят, картину Мира. На каждом этапе своего развития человечество по-разному представляет Мир, в котором живет, т. е. понятие «картина Мира» не застывшее понятие, оно... [читать подробнее] .


  • - Научная картина мира

    Научная картина мира – это целостная система представлений о мире, возникающая в результате обобщения и синтеза основных естественно-научных понятий и принципов. В основе научной картины мира лежит фундаментальная научная теория, в нашем случае – классическая... .