Климатические ресурсы относятся к разряду. Доклад: Климатические ресурсы

Климатическими ресурсами называют неисчерпаемые природные ресурсы, включающие в себя солнечную энергию, влагу и энергию ветра. Их не потребляют непосредственно в материальной и нематериальной деятельности люди, не уничтожают в процессе использования, но они могут ухудшаться (загрязняться) или улучшаться. Климатическими их называют потому, что они определяются прежде всего теми или иными особенностями климата.

Солнечная энергия – самый крупный энергетический источник на Земле. В научной литературе приводятся многочисленные, хотя и довольно сильно различающиеся, оценки мощности солнечной радиации, которые к тому же выражаются в разных единицах измерения. По одному из таких расчетов, годовая солнечная радиация составляет 1,5– 10 22 Дж, или 134-10 19 ккал, или 178,6-10 12 кВт, или 1,56 10 18 кВт ч. Это количество в 20 тыс. раз превышает современное мировое потребление энергии.

Однако значительная часть солнечной энергии не доходит до земной поверхности, а отражается атмосферой. В результате поверхности суши и Мирового океана достигает радиация, измеряемая в 10 14 кВт, или 10 5 млрд кВт-ч (0,16 кВт на 1 км 2 поверхности суши и Мирового океана). Но, конечно, только очень небольшая ее часть может быть практически использована. Академик М. А. Стырикович оценивал технический потенциал солнечной энергии «всего» в 5 млрд тут в год, а практически возможный для реализации – в 0, млрд тут. Едва ли не главная причина подобной ситуации – слабая плотность солнечной энергии.

Однако выше говорилось о средних величинах. Доказано, что в высоких широтах Земли плотность солнечной энергии составляет 80– 130 Вт/м 2 , в умеренном поясе – 130–210, а в пустынях тропического пояса – 210–250 Вт/м 2 . Это означает, что наиболее благоприятные условия для использования солнечной энергии существуют в развивающихся странах, расположенных в аридном поясе, в Японии, Израиле, Австралии, в отдельных районах США (Флорида, Калифорния). В СНГ в районах, благоприятных для этого, живет примерно 130 млн человек, в том числе 60 млн в сельской местности.

Ветровую энергию Земли также оценивают по-разному. На 14-й сессии МИРЭК в 1989 г. она была оценена в 300 млрд кВт-ч в год. Но для технического освоения из этого количества пригодно только 1,5 %. Главное препятствие для него – рассеянность и непостоянство ветровой энергии. Однако на Земле есть и такие районы, где ветры дуют с достаточными постоянством и силой. Примерами подобных районов могут служить побережья Северного, Балтийского, арктических морей.

Одной из разновидностей климатических ресурсов можно считать агроклиматические ресурсы, т. е. ресурсы климата, оцениваемые с позиций жизнедеятельности сельскохозяйственных культур. К числу факторов – сизни этих культур обычно относят воздух, свет, тепло, влагу и питательные вещества.

Воздух – это естественная смесь газов, составляющих атмосферу Земли. У земной поверхности сухой воздух состоит главным образом из азота (78 % общего объема), кислорода (21 %), а также (в небольших количествах) аргона, углекислого и некоторых других газов. Из них для жизнедеятельности живых организмов наибольшее значение имеют кислород, азот и углекислый газ. Понятно, что воздух относится к категории неисчерпаемых ресурсов. Однако с ним тоже связаны проблемы, широко обсуждаемые в географической литературе.

Прежде всего это проблема – как это ни парадоксально звучит – «исчерпания» содержащегося в воздухе и необходимого всему живому кислорода. Считается, что до середины XIX в. содержание кислорода в атмосфере было относительно стабильным, а поглощение его при окислительных процессах компенсировалось фотосинтезом. Но затем началась постепенная его убыль – прежде всего в результате сжигания органического топлива и распространения некоторых технологических процессов. В наши дни только сжигание топлива приводит к расходованию 10 млрд т свободного кислорода в год. Легковой автомобиль на каждые 100 км пробега расходует годовой кислородный «паек» одного человека, а все автомобили забирают столько кислорода, сколько его хватило бы для 5 млрд человек в течение года. Лишь за один трансатлантический рейс реактивный лайнер сжигает 35 т кислорода. Эксперты ООН подсчитали, что в наши дни на планете ежегодно потребляют такое количество кислорода, которого хватило бы для дыхания 40–50 млрд человек. Только за последние 50 лет было израсходовано более 250 млрд т кислорода. Это уже привело к уменьшению его концентрации в атмосфере на 0,02 %.

Конечно, такое уменьшение пока практически неощутимо, поскольку человеческий организм чувствителен к снижению концентрации кислорода более, чем на 1 %. Однако, по расчетам известного ученого-климатолога Ф. Ф. Давитая, при ежегодном увеличении безвозвратно расходуемого кислорода на 1 %, 2/3 его общего запаса в атмосфере могут быть исчерпаны за 700 лет, а при ежегодном росте на 5 % – за 180 лет. Впрочем, некоторые другие исследователи приходят к выводу о том, что уменьшение запаса свободного кислорода не представляет и не будет представлять собой серьезной опасности для человечества.

Свет (солнечная радиация) служит главным источником энергии для всех физико-географических процессов, протекающих на Земле. Обычно световая энергия выражается в тепловых единицах – калориях из расчета на единицу площади за определенное время. Однако при этом важно учитывать соотношение видимого света и невидимого излучения Солнца, прямой и рассеянной, отраженной и поглощенной солнечной радиации, ее интенсивность.

С агроклиматической точки зрения особенно важна та часть солнечного спектра, которая непосредственно участвует в фотосинтезе, ее называютфотосинтетически активной радиацией. Важно также учитывать длину светового дня, с которой связано подразделение сельскохозяйственных культур на три категории: растений короткого дня (например, хлопчатник, кукуруза, просо), растений длинного дня (например, пшеница, рожь, ячмень, овес) и растений, которые сравнительно мало зависят от этого показателя (например, подсолнечник).

Тепло – еще один важнейший фактор, определяющий рост и развитие сельскохозяйственных культур. Обычно запасы тепла исчисляют в виде суммы температур, получаемых растениями за период их вегетации. Этот показатель, называемый суммой активных температур, был предложен известным русским агроклиматологом Г. Т. Селяниновым еще в 30-х гг. XX в. и с тех пор широко вошел в научный оборот. Он представляет собой арифметическую сумму всех средних суточных температур за период вегетации растений. Для большинства зерновых культур умеренного пояса, относительно холодностойких, сумму активных температур обычно подсчитывают для периода, когда средние температуры превышают +5 °C. Для некоторых более теплолюбивых культур – таких, например, как кукуруза, подсолнечник, сахарная свекла, плодовые – отсчет этих температур ведут начиная с показателя +10 °C, для субтропических и тропических – +15 °C.

Влага также представляет собой необходимое условие жизни всех живых организмов и сельскохозяйственных культур. Это объясняется ее участием в фотосинтезе, большой ролью в процессах терморегуляции и переноса питательных веществ. При этом обычно для образования единиц сухого вещества растение должно впитать в себя в сотни раз большее количество влаги.

Для определения размеров потребления влаги растениями и необходимого уровня увлажнения сельскохозяйственных угодий применяют различные показатели. Один из наиболее употребительных показателей – гидротермический коэффициент – также был предложен Г. Т. Селяниновым.

Он представляет собой соотношение осадков и суммы активных температур. Этот показатель используют и для определения влагообеспеченности территории с подразделением ее на очень сухую (гидротермический коэффициент меньше 0,3), сухую (0,4–0,5), засушливую (0,5–0,7), испытывающую недостаток влаги (0,8–1,0), отличающуюся равенством ее прихода и расхода (1,0), обладающую достаточным количеством влаги (1,0–1,5) и ее избытком (более 1,5).

С позиций географического изучения агроклиматических ресурсов большой интерес представляет также агроклиматическое районирование мира. В отечественных источниках за его основу обычно берут схему такого районирования, которая была разработана для Агроклиматического атласа мира, вышедшего в 1972 г. Она составлена с использованием двух главных уровней.

На первом уровне районирование проводилось по степени теплообеспеченности с выделением следующих тепловых поясов и подпоясов:

– холодного пояса с коротким периодом вегетации, где сумма активных температур не превышает 1000 °C, а земледелие в открытом грунте практически невозможно;

– прохладного пояса, где теплообеспеченность возрастает от 1000 °C на севере до 2000 °C на юге, что позволяет выращивать некоторые нетребовательные к теплу культуры, да и то при очаговом земледелии;

– умеренного пояса, где теплообеспеченность изменяется в пределах от 2000 до 4000 °C, а продолжительность вегетационного периода колеблется от 60 до 200 дней, что создает возможности для массового земледелия с широким набором культур (этот пояс подразделяется на два подпояса – типично умеренный и теплоумеренный);

– теплого (субтропического) пояса с суммой активных температур от 4000 до 8000 °C, что позволяет расширить ассортимент сельскохозяйственных культур, введя в него теплолюбивые субтропические виды (в нем также выделяют два подпояса – умеренно теплый и типично теплый);

– жаркого пояса, где сумма активных температур повсеместно превышает 8000 °C, а иногда и 10 000 °C, что позволяет выращивать характерные для тропических и экваториальных зон культуры в течение всего года.

На втором уровне агроклиматического районирования термические пояса и подпояса подразделяются еще на 16 областей, выделяемых в зависимости от режима увлажнения (избыточного, достаточного, недостаточного – в течение как всего года, так и отдельных его сезонов).

Эту же классификацию, но обычно ограниченную первым уровнем и несколько упрощенную, применяют и в учебных атласах, в том числе в школьных. По соответствующим картам нетрудно ознакомиться и с ареалами распространения отдельных термических поясов. Можно определить также, что территория России находится в пределах трех поясов – холодного, прохладного и умеренного. Вот почему основную ее часть занимают земли с низкой и пониженной биологической продуктивностью и сравнительно небольшую – со средней продуктивностью. Ареалы с высокой и очень высокой продуктивностью в ее пределах фактически отсутствуют.

Рельеф

На Кольском полуострове Балтийский щит сложен в основном древнейшими метаморфизованными и изверженными породами. Многочисленные разломы, образовавшиеся в кристаллическом щите, и вертикальные движения по ним участков земной коры определили основные особенности рельефа области. Сложному рельефу добавили своеобразия ледники четвертичного времени. Отсюда они двигались на Русскую платформу и здесь, отступая, дольше всего задерживались. Всюду на плато видны ледниковые шрамы, оглаженные скальные

купола - «бараньи лбы», их скопления - «курчавые скалы», в котловинах и трещинах - желоба выпахивания, а в горах - ледниковые цирки, троговые долины, каменные россыпи. Четвертичные отложения здесь маломощны и не имеют сплошного распространения (Г.Д. Рихтер, 1946).

Между границей с Финляндией и Ловозером расположен центральный горный район. Долины рек и озера расчленяют этот хребет на отдельные массивы – тундры. Своей высотой здесь выделяются Рослим, Туадаш, Сальные, Чуна, Монче, Волчьи, Хибинские и Ловозерские тундры. В формах рельефа кристаллических щитов обычно отсутствует выраженность отдельных пластов, или свит, складчатые структуры геосинклинального пояса древнего основания не отражены в рельефе. Лишь иногда избирательная денудация создает значительный морфологический эффект – останцовые возвышенности, приуроченные к площадям развития стойких пород, например, кварцитов и некоторых интрузивных тел.

Хибинские тундры (Хибины) расположены в центральной части полуострова. Их высота около 1200 м. В них расположена высшая точка Кольского полуострова – гора Часночорр (1191 м.). Восточнее Хибин находится Ловозерский массив, а далее гряда Кейвы. На материковой части и на западе Кольского полуострова преобладает среднегорный и низкогорный рельеф. Горные массивы разделены низменностями. Восточная часть полуострова представляет собой сравнительно ровное, наклоненное к югу плато. Горы Кольского полуострова имеют столообразную форму – высокие плоские плато круто обрушиваются к окружающим их низинам. Плато рассечены глубокими долинами и ущельями. Поверхность плато покрыта голыми каменными россыпями и обломками скал. Ледник, некогда покрывавший полуостров, сгладил горы и оставил валуны и морены, перегораживающие некоторые долины. Многие долины кончаются большими цирками и карами с отвесными стенами в несколько сот метров. На формирование рельефа большое влияние оказывает и размывающая деятельность воды: реки сносят много обломочного материала и образуют мощные дельты в устьях. Еще одной характерной особенностью рельефа гор являются многочисленные ущелья, рассекающие горные массивы и прибрежные плато по геологическим разломам.



Многообразие форм рельефа Кольского полуострова позволяет проследить историю развития этого края. Помимо этого рельеф полуострова красив и сам по себе. Эрратические валуны, которыми усеяна земля, «курчавые скалы», троги, цирки, перевальные ущелья, солифлюкционные терраски на склонах, морены, которые перегораживают долины рек – это природные достопримечательности Кольского края. Посмотреть на них, изучить их приезжают люди со всех концов нашей страны.

Климат Кольского полуострова имеет ряд особенностей, определяемых комплексом физико-географических факторов. К их числу относятся:

Расположение области за Полярным кругом;

Влияние теплого Мурманского течения;

Взаимодействие двух разнородных типов воздушных масс (холодных и сухих из Арктики и влажных из Атлантики);

Значительная пространственная протяженность области в сочетании с неоднородностью рельефа.

В связи с тем, что полуостров почти целиком расположен за Полярным кругом, на его территории наблюдаются полярный день и полярная ночь. На широте Мурманска полярный день длится в среднем 59 суток (с 24 мая по 21 июля), а полярная ночь - 42 суток (со 2 декабря по 12 января). Большая протяженность полярного дня по сравнению с полярной ночью связана с влиянием рефракции (искривления пути светового луча в атмосфере из-за ее оптической неоднородности).

Расположение области в высоких широтах (66-70 с.ш.) обуславливает также низкую полуденную высоту солнца над горизонтом. Еще одним следствием высокоширотного положения является несовпадение времен года с календарными сезонами других широт. Если летний сезон (июнь - август) здесь совпадает с общепринятым, то весна и осень на месяц короче обычных. Зима продолжается 5 месяцев- с ноября по март (ред. И.Н. Похницкий, 1966).

Положение Кольского полуострова в высоких широтах между большим морским бассейном на севере и континентом на юге определяет исключительно высокую интенсивность атмосферной циркуляции. Через Кольский полуостров проходят траектории большой массы циклонов и антициклонов из северных районов Гренландского моря и Северного Ледовитого океана. Циклоны преобладают в холодный период года (октябрь - апрель), антициклоны - в теплый (май – сентябрь). В целом распределение давления носит муссонный характер: зимой более высокие значения наблюдаются на юге полуострова, летом – на севере, что определяет соответствующий характер ветрового режима. Наиболее отчетливо муссонный режим выражен на Мурманском побережье и в Кольском заливе, где в зимние месяцы преобладают южные и юго-западные ветры, а в летние - северные и северо-восточные. В центральных частях полуострова муссонный режим выражен слабее. Здесь большую роль играют особенности рельефа. В горных районах возникают местные ветры, дующие вдоль долин и ущелий. Максимальные скорости ветра на Мурманском берегу и в Кольском заливе могут превышать 40 м/сек, а в остальных районах (кроме горных) достигают 25- 30 м/сек. В Хибинах зимой скорость ветра в долинах бывает до 48 м/сек., а на вершинах - свыше 60 м/сек.

Среднегодовая температура для всей области близка к 0 градусов. Продолжительность вегетационного периода 80-90 дней. Годовая испаряемость составляет 250-400 мм., поэтому вся территория избыточно увлажнена, богата реками, озерами и болотами. Как в горах, так и на низменностях могут быть сильные ветра. Особенно это чувствуется в горах, где ветры почти постоянно дуют вниз с перевалов. Из-за того, что сезоны года на Кольском полуострове сдвинуты, то очень большой популярностью пользуется этот район во время весенних школьных каникул. Тогда же можно застать в Заполярье и полярные сияния.

Снег ложится уже в конце сентября - начале октября, в ноябре глубина его в отдельных долинах более 0,5 м. На гребнях отрогов снег сдувает ветром. В направлении запад-восток количество снега больше. В некоторые годы образуется очень плотный наст. Лежащие у подножия гор озера в ноябре еще только начинают замерзать, хотя горные озера уже скованы толстым льдом. Средняя мощность снежного покрова составляет 50-80 см.

28. Мировые климатические ресурсы

Климатическими ресурсами называют неисчерпаемые природные ресурсы, включающие в себя солнечную энергию, влагу и энергию ветра. Их не потребляют непосредственно в материальной и нематериальной деятельности люди, не уничтожают в процессе использования, но они могут ухудшаться (загрязняться) или улучшаться. Климатическими их называют потому, что они определяются прежде всего теми или иными особенностями климата.

Солнечная энергия – самый крупный энергетический источник на Земле. В научной литературе приводятся многочисленные, хотя и довольно сильно различающиеся, оценки мощности солнечной радиации, которые к тому же выражаются в разных единицах измерения. По одному из таких расчетов, годовая солнечная радиация составляет 1,5– 10 22 Дж, или 134-10 19 ккал, или 178,6-10 12 кВт, или 1,56 10 18 кВт ч. Это количество в 20 тыс. раз превышает современное мировое потребление энергии.

Однако значительная часть солнечной энергии не доходит до земной поверхности, а отражается атмосферой. В результате поверхности суши и Мирового океана достигает радиация, измеряемая в 10 14 кВт, или 10 5 млрд кВт-ч (0,16 кВт на 1 км 2 поверхности суши и Мирового океана). Но, конечно, только очень небольшая ее часть может быть практически использована. Академик М. А. Стырикович оценивал технический потенциал солнечной энергии «всего» в 5 млрд тут в год, а практически возможный для реализации – в 0, млрд тут. Едва ли не главная причина подобной ситуации – слабая плотность солнечной энергии.

Однако выше говорилось о средних величинах. Доказано, что в высоких широтах Земли плотность солнечной энергии составляет 80– 130 Вт/м 2 , в умеренном поясе – 130–210, а в пустынях тропического пояса – 210–250 Вт/м 2 . Это означает, что наиболее благоприятные условия для использования солнечной энергии существуют в развивающихся странах, расположенных в аридном поясе, в Японии, Израиле, Австралии, в отдельных районах США (Флорида, Калифорния). В СНГ в районах, благоприятных для этого, живет примерно 130 млн человек, в том числе 60 млн в сельской местности.

Ветровую энергию Земли также оценивают по-разному. На 14-й сессии МИРЭК в 1989 г. она была оценена в 300 млрд кВт-ч в год. Но для технического освоения из этого количества пригодно только 1,5 %. Главное препятствие для него – рассеянность и непостоянство ветровой энергии. Однако на Земле есть и такие районы, где ветры дуют с достаточными постоянством и силой. Примерами подобных районов могут служить побережья Северного, Балтийского, арктических морей.

Одной из разновидностей климатических ресурсов можно считать агроклиматические ресурсы, т. е. ресурсы климата, оцениваемые с позиций жизнедеятельности сельскохозяйственных культур. К числу факторов – сизни этих культур обычно относят воздух, свет, тепло, влагу и питательные вещества.

Воздух – это естественная смесь газов, составляющих атмосферу Земли. У земной поверхности сухой воздух состоит главным образом из азота (78 % общего объема), кислорода (21 %), а также (в небольших количествах) аргона, углекислого и некоторых других газов. Из них для жизнедеятельности живых организмов наибольшее значение имеют кислород, азот и углекислый газ. Понятно, что воздух относится к категории неисчерпаемых ресурсов. Однако с ним тоже связаны проблемы, широко обсуждаемые в географической литературе.

Прежде всего это проблема – как это ни парадоксально звучит – «исчерпания» содержащегося в воздухе и необходимого всему живому кислорода. Считается, что до середины XIX в. содержание кислорода в атмосфере было относительно стабильным, а поглощение его при окислительных процессах компенсировалось фотосинтезом. Но затем началась постепенная его убыль – прежде всего в результате сжигания органического топлива и распространения некоторых технологических процессов. В наши дни только сжигание топлива приводит к расходованию 10 млрд т свободного кислорода в год. Легковой автомобиль на каждые 100 км пробега расходует годовой кислородный «паек» одного человека, а все автомобили забирают столько кислорода, сколько его хватило бы для 5 млрд человек в течение года. Лишь за один трансатлантический рейс реактивный лайнер сжигает 35 т кислорода. Эксперты ООН подсчитали, что в наши дни на планете ежегодно потребляют такое количество кислорода, которого хватило бы для дыхания 40–50 млрд человек. Только за последние 50 лет было израсходовано более 250 млрд т кислорода. Это уже привело к уменьшению его концентрации в атмосфере на 0,02 %.

Конечно, такое уменьшение пока практически неощутимо, поскольку человеческий организм чувствителен к снижению концентрации кислорода более, чем на 1 %. Однако, по расчетам известного ученого-климатолога Ф. Ф. Давитая, при ежегодном увеличении безвозвратно расходуемого кислорода на 1 %, 2/3 его общего запаса в атмосфере могут быть исчерпаны за 700 лет, а при ежегодном росте на 5 % – за 180 лет. Впрочем, некоторые другие исследователи приходят к выводу о том, что уменьшение запаса свободного кислорода не представляет и не будет представлять собой серьезной опасности для человечества.

Свет (солнечная радиация) служит главным источником энергии для всех физико-географических процессов, протекающих на Земле. Обычно световая энергия выражается в тепловых единицах – калориях из расчета на единицу площади за определенное время. Однако при этом важно учитывать соотношение видимого света и невидимого излучения Солнца, прямой и рассеянной, отраженной и поглощенной солнечной радиации, ее интенсивность.

С агроклиматической точки зрения особенно важна та часть солнечного спектра, которая непосредственно участвует в фотосинтезе, ее называют фотосинтетически активной радиацией. Важно также учитывать длину светового дня, с которой связано подразделение сельскохозяйственных культур на три категории: растений короткого дня (например, хлопчатник, кукуруза, просо), растений длинного дня (например, пшеница, рожь, ячмень, овес) и растений, которые сравнительно мало зависят от этого показателя (например, подсолнечник).

Тепло – еще один важнейший фактор, определяющий рост и развитие сельскохозяйственных культур. Обычно запасы тепла исчисляют в виде суммы температур, получаемых растениями за период их вегетации. Этот показатель, называемый суммой активных температур, был предложен известным русским агроклиматологом Г. Т. Селяниновым еще в 30-х гг. XX в. и с тех пор широко вошел в научный оборот. Он представляет собой арифметическую сумму всех средних суточных температур за период вегетации растений. Для большинства зерновых культур умеренного пояса, относительно холодностойких, сумму активных температур обычно подсчитывают для периода, когда средние температуры превышают +5 °C. Для некоторых более теплолюбивых культур – таких, например, как кукуруза, подсолнечник, сахарная свекла, плодовые – отсчет этих температур ведут начиная с показателя +10 °C, для субтропических и тропических – +15 °C.

Влага также представляет собой необходимое условие жизни всех живых организмов и сельскохозяйственных культур. Это объясняется ее участием в фотосинтезе, большой ролью в процессах терморегуляции и переноса питательных веществ. При этом обычно для образования единиц сухого вещества растение должно впитать в себя в сотни раз большее количество влаги.

Для определения размеров потребления влаги растениями и необходимого уровня увлажнения сельскохозяйственных угодий применяют различные показатели. Один из наиболее употребительных показателей – гидротермический коэффициент – также был предложен Г. Т. Селяниновым.

Он представляет собой соотношение осадков и суммы активных температур. Этот показатель используют и для определения влагообеспеченности территории с подразделением ее на очень сухую (гидротермический коэффициент меньше 0,3), сухую (0,4–0,5), засушливую (0,5–0,7), испытывающую недостаток влаги (0,8–1,0), отличающуюся равенством ее прихода и расхода (1,0), обладающую достаточным количеством влаги (1,0–1,5) и ее избытком (более 1,5).

С позиций географического изучения агроклиматических ресурсов большой интерес представляет также агроклиматическое районирование мира. В отечественных источниках за его основу обычно берут схему такого районирования, которая была разработана для Агроклиматического атласа мира, вышедшего в 1972 г. Она составлена с использованием двух главных уровней.

На первом уровне районирование проводилось по степени теплообеспеченности с выделением следующих тепловых поясов и подпоясов:

– холодного пояса с коротким периодом вегетации, где сумма активных температур не превышает 1000 °C, а земледелие в открытом грунте практически невозможно;

– прохладного пояса, где теплообеспеченность возрастает от 1000 °C на севере до 2000 °C на юге, что позволяет выращивать некоторые нетребовательные к теплу культуры, да и то при очаговом земледелии;

– умеренного пояса, где теплообеспеченность изменяется в пределах от 2000 до 4000 °C, а продолжительность вегетационного периода колеблется от 60 до 200 дней, что создает возможности для массового земледелия с широким набором культур (этот пояс подразделяется на два подпояса – типично умеренный и теплоумеренный);

– теплого (субтропического) пояса с суммой активных температур от 4000 до 8000 °C, что позволяет расширить ассортимент сельскохозяйственных культур, введя в него теплолюбивые субтропические виды (в нем также выделяют два подпояса – умеренно теплый и типично теплый);

– жаркого пояса, где сумма активных температур повсеместно превышает 8000 °C, а иногда и 10 000 °C, что позволяет выращивать характерные для тропических и экваториальных зон культуры в течение всего года.

На втором уровне агроклиматического районирования термические пояса и подпояса подразделяются еще на 16 областей, выделяемых в зависимости от режима увлажнения (избыточного, достаточного, недостаточного – в течение как всего года, так и отдельных его сезонов).

Эту же классификацию, но обычно ограниченную первым уровнем и несколько упрощенную, применяют и в учебных атласах, в том числе в школьных. По соответствующим картам нетрудно ознакомиться и с ареалами распространения отдельных термических поясов. Можно определить также, что территория России находится в пределах трех поясов – холодного, прохладного и умеренного. Вот почему основную ее часть занимают земли с низкой и пониженной биологической продуктивностью и сравнительно небольшую – со средней продуктивностью. Ареалы с высокой и очень высокой продуктивностью в ее пределах фактически отсутствуют.

КЛИМАТИЧЕСКИЕ И КОСМИЧЕСКИЕ РЕСУРСЫ - РЕСУРСЫ БУДУЩЕГО

Солнце - гигантский термоядерный реактор, первоисточник не только всей жизни на Земле, но практически и всех ее энергоресурсов. Годовой поток солнечной энергии, достигающий нижних слоев атмосферы и земной поверхности, измеряется такой огромной величиной (10 14 кВт), которая в десятки раз превосходит всю энергию, содержащуюся в разведанных запасах минерального топлива, и в тысячи раз - современный уровень мирового энергопотребления. Естественно, что наилучшие условия для использования солнечной энергии существуют в аридном поясе Земли, где продолжительность солнечного сияния наибольшая.

Таблица 17. Климатические и космические ресурсы.

Источник энергии Районы использования
Энергия солнца Аридный пояс: США (Флорида, Калифорния); Япония, Израиль, Кипр, Австралия, Украина (Крым), Кавказ, Казахстан, Ср. Азия.
Ветровая энергия Побережье Северного и Балтийского морей, арктических морей; Ср. Сибирь, Дальний Восток, юг европейской части России, Украина.
Геотермальные Низкотемпературные (обогрев): Исландия, Италия, Франция, Венгрия, Япония, США, страны Центральной Америки, Ню Зеландия, Камчатка С.Кавказ;высокотемпературные (сухой пар для сооружения ГеоТЭС): Италия, США (Калифорния), Мексика, Н.Зеландия, Япония, Россия (Камчатка).
Приливная энергия Бретань (Франция) - побережье Ла-Манша, Белое море, юг Китая, залив Фанди (побережье США и Канады) и т.д. Продолжаются работы в США, Канаде, Великобритании, Франции, России, Китае, Респ. Корее, Индии, Аргентине, Австралии.
Энергия течений (ОТЭС) Гавайи (США), Науру (Япония), Таити (Франция), Бали (Нидерланды).
Энергия волн Япония, Норвегия

Ветровая энергия, которую человек также издавна использовал с помощью ветряных мельниц и парусных судов, как и солнечная, обладает практически неисчерпаемым потенциалом, относительно дешева и не загрязняет окружающую среду. Но она очень непостоянна во времени и в пространстве и ее очень трудно "приручить". В отличие от солнечной, ее ресурсы сосредоточены главным образом в умеренном поясе.

Особый вид климатических ресурсов образуют агроклиматические ресурсы - тепло, влага и свет. Географическое распределение этих ресурсов находит отражение на агроклиматической карте.

Задачи и тесты по теме "Климатические и космические ресурсы - ресурсы будущего"

  • Природные ресурсы
  • Климатические пояса Земли - Общая характеристика природы Земли 7 класс

    Уроков: 5 Заданий: 9 Тестов: 1

  • Латинская Америка - Южная Америка 7 класс

    Уроков: 3 Заданий: 9 Тестов: 1

  • США - Северная Америка 7 класс

    Уроков: 6 Заданий: 9 Тестов: 1

  • Астероиды. Кометы. Метеоры. Метеориты - Земля во Вселенной 5 класс

    Уроков: 4 Заданий: 8 Тестов: 1

Ведущие идеи: географическая среда - необходимое условие жизни общества, развития и размещения населения и хозяйства, при этом в последнее время снижается влияние ресурсного фактора на уровень экономического развития страны, но возрастает значение рационального использования природных ресурсов и экологического фактора.

Основные понятия: географическая (окружающая) среда, рудные и нерудные полезные ископаемые, рудные пояса, бассейны полезных ископаемых; структура мирового земельного фонда, южный и северный лесные пояса, лесистость; гидроэнергетический потенциал; шельф, альтернативные источники энергии; ресурсообеспеченность, природно-ресурсный потенциал (ПРП), территориальное сочетание природных ресурсов (ТПСР), районы нового освоения, вторичные ресурсы; загрязнение окружающей среды, экологическая политика.

Навыки и умения: уметь давать характеристику природных ресурсов страны (региона) по плану; использовать различные методы экономической оценки природных ресурсов; давать характеристику природных предпосылок для развития промышленности, сельского хозяйства страны (региона) по плану; давать краткую характеристику размещения основных видов природных ресурсов, выделять страны "лидеры" и "аутсайдеры" по обеспеченности тем или иным видом природных ресурсов; приводить примеры стран, не обладающих богатыми природными ресурсами, но достигших высокого уровня экономического развития и наоборот; приводить примеры рационального и нерационального использования ресурсов.