Экосистема обладающая самой высокой продуктивностью. Продуктивность основных типов природных биомов

Продуктивность экосистемы. В каждой экосистеме часть приходящей энергии, попадающей в трофическую сеть, не диссипирует,- а накапливается в виде органических соединений. Безостановочное производство живой материи (биомассы) - один из фундаментальных процессов биосферы.[ ...]

ПРОДУКТИВНОСТЬ ЛАНДШАФТА - способность ландшафта производить биологическую продукцию. См. Биологическая продуктивность экосистемы.[ ...]

Продуктивность экосистемы - скорость образования биологического вещества (биомассы) в единицу времени.[ ...]

Молодая, продуктивная экосистема очень уязвима из-за монотипного видового состава, так как в результате какой-то экологической катастрофы, например, засухи, ее уже не восстановить из-за разрушения генотипа. Но для жизни человечества они (экосистемы) необходимы, поэтому наша задача сохранить баланс между упрощенными антропогенными и соседствующими с ними более сложными, с богатейшим генофондом, природными экосистемами, от которых они зависят.[ ...]

Первичная продуктивность экосистемы, сообщества или любой их части определяется как скорость, с которой энергия Солнца усваивается организмами-продуцентами (в основном зелеными растениями) в ходе фотосинтеза или химического синтеза (хемопродуцентами). Эта энергия материализуется в виде органических веществ тканей продуцентов.[ ...]

Состояние экосистемы - численность и соотношение организмов - управляется и определяется потоком энерши, обеспечиваемой первичной ее продуктивностью: чем выше продуктивность, тем весомее биотическая часть экосистемы. Как было показано, продукт тиввооть экосистемы зависит от потока солнечной энергии, получаемого сиотемой. Однако это не единственный фактор, определяющий продуктивность. Ухудшение плодородия почвы веизбежво приводит к онижевию энергетического потенциала экое и о темы и деградации последней (опустынивание территории).[ ...]

17.1

Биологическая продуктивность экосистемы - скорость создания в них биомассы, т.е. массы тела живых организмов. Размерность продуктивности - масса/время площадь (объем).[ ...]

Мощность биоты экосистемы определяется её продукцией, выраженной в энергетических единицах. Скорость, с которой растения в процессе фотосинтеза ассимилируют энергию солнечного света и накапливают органические вещества, составляет биологическую продуктивность экосистемы, разность которой выражается как энергия/площадь, время или масса / площадь, время. Не все органические вещества, синтезированные в процессе фотосинтеза, включаются в растительную биомассу, т.е. не все они идут на увеличение размеров и числа растений. Некоторая часть их должна быть разложена самими растениями в процессе дыхания с тем, чтобы высвободить энергию, необходимую для биосинтеза и поддержания функций жизнедеятельности самих растений. Следовательно, первичная чистая биологическая продукция экосистемы Пч будет равна всей валовой продукции растений экосистемы Пв за вычетом потерь на дыхание самих растений Пд, т.е.[ ...]

Из табл. 1.3 хорошо видно, что максимально продуктивны экосистемы суши. Хотя площадь суши вдвое меньше, чем площадь, занимаемая океанами, ее экосистемы имеют годовую первичную продукцию углерода, более чем вдвое превышающую таковую Мирового Океана (52,8 млрд. тонн и 24,8 млрд. тонн соответственно) при относительной продуктивности наземных экосистем, в 7 раз превышающей продуктивность экосистем океана. Из этого, в частности, следует, что надежды на то, что полное освоение биологических ресурсов океана позволит человечеству решить продовольственную проблему, не очень обоснованны. По-видимому, возможности в этой области невелики - уже сейчас уровень эксплуатации многих популяций рыб, китообразных, ластоногих близок к критическому, для многих промысловых беспозвоночных - моллюсков, ракообразных и других, в связи со значительным падением их численности в природных популяциях стало экономически выгодным разведение их на специализированных морских фермах, развитие марикультуры. Примерно таково же и положение со съедобными водорослями, такими как ламинария (морская капуста) и фукус, а также водорослями, используемыми в промышленности для получения агар-агара и многих других ценнейших веществ.[ ...]

В настоящее время принято считать, что чем большее число видов составляет экосистему, тем выше возможности адаптации сообщества к меняющимся условиям существования (например, кратковременным или длительным изменениям климата, а также других факторов). В ходе эволюционного развития экосистем многократно происходила смена доминирующих видов. Зачастую наиболее часто встречающиеся виды оказывались неспособными выдержать изменения действия того или иного экологического фактора, а редкие виды оказывались более стойкими и получали преимущество (например, вымирание крупных пресмыкающихся и развитие млекопитающих в конце мелового периода). Продуктивность экосистемы, таким образом, сохраняется и даже увеличивается.[ ...]

Болота, обогащенные биогенами, представляют собой самые продуктивные экосистемы, в которых обитают стаи водной дичи и многие другие животные. Общая площадь болот и переувлажненных земель на планете составляет примерно 3 млн км2. Больше всего болот в Южной Америке (почти половина) и Евразии, совсем мало - в Австралии. Болота и заболоченные территории есть во всех географических зонах, но особенно много их в тайге. В нашей стране болота занимают около 9,5% территории, причем особую ценность представляют торфяные болота, аккумулирующие в себе значительные запасы теплоты.[ ...]

Различные экологические системы характеризуются различной продуктивностью, что следует учитывать при освоении тех или иных территорий, например под сельскохозяйственное пользование. Продуктивность экосистемы зависит от ряда факторов, в первую очередь от обусловленной климатическими условиями обеспеченности теплом и влагой (табл. 2.3 и 2.4). Наиболее продуктивными являются экосистемы мелководных лиманов.[ ...]

Объективные преимущества этого метода определяются тем, что функционирование любой экосистемы изначально поддерживается непрерывным потоком энергии через ее компоненты, а интенсивность этого потока определяет динамику и продуктивность экосистемы. Все без исключения материальные потоки производственной и иной деятельности человека всегда связаны с потоками энергии и имеют ту или иную энергоемкость. Естественные и техногенные потоки энергии всегда могут быть оценены количественно. Интенсивность энергетических потоков в силу их связи с физико-географическими факторами и уровнем экономического развития всегда может быть предсказана с высокой достоверностью. Энергетический обмен в экосистемах (наряду с круговоротом вещества) является одним из главных факторов устойчивости экосистем и их самовосстано-вительного потенциала.[ ...]

Насколько регулярно осуществляется круговорот любого элемента, в т. ч. и углерода, зависит продуктивность экосистемы, что важно для сельского хозяйства и выращивания лесов. Вмешательство человека нарушает процессы круговорота. Вырубка леса и сжигание топлива влияют на круговорот углерода.[ ...]

В табл. 9 показано, что лиманы как класс местообитания стоят в одном ряду с такими естественными продуктивными экосистемами, как дождевые тропические леса и коралловые рифы. Для лиманов характерна тенденция быть более продуктивными, чем море, с одной стороны, и пресноводные бассейны - с другой. Теперь мы вновь можем свести воедино причины высокой продуктивности (см. Ю. Одум, 1961; Шельске и Ю. Одум, 1961).[ ...]

ЗАкбн МАКСИМУМА [лат. maximum наибольшее] - количественное изменение экологических условий не может увеличить биологическую продуктивность экосистемы и хозяйственную производительность агросистемы сверх вешественно-энергетических лимитов, определяемых эволюционными свойствами биологических объектов и их сообществ.[ ...]

Фотоавтотрофы (растения) составляют основную массу биоты и полностью отвечают за образование всего нового органического вещества в экосистеме, т.е. являются первичными производителями продукции - продуцентами экосистем. Синтезированная автотрофами новая биомасса органического вещества - это первичная продукция, а скорость ее образования - биологическая продуктивность экосистемы. Автотрофы образуют первый трофический уровень любой полночленной экосистемы.[ ...]

Ключевое слово в приведенных выше определениях - спорость. Всегда необходимо учитывать элемент времени, т. е. речь должна идти о количестве энергии, фиксированной за определенное время. Таким образом, биологическая продуктивность отличается от «выхода» в химии или промышленности. В двух последних случаях процесс заканчивается появлением определенного количества того пли иного продукта, но в биологических сообществах процесс непрерывен во времени, так что обязательно надо относить продукцию к выбранной единице времени (например, говорить о количестве пищи, произведенном за день или за год). В общем продуктивность экосистемы говорит о ее «богатстве». В богатом, или продуктивном, сообществе может быть больше организмов, чем в менее продуктивном, но иногда это бывает и не так, если организмы в продуктивном сообществе быстрее изымаются или «оборачиваются». Так, на богатом пастбище, выедаемом скотом, урожай травы на корню, очевидно, будет гораздо меньше, чем на менее продуктивном пастбище, на которое в период измерений не выгоняли скот. Наличную биомассу или урожай на корню за данное время нельзя путать с продуктивностью. Студенты, изучающие экологию, часто путают эти две величины. Первичную продуктивность системы или продукцию компонента популяции обычно нельзя определить простым подсчетом и взвешиванием (т. е. «переписью») имеющихся организмов, хотя по данным об урожае на корню можно получить верные оценки чистой первичной продуктивности, если размеры организмов велики и живое вещество некоторое время накапливается, не расходуясь (пример - сельскохозяйственные культуры).[ ...]

Различие в воздействии двух основных типов загрязнения на энергетику системы показано на фиг. 216. При повышении поступления до критического уровня часто возникают резкие колебания (например, в цветении водорослей), а дальнейшее увеличение поступления этих загрязнений приводит к стрессу - система в сущности оказывается отравленной «избытком благ». Быстрота, с какой в отсутствие должного контроля может произойти переход от хорошего к плохому, вносит дополнительные трудности в распознавание загрязнения и воздействие на него (это видно по тому, как круто кривая / идет вниз). В каких пределах эта модель применима, мы покажем в гл. 21.[ ...]

Крайне пагубно на природе Западной Сибири сказалась разработка запасов нефти и газа. Там создана своеобразная пустыня: с исчерпанием минеральных ресурсов не остается никаких природных благ, только искореженная земля. Она требует реанимации в продуктивные экосистемы. Т акие пути либо известны, либо должны быть найдены. Вообще конкретные программы восстановления природно-ресурсного потенциала и поиски новых путей использования природы без ее разрушения достаточно перспективны.[ ...]

Таким образом, впервые предложенный критерий воздействия нооценоза на экосистему позволяет выразить это воздействие безразмерным численным показателем и по его величине охарактеризовать степень воздействия хозяйственной деятельности человека на продуктивность экосистемы. Критерий воздействия нооценоза на экосистему позволяет оценить ее продуктивность в зависимости от влияния предприятий, человеческого общества, продуктов его труда и вредных отходов производства как при функционировании нооценозов. так и при планировании их развития, а также при целенапрапенном видоизменении экологических пирамид при планировании и выборе стратегии хозяйственной деятельности.[ ...]

Вход системы - поток солнечной энергии. Большая часть ее рассеивается в виде теплоты. Часть энергии, эффективно поглощенная растениями, преобразуется при фотосинтезе в энергию химических связей углеводов и других органических веществ. Это - валовая первичная продукция экосистемы. Часть энергии теряется в процессе дыхания растений, а часть используется в других биохимических процессах в растении и в конечном счете также рассеивается в виде тепла. Оставшаяся часть новообразованных органических веществ обусловливает прирост биомассы растений - чистую первичную продуктивность экосистемы.[ ...]

Общий поток энергии, характеризующий экосистему, состоит из солнечного излучения и длинноволнового теплового излучения, получаемого от близлежащих тел. Оба вида излучения определяют климатические условия среды (температуру, скорость испарения воды, движения воздуха и т. д.), но в фотосинтезе, обеспечивающем энергией живые компоненты экосистемы, используется лишь малая часть энергии солнечного излучения. За счет этой энергии создается основная, или первичная, продукция экосистемы. Следовательно, первичная продуктивность экосистемы определяется как скорость, с которой лучистая энергия используется продуцентами в процессе фотосинтеза, накапливаясь в форме химических связей органических веществ. Первичную продуктивность Р выражают в единицах массы, энергии или эквивалентных единицах в единицу времени.[ ...]

Важнейшим показателем при определении предельных нагрузок на окружающую среду является понятие качества среды. Качество среды - совокупность параметров, удовлетворяющих условиям существования человека (экологическая ниша) и условиям существования человеческого общества. В качестве критериев качества среды могут быть использованы биологическая продуктивность экосистемы, соотношение видов, состояния трофических систем и т. п. В США качество среды характеризуется системой специальных баллов. Сумма баллов в том или ином регионе определяет качество среды.[ ...]

Экологические сукцессии - это последовательная смена экосистем при постепенном направленном изменении условий среды, например, при нарастании (или убывании) влажности или богатства почвы, при изменении климата и т.д. В этом случае экологическое равновесие как бы «скользит»: параллельно (или с некоторым отставанием) с изменениями условий среды изменяется состав живых организмов и продуктивность экосистемы, постепенно роль одних видов убывает, а других - увеличивается, разные виды выбывают из состава экосистемы или, наоборот, пополняют его. Сукцессии могут вызываться внутренними и внешними (по отношению к экосистеме) факторами, протекать очень быстро или тянуться столетиями. Если изменение среды будет резким (пожар, разлив большого количества нефти, проход колесной техники в тундре), то экологическое равновесие разрушится.[ ...]

Когда из рек отводят воду, болота вдоль их русел, не подпитываясь паводками, пересыхают, и это также ведет к исчезновению многих видов растений и животных. Болота в природе играют большую роль в очищении воды, просачивающейся сквозь их толщу в грунтовые воды. Болота являются регуляторами речного стока, они питают родники и реки. Кроме того, болота, обогащенные биогенами, представляют собой наиболее продуктивные экосистемы, служат местообитаниями многих диких животных.[ ...]

С. С. Шварц пишет: «Климатические катастрофы, не выходящие, однако, за пределы многовековых колебаний, могут снизить численность мелких млекопитающих в десятки и сотни тысяч раз, но через 2-3 сезона размножения зверьки вновь восстанавливают свою. численность до оптимума. Кажущееся же незначительным снижение численности животных, вызванное антропогенными влияниями, нередко приводит к массовому вымиранию вида» . Сохранение или реконструкция достаточно сложной, многовидовой и продуктивной экосистемы в региональном масштабе требуют глубокого и тщательного научного анализа экосистемы региона, что, к сожалению, далеко не всегда возможно при нынешнем уровне развития экологии. Представляется, однако, справедливым следующий тезис: несмотря на сложность, дороговизну и длительность экологических разработок, они должны предшествовать любому хозяйственному мероприятию, которое может вызвать экологические сдвиги регионального масштаба.[ ...]

По мысли А. Н. Тетиора , Б. - ключ к решению проблемы восстановления экологического равновесия на урбанизированных территориях. БИОПОЛЕ, биологическое поле - поле, оказывающее воздействие на живые организмы. Природа такого воздействия не ясна; проявляется в виде электромагнитных и биоэнергетических процессов. БИОПОЛИТИКА - политика, в основе которой признание неравенства рас. Б. часто является оправданием агрессивных политических или даже военных актов. См. Расизм. БИОПРОДУКТИВНОСТЬ ЭКОСИСТЕМЫ - см. Биологическая продуктивность экосистемы. БИОРАЗНООБРАЗИЕ -см. Разнообразие биологическое.[ ...]

Организмами-производителями являются автотрофы - прибрежная растительность, водные многоклеточные и одноклеточные плавучие растения (фитопланктон), живущие до глубин, куда еще проникает свет. За счет энергии, поступающей через ввод, организмы-производители в процессе фотосинтеза синтезируют органическое вещество из воды и углекислого газа. Основным показателем мощности экосистемы является ее продуктивность, под которой понимают массу органического вещества в телах организмов-продуцентов. Продуктивность экосистемы зависит от количества света, воды, богатства почвы или воды органическими и минеральными соединениями.[ ...]

В условиях существенной реконструкции водных систем - полностью зарегулированный сток многих рек, создание сети разнообразных водохранилищ, использование большого числа водоемов в качестве водоемов-охладителей энергетических объектов, интенсивная эвтрофикация многих внутренних водоемов, переброска стока многих рек с севера на юг - необходим совершенно иной подход к решению проблемы повышения воспроизводства рыбных богатств. Для этого, по-видимому, еще не достаточно только детального знания экологии размножения и развития ценных видов рыб, а надо научиться искусственно формировать продуктивные экосистемы, привлекая для этих целей даже далеко не традиционные для нашей страны объекты разведения (рыбоводства). Если мы сумеем выяснить сложные процессы, связанные со степенью устойчивости и изменчивости биологических систем (организм, популяция, экосистемы), на основании детального и одностороннего анализа кинетики протекающих процессов на разном уровне биосистем и перейдем от простой формы эксплуатации рыбных ресурсов в водоемах к управлению продуктивностью водных экосистем, то мы сумеем не только предвидеть и предотвратить нежелательные для нас изменения в фауне рыб, но и повысить их продуктивность.[ ...]

Биологический мониторинг основывается на наблюдениях за параметрами окружающей среды на сети контрольных пунктов и носит локальный характер. Геосистемный мониторинг использует не только данные, полученные биологическим мониторингом, но и систему особых ключевых (тестовых) площадей и имеет региональный характер. Эти ключевые площади принято называть природными (геоэкологическими) тестовыми полигонами, на которых устанавливаются геосистемные тесты: ПДК (предельно допустимые концентрации), ЕССПС (естественная способность природной среды к самоочищению), ЭВБ (энергетически-вещественный баланс), БПЭ (биологическая продуктивность экосистемы) и др. В каждой природной зоне рекомендуют иметь по одному полигону.[ ...]

Особое экологическое значение имеет географическое происхождение степных видов. Представители родов северного происхождения, таких, как 8Ира, А горугоп и Роа, возобновляют рост ранней весной, достигают максимального развития в конце весны или начале лета (когда семена созрели), а в жаркую погоду как бы впадают в «полусон»; осенью их рост возобновляется и они остаются зелеными, несмотря на мороз. Представители родов южного происхождения, таких, как, Апс1-городоп, ВисМое и ВЫе1оиа, возобновляют рост в конце весны, растут непрерывно все лето, достигают максимума биомассы к концу лета или осенью и остальное время не растут. С точки зрения годовой продуктивности экосистемы в целом благоприятна смесь северных и южных злаков, особенно потому, что в одни годы дожди могут быть обильными весной или осенью, а в другие годы - в середине лета. Замена таких адаптированных смесей «монокультурами» приводит к колебаниям продуктивности (еще один простой экологический факт, который не понимают даже агрономы!).[ ...]

Палы играют особенно большую роль в лесных и степных районах умеренных зон и в тропических районах с засушливым сезоном. Во многих районах на западе или юго-востоке США трудно найти более или менее крупный участок, в котором хотя бы за последние 50 лет не было случая пожара. Чаще всего естественной причиной пожара служит удар молнии. Североамериканские индейцы намеренно выжигали леса и прерии. Таким образом, пожар был лимитирующим фактором еще задолго до того, как человек начал решительно изменять окружающую среду. К сожалению, неосторожным поведением современный человек часто так усиливал действие огня, что разрушал или повреждал ту самую продуктивную среду, которую хотел поддержать. Однако абсолютная защита от пожаров не всегда приводит к желанной цели, т. е. к повышению продуктивности экосистемы. Итак, стало ясно, что пожар надо рассматривать как экологический фактор наряду с температурой, атмосферными осадками и почвой и изучать этот фактор без каких бы то ни было предрассудков. Сейчас, как и в прошлом, роль огня как друга или врагг цивилизации целиком зависит от научных знаний и от контроля над ним.[ ...]

Существенно различаются методы исследования биологического и геоэкологического мониторинга. Биологический мониторинг базируется на систематическом слежении (наблюдении и контроле) за некоторыми параметрами (индикаторами) окружающей среды (геофизическими, биохимическими и биологическими), имеющими биоэкологические значения, на сети контрольных пунктов, т. е. имеет в основном локальный характер. Ключевые площади можно называть природными (геоэкологическими) тестовыми полигонами; на них разрабатываются геосистемные тесты (индикаторы) типа ПДК, ЕССПС, ЭВБ, БПЭ для мониторинга окружающей среды в целом.[ ...]

Специальный термин пермеанты был предложен Шелфордом для обозначения высокоподвижных животных, таких, как птицы, млекопитающие и летающие насекомые, которые соответствуют нектону водных экосистем. Они свободно передвигаются между ярусами и подсистемами и между развивающимися и зрелыми стадиями растительности, которые обычно образуют мозаику в большинстве ландшафтов. У многих животных разные стадии жизненного цикла проходят в разных ярусах или сообществах, так что эти животные используют все преимущества каждого из сообществ.[ ...]

Глобальное истощение окружающей среды прогрессирующей рыночной экономикой может сопровождаться поддерживанием стационарного состояния и даже видимого улучшения определенных локальных участков (регионов, стран) на основе разомкнутого круговорота веществ, т.е. непрерывного внесения необходимого количества потребляемых веществ и непрерывного удаления отходов. Однако ра-зомкнутость локального круговорота означает, что существование искусственно поддерживаемого в стационарном состоянии участка сопровождается ухудшением состояния окружающей среды в остальной части биосферы. Цветущий сад, озеро или река, поддерживаемые в стационарном состояние на базе разомкнутого круговорота веществ, гораздо опаснее для биосферы в целом, чем заброшенная, превращенная в пустыню земля. В естественных пустынях продолжает действовать принцип Ле Шателье. Лишь величина компенсации возмущений оказывается ослабленной по сравнению с более продуктивными экосистемами.[ ...]

В любой момент времени большая часть фосфора находится в связанном состоянии - либо в организмах, либо в отложениях (в органическом детрите и неорганических частицах). Не более 10% фосфора присутствует в озерах в растворимой форме. Быстрое движение в обе -стороны (обмен) идет постоянно, но существенный обмен между твердой и растворимой формами часто нерегулярен, идет «рывками», с периодами, когда фосфор только уходит из отложений, и периодами, когда он только усваивается организмами или поступает в отложения, что связано с сезонными изменениями температуры и активности организмов. Как правило, связывание фосфора идет быстрее, чем освобождение. Растения быстро накапливают фосфор в темноте и в других условиях, когда не могут его использовать. За период быстрого роста продуцентов (обычно это бывает весной) весь доступный фосфор может оказаться связанным в продуцентах и консументах. Тогда активность -системы снижается, пока не разложатся трупы, фекалии и не высвободятся биогенные элементы. Однако концентрация фосфора в данный конкретный момент мало может сказать о продуктивности экосистемы. Низкое содержание растворенного фосфата может означать, либо что -система истощена, либо что метаболизм ее весьма интенсивен; только измерив скорость потока вещества, можно понять ситуацию. Помрой (1960) так формулирует это важное положение: «Измерение концентрации растворенного фосфата в природных водоемах не дает представления о доступности фосфора. Большая его часть или даже весь фосфор системы в любой момент может находиться в живых организмах, но при этом он может совершать полный «оборот» за один час, и в результате для организмов, способных поглощать фосфор из очень разбавленных растворов, его запас все время будет достаточным. Такие системы долгое время могут оставаться биологически стабильными при кажущемся отсутствии доступного фосфора. Изложенные здесь данные позволяют предположить, что быстрый поток фосфора типичен для высокопродуктивных систем и что для поддержания высокой продукции ■органики скорость потока важнее, чем концентрация элемента».

Понятие продуктивности экосистем

Экосистема, или экологическая система -- биологическая система, состоящая из сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющей обмен веществом и энергией между ними. Одно из основных понятий экологии.

Пример экосистемы -- пруд с обитающими в нём растениями, рыбами, беспозвоночными животными, микроорганизмами, составляющими живую компоненту системы, биоценоз.

Понятие экосистемы:

Определения

1. Любое единство, включающее все организмы на данном участке и взаимодействующее с физической средой таким образом, что поток энергии создаёт чётко определённую трофическую структуру, видовое разнообразие и круговорот веществ (обмен веществами и энергией между биотической и абиотической частями) внутри системы, представляет собой экологическую систему, или экосистему.

2. Сообщество живых организмов вместе с неживой частью среды, в которой оно находится, и всеми разнообразными взаимодействиями называют экосистемой.

3. Любую совокупность организмов и неорганических компонентов окружающей их среды, в которой может осуществляться круговорот веществ, называют экологической системой или экосистемой.

4. Биогеоценоз -- взаимообусловленный комплекс живых и косных компонентов, связанных между собой обменом веществ и энергииhttp://ru.wikipedia.org/wiki/%D0%AD%D0%BA%D0%BE%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0 - cite_note-biogeobse-5 .

Продуктивность экосистем -- это количество органического вещества (в единицах массы или энергии), производимой с единицы поверхности за единицу времени. Например, производительность тропического леса -- кг/м кв в год и т.д.

Производительность биологическая (экосистем) бывает первичной, вторичной, чистой и валовой.

Первичная продуктивность (или продукция) -- это биомасса или энергия, созданная продуцентами в единицу времени на единицу пространства. Различают валовую первичную продуктивность (ВПП) -- скорость, с которой солнечная энергия превращается продуцентами на органическое соединение во время фотосинтеза (ее выражают в кал/м кв в час), и чистую первичную продуктивность (ЧПП) -- энергию, что идет на прирост или поглощается деструктором:

ВПП = ЧПП + Д,

где ВПП -- валовая первичная продуктивность; ЧПП -- чистая первичная продуктивность; Д -- энергия дыхания.

Вторичная производительность (или вторичная продукция) -- общее количество органического вещества, которая произведена всеми гетеротрофами на единицу площади за единицу времени. Вторичная производительность также делится на валовую и чистую.

Продуктивность основных типов природных биомов

продуктивность природная биом агроэкосистема

Биом - это природная зона или область с определенными климатическими условиями и соответствующим набором доминирующих видов растений и животных (живое население), составляющих географическое единство. Для разграничения наземных биомов, кроме физико-географических условий среды, используют сочетания жизненных форм растений, их составляющих. Например, в лесных биомах доминирующая роль принадлежит деревьям, в тундре - многолетним травам, в пустыне - однолетним травам, ксерофитам и суккулентам.

Продвигаясь с севера к экватору, можно выделить девять основных типов сухопутных биомов. Приведем их краткую характеристику.

1. Тундра. Расположена между полярными льдами и таежными лесами к югу. Характерной особенностью этого биома является малое годовое количество осадков - всего 250 мм в год. Основные лимитирующие факторы - низкая температура и короткий сезон вегетации.

2. Тайга (биом бореальных (северных) хвойных лесов). Это один из самых обширных по площади биомов. Здесь растут вечнозеленые хвойные древесные породы: лиственница, ель, пихта, сосна. Из лиственных обычна примесь ольхи, березы, осины. Крупных животных мало, в основном это лоси и олени, но обитает большое количество хищников: куницы, рыси, волки, росомахи, норки, соболи. Многочисленные грызуны.

3. Листопадные леса умеренной зоны. В умеренном поясе, где достаточно влаги (800-1500 мм в год), а жаркое лето сменяется холодной зимой, развились леса определенного типа. К существованию в таких условиях приспособились деревья, сбрасывающие листву в неблагоприятное время года: дуб, бук, клен, граб, орешник. Вперемешку с ними встречаются здесь и сосна, и ель. Среди представителей животного мира можно отметить кабана, волка, оленя, лисицу, медведя, а также дятла, синицу, дрозда, зяблика и др. Современная лесная растительность здесь сформировалась под непосредственным влиянием человека.

4. Степи умеренной зоны. Степи занимают внутренние пространство евразийского, североамериканского континентов, юг Южной Америки и Австралии. Решающий фактор существования степей - климат. Осадков здесь недостаточно для существования деревьев, но и не настолько мало, чтобы образовались пустыни. В год выпадает от 250 до 750 мм осадков. Почвы степей с высокими травами богаты гумусом, поскольку к концу лета травы погибают и быстро разлагаются. В настоящее время здесь можно встретить порой только одомашненных коров, лошадей, овец и коз.

5. Растительность средиземноморского типа. Этот биом носит специфическое название - чапарраль. Его распространение приурочено к областям с мягкими дождливыми зимами и нередко засушливым летом. Преобладает жестколистная растительность с толстыми и глянцевыми листьями. В Австралии такую растительность составляют деревья и кустарники из рода эвкалипт. Из животных встречаются кролики, древесные крысы, бурундуки, некоторые виды оленей. В этом биоме важную роль играют пожары, которые, с одной стороны, благоприятствуют росту трав и кустарников (в почву возвращаются элементы питания), а с другой - создают естественный барьер от вторжения пустынной растительности.

6. Пустыни. Биом пустынь характерен для засушливых и полузасушливых зон Земли, где выпадает менее 250 мм осадков. Пустыни занимают около 1/5 поверхности суши. Среди них выделяют:

¦ пустыни, где годами не выпадает ни одного дождя (центральная Сахара, пустыни Такла-Макан в Центральной Азии, Атакама в Южной Америке, Ла-Жойа в Перу и Асуан в Ливии). В среднем такие пустыни получают около 10 мм осадков в год;

¦ пустыни, где выпадает менее 100 мм осадков в год (растительность здесь сосредоточивается вдоль русел рек, наполняющихся только после дождя);

¦ пустыни, где выпадает от 100 до 200 мм" осадков в год (возделывать культуры здесь невозможно, но многолетняя растительность встречается повсюду).

Пустынные животные выживают, поедая запасающие воду растения. Из крупных животных отметим верблюда, который может долгое время обходиться без воды, при условии периодического ее «запасания». Для мелких животных пустынь главным источником воды в основном является влага, содержащаяся в поедаемых ими кормах. Некоторые из этих животных вообще не умеют пить воду

7. Тропические саванны и лугопастбищные земли. Данный биом распространен на довольно бедных почвах, что послужило причиной относительной его сохранности.

Биом располагается по обеим сторонам от экваториальной зоны между тропиков. Типичный пейзаж саванны - высокая трава с редкостоящими деревьями из родов акация, баобаб, древовидные молочаи. Растения вынуждены здесь приспосабливаться к сухим сезонам и пожарам.

Видовое разнообразие животных в саваннах значительно меньше, чем в тропических лесах, но отдельные виды выделяются высокой плотностью особей, образуя стада, табуны, стаи, прайды. В саваннах Африки пасется такое количество копытных, которое не встречается ни в одном другом биоме. Растениями питаются многие звери и птицы: бородавочники, зебры, жирафы, слоны, цесарки, страусы.

8. Тропическое или колючее редколесье. Это в основном светлые редкослойные лиственные леса и колючие, причудливо изогнутые кустарники. Данный биом характерен для южной, юго-западной Африки и юго-западной Азии. Монотонно-однообразная растительность иногда украшается величественными баобабами. Лимитирующий фактор здесь - неравномерное распределение осадков, хотя в целом их выпадает достаточное количество.

9. Тропические леса. Биом занимает тропические области Земли в бассейнах Амазонки и Ориноко в Южной Америке; бассейны Конго, Нигера и Замбези в Центральной и Западной Африке, Мадагаскар, Индо-Малайскую область и Борнео-Новую Гвинею. Тропики обычно называют джунглями.

В кронах обитает многочисленное и разнообразное население. Среди птиц, обитающих в кронах, немало таких, которые не слишком хорошо летают, в основном они прыгают и лазают (птицы-носороги, райские птицы).

Растительность тропического леса предстает перед путешественником сплошной стеной растений, поднимающихся на высоту до 75 м (рис. 6.12). Главной особенностью тропических лесов является то, что произрастают они на крайне бедных почвах. Верхний слой почвы не превышает 5 см на склонах. Под ним обычно лежит красная латеритная глина, лишенная питательных веществ.


Первичная и вторичная продукция. Одно из важнейших свойств экосистем – способность создавать органическое вещество, которое называют продукцией . Продуктивность экосистем – это скорость образования продукции в единицу времени (час, сутки, год) на единицу площади (метр квадратный, гектар) или объёма (в водных экосистемах). Органическую массу, создаваемую продуцентами за единицу времени, называют первичной продукцией сообщества. Она подразделяется на валовую и чистую продукцию. Валовая первичная продукция – это количество органического вещества, создаваемого растениями за единицу времени при данной скорости фотосинтеза. Часть этой продукции идёт на поддержание жизнедеятельности самих растений (траты на дыхание). В лесах умеренного пояса и тропических растения тратят на дыхание от 40 до 70 % валовой продукции. Оставшаяся часть созданной органической массы характеризует чистую первичную продукцию , которая представляет собой величину прироста растений. Перерабатываясь в цепях питания, она идёт на пополнение массы гетеротрофных организмов.

Вторичная продукция – это прирост массы консументов за единицу времени. Её вычисляют отдельно для каждого трофического уровня. Консументы живут за счёт чистой первичной продукции сообщества. В разных экосистемах они расходуют её с разной полнотой. Если скорость изъятия первичной продукции в цепях питания отстаёт от темпов прироста растений, то это ведёт к постепенному увеличению биомассы продуцентов. Биомасса – это суммарная масса организмов данной группы или всего сообщества в целом. В стабильных сообществах с уравновешенным круговоротом веществ вся продукция тратится в цепях питания и биомасса остаётся постоянной.

Продукция и биомасса экосистем – это не только ресурс, используемый в пищу, от этих показателей в прямой зависимости находятся средообразующая и средостабилизирующая роль экосистем: интенсивность поглощения углекислоты и выделение кислорода растениями, регулирование водного баланса территорий, гашение шумов и т.д. Биомасса, в том числе и мёртвое органическое вещество, является основным резервуаром концентрации углерода на суше. Теоретически прогнозируемая скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений. Как известно, лишь 44% солнечного излучения относятся к фотосинтетически активной радиации (ФАР) – по длине волны, пригодной для фотосинтеза. Максимально достигаемый в природе КПД фотосинтеза – это 10–12% энергии ФАР, что составляет около половины от теоретически возможного. Он отмечается в наиболее благоприятных условиях. В целом по земному шару усвоение растениями солнечной энергии не превышает 0,1%, так как фотосинтетическая активность растений ограничивается множеством факторов: недостатком тепла и влаги, неблагоприятными почвенно-грунтовыми условиями и т.п. Продуктивность растительности изменяется не только при переходе от одной климатической зоны к другой, но и в пределах каждой зоны (табл. 2.) На территории России в зонах достаточного увлажнения первичная продуктивность увеличивается с севера на юг, с ростом притока тепла и продолжительности вегетационного периода. Годовой прирост растительности изменяется от 20 ц/га на побережье Северного Ледовитого океана до 200 ц/га на Черноморском побережье Кавказа. Самый большой прирост растительной массы достигает в среднем 25 г/м 2 в день при очень благоприятных условиях, при высокой обеспеченности растений водой, светом и минеральными веществами. На больших площадях продуктивность растений не превышает 0,1 г/м 2: в жарких и полярных пустынях и обширных внутренних пространствах океанов с крайним дефицитом питательных веществ для водорослей.

Таблица 2

Биомасса и первичная продуктивность основных типов экосистем

(по Т.А. Акимовой, В.В. Хаскину, 1994)

Экосистемы Биомасса, т/га Продукция, т/га·год
Пустыни 0,1 – 0,5 0,1 – 0,5
Центральные зоны океана 0,2 – 1,5 0,5 – 2,5
Полярные моря 1 – 7 3 – 6
Тундра 1 – 8 1 – 4
Степи 5 – 12 3 – 8
Агроценозы 3 – 10
Саванна 8 – 20 4 – 15
Тайга 70 – 150 5 – 10
Лиственный лес 100 – 250 10 – 30
Влажный тропический лес 500 – 1500 25 – 60
Коралловый риф 15 – 50 50 – 120

Для пяти континентов мира средняя продуктивность экосистем различается сравнительно мало (82–103 ц/га в год). Исключением является Южная Америка (209 ц/га в год), на большей части которой условия для жизни растительности очень благоприятны.

Общая годовая продукция сухого органического вещества на Земле составляет 150–200 млрд тонн. Более трети его образуется в океанах, около двух третей – на суше.

Почти вся чистая первичная продукция Земли служит для поддержания жизни всех гетеротрофных организмов. Питание людей обеспечивается в основном сельскохозяйственными культурами, занимающими примерно 10% площади суши. Сельскохозяйственные площади при рациональном их использовании и распределении продукции могли бы обеспечить растительной пищей примерно вдвое большую численность населения планеты, чем существующую. Сложнее обеспечить население вторичной продукцией. Имеющиеся на Земле ресурсы, включая продукцию животноводства и результаты промысла на суше и в океане, могут обеспечить ежегодно менее 50% от потребностей современного населения Земли. Следовательно, большая часть населения планеты находится в состоянии хронического белкового голодания. В связи с этим увеличение биологической продуктивности экосистем и особенно вторичной продукции является одной из важнейших задач человечества.

Экологические пирамиды. Каждая экосистема имеет определённую трофическую структуру, которую можно выразить либо числом особей на каждом трофическом уровне, либо их биомассой, либо количеством энергии, фиксируемой на единице площади за единицу времени на каждом последующем трофическом уровне. Графически это обычно представляют в виде пирамиды, основанием которой служит первый трофический уровень, а последующие образуют этажи и вершину пирамиды.

Рис. 17. Упрощённая схема пирамиды численности (по Г.А. Новикову, 1979)

Различают три основных типа экологических пирамид – чисел, биомассы и продукции (или энергии).

Пирамида чисел отражает распределение особей по трофическим уровням. Установлено, что в трофических цепях, где передача энергии происходит в основном через связи хищник – жертва, часто выдерживается правило: общее число особей в цепях питания на каждом последующем трофическом уровне уменьшается (рис. 17).

Это объясняется тем, что хищники, как правило, крупнее своих жертв и одному хищнику для поддержания его жизни требуется несколько жертв. Например, одному льву требуется 50 зебр в год. Однако из этого правила есть исключения. Волки, охотясь сообща, могут убивать жертву более крупную, чем они сами (например, оленей). Пауки и змеи, обладая ядом, убивают крупных животных.

Пирамида биомассы отражает суммарную массу организмов каждого трофического уровня. В большинстве наземных экосистем суммарная масса растений больше, чем биомасса всех растительноядных организмов, а масса последних, в свою очередь, превышает массу всех хищников (рис. 18)

З Ф

Коралловый риф Залежь Пелагиаль

Рис. 18. Пирамиды биомассы в некоторых биоценозах (по Ф. Дре, 1976):

П – продуценты, РК – растительные консументы, ПК – плотоядные консументы, Ф – фитопланктон, З – зоопланктон

В океанах и морях, где основными продуцентами являются одноклеточные водоросли, пирамида биомассы имеет перевёрнутый вид. Здесь вся чистая первичная продукция быстро вовлекается в цепи питания, накопление биомассы водорослей очень мало, а их потребители гораздо крупнее, имеют большую продолжительность жизни, поэтому на высших трофических уровнях преобладает тенденция к накоплению биомассы.

Пирамида продукции (энергии) даёт наиболее полное представление о функциональной организации сообщества, так как отражает законы расходования энергии в пищевых цепях: количество энергии, содержащейся в организмах на каждом последующем трофическом уровне цепи питания меньше, чем на предыдущем уровне.


Рис. 19. Пирамида продукции


Количество продукции, образующейся в единицу времени на разных трофических уровнях, подчиняется тому же правилу, которое характерно для энергии: на каждом последующем уровне цепи питания количество продукции, создаваемой за единицу времени, меньше, чем на предыдущем . Это правило является универсальным, действует во всех типах экосистем (рис. 19). Пирамиды энергии никогда не бывают перевёрнутыми.

Изучение законов продуктивности экосистем, возможность количественного учёта потока энергии чрезвычайно важны в практическом отношении, так как первичная продукция агроценозов и эксплуатируемых человеком природных сообществ является основным источником запасов пищи для человечества. Не менее важна и вторичная продукция, которую получают за счёт сельскохозяйственных животных. Точные расчёты потока энергии в масштабах продуктивности экосистем позволяют регулировать в них круговорот веществ таким образом, чтобы добиваться наибольшего выхода выгодной для человека продукции. Наконец, очень важно хорошо представлять допустимые пределы изъятия растительной и животной биомассы из природных систем, чтобы не подорвать их продуктивность.

Продуктивность экосистемы - это накопление экосистемой органического вещества в процессе ее жизнедеятельности. Продуктивность экосистемы измеряется количеством органического вещества, создаваемого за единицу времени на единицу площади.

Различают разные уровни продуцирования, на которых создается первичная и вторичная продукция. Органическая масса, создаваемая продуцентами в единицу времени, называется первичной продукцией , а прирост за единицу времени массы консументов - вторичной продукцией .

Первичная продукция подразделяется на два уровня - валовую и чистую продукцию. Валовая первичная продукция - это общая масса валового органического вещества, создаваемая растением в единицу времени при данной скорости фотосинтеза, включая и траты на дыхание.

Растения тратят на дыхание от 40 до 70% валовой продукции. Меньше всего ее тратят планктонные водоросли - около 40% от всей использованной энергии. Та часть валовой продукции, которая не израсходована «на дыхание», называется чистой первичной продукцией, она представляет собой величину прироста растений и именно эта продукция потребляется консументами и редуцентами.

Вторичная продукция не делится уже на валовую и чистую, так как консументы и редуценты, т.е. все гетеротрофы, увеличивают свою массу за счет первичной продукции, т.е. используют ранее созданную продукцию.

Рассчитывают вторичную продукцию отдельно для каждого трофического уровня, так как она формируется за счет энергии, поступающей с предшествующего уровня.

Все живые компоненты экосистемы - продуценты, консументы и редуценты - составляют общую биомассу (живой вес) сообщества в целом или его отдельных частей, тех или иных групп организмов. Биомассу обычно выражают через сырой и сухой вес, но можно выражать и в энергетических единицах - в калориях, джоулях и т.п, что позволяет выявить связь между величиной поступающей энергии и, например, средней биомассой.

По величине биологической продуктивности экосистемы подразделяют на 4 класса:

1) экосистемы очень высокой продуктивности - >2 кг/м2 0 в год (тропические леса, коралловые рифы);

2) экосистемы высокой продуктивности – 1-2 кг/м2 в год (липово-дубовые леса, прибрежные заросли рогоза или тростника на озерах, посевы кукурузы и многолетних трав при орошении и внесении высоких доз удобрений);

3) экосистемы умеренной продуктивности - 0,25-1 кг/м2 в год (сосновые и березовые леса, сенокосные луга и степи, заросшие водными растениями озера);

4) экосистемы низкой продуктивности - < 0,25 кг/м2 в год (пустыни, тундра, горные степи, большая часть морских экосистем). Средняя биологическая продуктивность экосистем на планете равна 0,3 кг/м2 в год.

  1. Классификация и особенности экосистем (Биомы:степи (чаппарали, гарриги, эспинали), пустыни, тундра, джунгли, хвойные леса, зоны морских (аппвелинга, коралловые рифы, аутвеллинга) и пресноводных (лотические: перекаты, плесы) лентические (озера и их стратификация) экосистем).

При классификации наземных экосистем принято использовать признаки растительных сообществ и климатические признаки, например, лес хвойный, лес тропический, холодная пустыня и т.п.

Гари́га , или гарри́га (фр. garrigue и окс. garriga ) - разрежённые заросли низкорослых вечнозелёных кустарников, главным образом дуба кустарникового (Quercus dumosa ) и пальмы хамеропс (Chamaerops ). Также могут быть тимьян (Thymus ), розмарин (Rosmarinus ), дрок (Genista ) и другие растения. Можно встретить в Средиземноморье, в менее сухом климате, чем фригана, на каменистых склонах, на месте сведённых, перевыпасом и палами, лесов из дуба каменного.

Чапара́ль (чапарраль, чапаррель, чапарель , исп. chaparral , от chaparro - заросли кустарникового дуба) - тип субтропической жестколистной кустарниковой растительности. Распространён в узкой полосе Тихоокеанского побережья Калифорнии и на Севере Мексиканского нагорья, на высоте 600-2400 м.

Подобные биомы находятся и в четырех других регионах Средиземноморского климата во всем мире, в том числе Средиземноморского бассейна (где он известен как маквис, маккия, maquis), центральной части Чили (где он называется Matorral), в Капской области ЮАР (мыс Доброй Надежды) (известен там как финбош) и на юго-востоке и юго-западе Австралии.

Отсутствие деревьев не связано с деятельностью человека, хотя ряд исследователей рассматривает чапараль, подобно маквису, как стадиюдеградации дубовых вечнозелёных лесов. Заросли чапараля достигают в высоту 3-4 м.

Наиболее типичной для чапараля является аденостома (Adenostoma fasciculatus), образующая чистые естественные насаждения. Широко распространены заросли кустарниковых вечнозелёных дубов, толокнянок (18 видов), представителей родов сумах, цеанотус (25 видов) и другие. У верхней границы чапараль увеличивается доля листопадных видов дуба, ирги, церциса.

Пустыня – это территория, где испарение превышает количество осадков, причем их уровень составляет менее 250мм/г. В таких условиях произрастает скудная, разреженная и обычно низкорослая растительность. Преобладание ясной погоды и разряженная растительность способствуют быстрой потере теплоты ночью, накопленной почвой днем. Для пустыней характерно значительное различие между дневной и ночной температурами. Пустынные экосистемы занимают около 16% поверхности суши и расположены практически во всех широтах Земли.

Тропические пустыни. Это такие пустыни, как Южная Сахара, которые составляют около 20% общей площади пустынь. Температура там круглый год высокая, а количество осадков минимальное.

Пустыни умеренных широт. Такие пустыни, как пустыня Мохаве в южной Калифорнии, отличаются высокими дневными температурами летом и низкими - зимой.

Холодные пустыни. Для них характерна очень низкая температура зимой и средняя – летом.

Растения и животные всех пустынь приспособлены улавливать и сохранять дефицитную влагу.

Медленный рост растений и малое видовое разнообразие делают пустыни весьма уязвимыми. Уничтожение растительности в результате выпаса или езды вне дорог ведет к тому, что на восстановление утраченного требуются десятилетия.

Травянистые экосистемы

Тропические травянистые экосистемы или саванны.

Такие экосистемы характерны для районов с высокими средними температурами, двумя продолжительными сухими сезонами и обильными осадками в остальное время года. Они образуют широкие полосы по обе стороны экватора. Некоторые из этих биомов представляют собой открытое пространство, покрытое только травянистой растительностью.

Травянистые экосистемы умеренных широт. Они встречаются во внутренних районах материков, главным образом Северной и Южной Америки, Европы и Азии. Основные типы травянистых сообществ умеренного пояса: высокотравные и низкотравные прерии США и Канады, пампы Южной Америки, вельды Южной Африки и степи от Центральной Европы до Сибири. В этих экосистемах (биомах) почти постоянно дуют ветры, способствуя испарению влаги. Густая сеть корней травянистых растений обеспечивает стабильность почвы до тех пор, пока не начинается ее распашка.

Полярные травянистые экосистемы или арктические тундры.

Они расположены в районах прилегающих к арктическим ледяным пустыням. Большую часть года тундры находятся под воздействием штормовых холодных ветров и покрыты снегом и льдом. Зимы здесь очень холодные и темные. Осадков немного, и выпадают они в основном в виде снега.

Медленное разложение органических веществ, малая мощность почвы, низкие темпы прироста растительности делают арктическую тундру одной из наиболее уязвимых экологических систем земного шара.

Лесные экосистемы.

Влажные тропические леса. Эти леса располагаются в ряде приэкваториальных районов. Они характеризуются умеренно высокими среднегодовыми температурами, которые мало изменяются в течение суток и по сезонам, а также значительной влажностью и почти ежедневно выпадающими осадками. В таких биомах доминируют вечнозеленые деревья, сохраняющие большую часть листьев или хвои круглый год, что обеспечивает непрерывное круглогодичное протекание процессов фотосинтеза.

Так как климатические условия во влажных тропических лесах практически неизменны, влага и теплота не имеют лимитирующего значения, как в других экосистемах. Основным лимитирующим фактором становится содержание биогенов в часто бедных органическим веществом почвах.

Листопадные леса умеренных широт. Они произрастают в районах с невысокими средними температурами, значительно меняющимися по сезонам. Зимы здесь не очень суровы, летний период продолжителен, осадки выпадают равномерно в течение всего года. По сравнению с тропическими леса умеренного пояса быстро восстанавливаются после вырубки и, следовательно, более устойчивы к антропогенным нарушениям.

Северные хвойные леса. Эти леса, называемые также бореальными, или тайгой, распространены в районах субарктического климата. Зимы здесь продолжительны и засушливы, с коротким световым днем и небольшими снегопадами. Температурные условия меняются от прохладных до исключительно холодных. В тайге добывают значительную часть деловой древесины, большое значение имеет промысел пушнины.

  • 6.Антропогенное влияние на круговороты основных биогенных элементов в биосфере.
  • 7.Основные этапы изменения взаимоотношений человека с природой в ходе его исторического развития.
  • 8.Проблема глобального изменения климата на планете: возможные причины, последствия, пути решения.
  • 9.Опустынивание земель как глобальная экологическая проблема.
  • 10.Проблема обеспечения пресной водой как глобальная экологическая проблема.
  • 11.Проблема деградации почв: причины и последствия в глобальном масштабе.
  • 12.Экологическая оценка глобальной демографической ситуации.
  • 13.Глобальная экологическая проблема загрязнения Мирового океана. В чем причины и экологическая опасность этого процесса?
  • 14.Проблема сокращения биологического разнообразия: причины, экологические последствия, возможные пути решения проблемы.
  • 15.Экологические факторы: понятие и классификация. Основные механизмы действия экологических факторов на живые организмы.
  • 16.Адаптация: понятие адаптации, ее экологическая роль.
  • 17.Основные закономерности действия экологических факторов на живые организмы.
  • 18.Типы биотических взаимоотношений в природе, их экологическая роль.
  • 19.Понятия – стенобионтность и эврибионтность.
  • 20.Понятие популяции, ее биологический и экологический смысл.
  • 21.Численность, плотность, прирост популяции. Регуляция численности.
  • 22.Рождаемость и смертность в популяции: теоретическая и экологическая. Факторы их определяющие.
  • 23.Половая структура популяции и факторы ее определяющие.
  • 24.Возрастная структура популяции, основные типы популяций в зависимости от соотношения возрастов.
  • 25.Пространственная структура популяции и факторы ее определяющие.
  • 26.Этологическая (поведенческая) структура популяции и факторы ее определяющие.
  • 27.Экологические стратегии популяций (r- и k- жизненные стратегии). Их экологический смысл.
  • 28.Выживаемость и кривые выживания организмов в популяции, экологический смысл кривых выживания.
  • 29. Кривые роста популяций, экологическая значимость каждой из стадий роста.
  • 30.Понятие экосистемы, ее основные компоненты, типы экосистем.
  • 31. Пирамиды численности, биомассы, энергии в экосистемах, их экологический смысл.
  • 32.Поток энергии в экосистеме. Правило 10 % энергии.
  • 33.Поток вещества в экосистеме. Принципиальная разница потока вещества и энергии.
  • 34.Пищевые цепи. Эффект накопления токсикантов в пищевых цепях.
  • 35.Продуктивность экологических систем. Наиболее продуктивные экосистемы Земного шара, их экологические проблемы.
  • 36.Экологическая сукцессия, виды сукцессии.
  • 37.Продуценты, консументы и редуценты, их место в цепи питания и экологическая роль в экосистемах.
  • 38.Место и роль человека в экологической системе.
  • 39.Естественные и искусственные экосистемы, их экологическая устойчивость.
  • 40.Понятие загрязнения окружающей среды, естественное и антропогенное загрязнение.
  • 41.Основные виды антропогенного воздействия на окружающую среду: химическое, энергетическое, биологическое загрязнение среды.
  • 42.Экологическая ситуация и здоровье человека. Адаптации человека к действию экстремальных факторов среды.
  • 43.Нормирование качества окружающей среды: цели нормирования, виды нормативов.
  • 44. Принципы, лежащие в основе выработки пдк.
  • 45.Мониторинг среды обитания: понятие, цели и виды мониторинга.
  • 46. Экологические проблемы Дальнего Востока.
  • 35.Продуктивность экологических систем. Наиболее продуктивные экосистемы Земного шара, их экологические проблемы.

    Биологическая продукция – это количество биологического вещества, которое создано за единицу времени на единицу площади (гр/м², кг/м²).

    Биологическая продукция:

    Первичная (валовая); Вторичная (чистая).

    Валовая продукция - это та продукция, которую создают растения в процессе фотосинтеза.

    Чистая продукция – это та часть энергии, которая осталась после расходов на дыхание.

    Средняя продуктивность экосистем земли не превышает 0,3кг/м². При переходе энергии с одного уровня на другой, теряется примерно 90% энергии, поэтому вторичная продукция в 20-50 раз меньше, чем первичная

    Производительность экосистемы, измеряемая количеством органического вещества, которое создано за единицу времени на единицу площади, называется биологической продуктивностью. Единицы измерения продуктивности: г/м² в день, кг/м² в год, т/км ² в год.

    Различают первичную биологическую продукцию, которую создают продуценты, и вторичную биологическую продукцию, которую создают консументы и редуценты.

    Первичную продукцию подразделяют на: валовую – это общее количество созданного органического вещества, и чистую – это то, что осталось после расхода на дыхание и корневые выделения.

    По продуктивности экосистемы делятся на четыре класса:

    1.Экосистемы очень высокой биологической продуктивности – свыше 2 кг/м² в год. К ним относятся заросли тростника в дельтах Волги, Дона и Урала.

    2.Экосистемы высокой продуктивности – 1-2 кг/м² в год. Это липово-дубовые леса, заросли рогоза или тростника на озере, посевы кукурузы.

    3.Экосистемы средней биологической продуктивности – 0,25-1 кг/м² в год. К ним относятся сосновые, берёзовые леса, сенокосные луга, степи.

    4.Экосистемы низкой биологической продуктивности – менее 0,25 кг/м² в год.

    Это арктические пустыни, тундры, большая часть морских экосистем.

    Средняя продуктивность экосистем земли составляет 0,3 кг/м² в год, т. е. на Земле преобладают средние и низкопродуктивные экосистемы.

    При переходе с одного трофического уровня на другой теряется 90% энергии.

    Примером повышенной продуктивности на стыках экосистем мо­гут служить переходные экосистемы между лесом и полем («опу­шечный эффект»), а в водных средах - экосистемы, возникающие в эстуариях рек (места впадения их в моря, океаны и озера и т. п.).

    Этими же закономерностями во многом обусловливаются упо­минавшиеся выше локальные сгущения больших масс живого ве­щества (наиболее высокопродуктивные экосистемы).

    Обычно в океане выделяют следующие сгущения жизни:

    1. Прибрежные. Они располагаются на контакте водной и наземно-воздушной среды. Особенно высокопродуктивны экосистемы эстуариев. Протяженность этих сгущений тем значительнее, чем больше вынос реками органических и минеральных веществ с суши.

    2. Коралловые рифы. Высокая продуктивность этих экосистем связана прежде всего с благоприятным температурным режимом, фильтрационным типом питания многих организмов, видовым бо­гатством сообществ, симбиотическими связями и другими факто­рами.

    3. Саргассовые сгущения. Создаются большими массами плавающих водорослей, чаще всего саргассовых (в Саргассовом море) и филлофорных (в Черном море).

    4. Апвеллинговые. Эти сгущения приурочены к районам океана, где имеет место восходя­щее движение водных масс от дна к поверхности (апвеллинг). Они несут много донных органических и минеральных отложений и в результате активного перемешивания хорошо обеспечены кисло­родом. Эти высокопродуктивные экосистемы являются одним из основных районов промысла рыб и других морепродуктов.

    5. Рифтовые глубоководные (абиссальные) сгущения. Эти экосистемы были открыты только в 70-х годах настоящего столетия. Они уникальны по своей природе: существуют на больших глубинах (2-3 тыс. метров). Первичная продукция в них образуется только в результате процессов хемосинтеза за счет высвобождения энергии из сернистых соединений, поступающих из разломов дна (рифтов). Высокая продуктивность здесь обязана прежде всего благо­приятным температурным условиям, поскольку разломы одновременно являются очагами выхода из недр подогретых (термальных) вод. Это единственные экосистемы, не использующие солнечную энергию. Они живут за счет энергии недр Земли.

    На суше к наиболее высокопродуктивным экосистемам (сгущениям живого вещества) относят: 1) экосистемы берегов морей и океанов в районах, хорошо обеспеченных теплом; 2) экосистемы пойм, периодически заливаемые водами рек, которые откладывают ил, а вместе с ним органические и биогенные вещества, 3) экосистемы небольших внутренних водоемов, бога­тые питательными веществами, а также 4) экосистемы тро­пических лесов. Продуктивность других экосистем видна из табл.3. Выше мы уже отмечали, что человек должен стремиться сохранить высокопродуктивные экосистемы - этот мощнейший каркас биосферы. Его разрушение связано с наиболее значительными отрицательными последствиями для всей биосферы.

    Что касается вторичной (животной) продукции, то она заметно выше в океане, чем в наземных экосистемах. Это связано с тем, что на суше в звено консументов (травоядных) в среднем включается лишь около 10% первичной продукции, а в океане - до 50%. Поэтому, несмотря на более низкую первичную продуктивность океана, чем суши, по массе вторичной продукции эти экосистемы примерно равны.

    В наземных экосистемах основную продукцию (до 50%) и особенно биомассу (около 90%) дают лесные экосистемы. Вместе с тем основная масса этой продукции поступает сразу в звено деструкторов и редуцентов. Для таких экосистем характерно преобладание детритных (за счет мертвого органического вещества) цепей питания. В травянистых экосистемах (луга, степи, прерии, саванны), как и в океане, значительно большая часть первичной продукции прижизненно отчуждается фитофагами (травоядными животными). Такие цепи носят название пастбищных или цепей выеданния.