Изобретение йода. Из истории йода

Введение

Йод знают все. Порезав палец, мы тянемся к склянке с Йодом, точнее с его спиртовым раствором. Но не все знают насколько важно содержание Йода в нашем организме. Йод является очень сильным антисептическим препаратом. Однако Йод служит не только для смазывания ссадин и царапин. Хотя Йода в человеческом организме всего 25 мг, он играет важную роль. Большая часть «человеческого Йода» находится в щитовидной железе: он входит в состав вещества, которое регулирует обмен веществ в организме. При недостатке Йода задерживается физическое и умственное развитие и возникает болезнь, называющаяся эндемический зоб. Это случается в высокогорных районах, где естественное содержание Йода в воздухе, воде и пище очень низкое.

Немного истории.

Описание элемента.

Йод - химический элемент VII группы периодической системы Менделеева. Атомный номер - 53. Относительная атомная масса 126,9045 (рис. 1). Галоген. Из имеющихся в природе галогенов - самый тяжёлый, если, конечно, не считать радиоактивный короткоживущий астат. Практически весь природный Йод состоит из атомов одного - единственного изотопа с массовым числом I 127 , его содержание в земной коре 4 * 10 -5 % по массе. Радиоактивный Йод I 125 образуется в ходе естественных радиоактивных превращений. Из искусственных изотопов Йода важнейшие - Йод I 131 и Йод I 133 . их в основном используют в медицине.

I 2 - галоген. Темно-серые кристаллы с металлическим блеском. Летуч. Плохо растворяется в воде, хорошо - в органических растворителях (с фиолетовым или коричневым окрашиванием раствора) или в воде с добавкой солей - Йодидов. Слабый окислитель и восстановитель. Реагирует с концентрированными серной и азотной кислотами, металлами, неметаллами, щелочами, сероводородом. Образует соединения с другими галогенами.

Молекула элементного Йода, как и прочих галогенов, состоит из двух атомов. Йод - единственный из галогенов - находится в твёрдом состоянии при нормальных условиях. Красивые тёмно - синие кристаллы Йода больше всего похожи на графит. Отчётливо выраженное кристаллическое строение (рис. 2), способность проводить электрический ток - все эти «металлические» свойства характерны для чистого Йода.

Открытие Йода.

Конец XVII и начало XVIII века были отмечены в Европе непрекращающимися войнами. Требовалось много пороха и, следовательно, много селитры. Производство селитры приняло невиданные масштабы, наряду с обыкновенным растительным сырьём в дело шли и морские водоросли. В них и обнаружили новый химический элемент.

Одним из французских селитроваров был химик и промышленник Бернар Куртуа (1777-1838), он был весьма наблюдательным человеком. Считается, что именно это помогло ему в 1811 г. стать первооткрывателем нового химического элемента Йода. Однажды он заметил, что медный котёл, в котором выпаривался щелок, полученный из фукуса, ламинарий и других бурых водорослей, быстро разрушается, как будто его разъедает какая - то кислота. Куртуа решил выяснить, в чём тут дело. Осадив и удалив из раствора соли натрия, он выпарил раствор, обнаружил в котле сульфид калия и чтобы разложить его, прилил к осадку концентрированной серной кислоты - и тут появился фиолетовый дым. Куртуа повторил опыт, на этот раз в реторте, и в приёмнике реторты осели блестящие чёрные пластинчатые кристаллы.

Йодид натрия из водорослей, взаимодействуя с серной кислотой, выделяет Йод I 2 ; одновременно образуется сернистый газ - диоксид серы SO 2 и воду:

2NaI + 2H 2 SO 4 = I 2 + SO 2 + Na 2 SO 4 + 2H 2 O

При охлаждении пары Йода превращались в темно-серые кристаллы с ярким блеском. Куртуа писал: «В маточном растворе щелока, полученного из водорослей, содержится довольно большое количество необычного вещества. Его легко выделить: для этого достаточно прилить серную кислоту к данному раствору и нагреть смесь в реторте... Новое вещество осаждается в приемнике в виде черного порошка, который при нагревании превращается в пары великолепного фиолетового цвета».

Название новому элементу присвоил в 1813 году французский химик Жозеф-Луи Гей-Люссак (1778-1850) за фиолетовый цвет его паров («Йодос» по-гречески значит «фиолетовый»). Он же получил многие производные нового элемента - Йодоводород HI , Йодноватую кислоту HIO 3 , оксид Йода(V) I 2 O 5 , хлорид Йода ICl и другие. Практически одновременно элементарную природу Йода доказал и английский химик Гэмфри Дэви (1778-1829).

из пищевых продуктов много Йода содержат яйца, молоко, рыба; очень много Йода в морской капусте, которая поступает в продаже в виде консервов, драже и других продуктов;

первый в России Йодный завод был построен в 1915 г. В Екатеринославле (ныне Днепропетровск); получали Йод из золы черноморской водоросли филлофоры; за годы первой мировой войны на этом заводе было добыто 200 кг Йода;

если грозовое облако «засеять» Йодистым серебром или Йодистым свинцом, то вместо града в облаке образуется снежная крупа: засеянное такими солями облако проливает дождём и не вредит полям.

Горизонт улучшается. В воздухе соль и йод .

Откуда взяться в воздухе йоду?

Йод – элемент довольно редкий: в земной коре его очень мало – всего 0,00005%, это вчетверо меньше, чем мышьяка , в пять раз меньше, чем брома . Йод относится к галогенам (по-гречески hals – соль, genos – происхождение). Действительно, в природе все галогены встречаются исключительно в виде солей. Но если минералы фтора и хлора весьма распространены, то собственные минералы иода (лаутарит Ca(IO 3) 2 , иодаргирит AgI) – чрезвычайная редкость. Обычно йод встречается среди других солей в виде примеси. Примером может служить природный нитрат натрия – чилийская селитра, в которой есть примесь иодата натрия NaIO 3 . Залежи чилийской селитры начали разрабатывать еще в начале 19 века. После растворения породы в горячей воде раствор фильтровали и охлаждали. При этом в осадок выпадал чистый нитрат натрия, который шел на продажу в виде удобрения. Из оставшегося после кристаллизации раствора добывали йод. В 19 веке Чили стало главным поставщиком этого редкого элемента.

Иодат натрия неплохо растворим в воде: 9,5 г на 100 г воды при 25 о С. Значительно лучше растворяется иодид натрия NaI: 184 г на 100 г воды! Йод в породах находится чаще всего именно в виде легкорастворимых неорганических солей и потому может выщелачиваться из них подземными водами. И далее попадает в реки, моря и океаны, где накапливается некоторыми организмами, в том числе водорослями. Например, в 1 кг высушенной морской капусты (ламинарии) содержится 5 г йода, тогда как в 1 кг морской воды – всего лишь 0,025 мг, то есть в 200 тысяч раз меньше! Недаром в некоторых странах из ламинарии до сих пор добывают йод, а у морского воздуха (его-то и имел в виду Бродский) – особый запах; в морской соли тоже всегда есть немного йода. Ветры, переносящие воздушные массы с океана на материк, переносят и йод. В приморских областях количество йода в 1 куб. м воздуха может достигать 50 мкг, тогда как в континентальных и горных – всего 1 или даже 0,2 мкг.

Сейчас йод добывают в основном из вод нефтяных и газовых месторождений, и потребность в нем довольно велика. Во всем мире ежегодно добывают более 15 000 тонн йода.

Открытие и свойства йода.

Впервые йод получил из золы морских водорослей французский химик Бернар Куртуа в 1811. Вот как он описал свойства открытого им элемента: «Новое вещество осаждается в виде черного порошка, превращающегося при нагревании в пары великолепного фиолетового цвета. Эти пары конденсируются в форме блестящих кристаллических пластинок, имеющих блеск... Удивительная окраска паров нового вещества позволяет отличить его от всех доныне известных веществ...». По окраске паров йод и получил свое название: по-гречески «иодес» – фиолетовый.

Куртуа наблюдал еще одно необычное явление: твердый йод при нагревании не плавился, а сразу превращался в пар; такой процесс называется возгонкой. Д.И.Менделеев в своем учебнике химии так описывает этот процесс: «Чтобы очистить йод, его возгоняют... йод прямо из паров переходит в кристаллическое состояние и садится в охлаждаемых частях аппарата в виде пластинчатых кристаллов, имеющих черновато-серый цвет и металлический блеск». Но если кристаллы йода нагревать в пробирке быстро (или не давать парам йода выходить наружу), то при температуре 113 о С йод расплавится, превратившись в черно-фиолетовая жидкость. Объясняется это тем, что при температуре плавления давление паров йода высоко – около 100 мм ртутного столба (1,3Ч 10 4 Па). И если над нагретым твердым йодом не будет достаточно его паров, то он испарится быстрее, чем расплавится.

В чистом виде йод – черно-серые тяжелые (плотность 4,94 г/см 3) кристаллы с фиолетовым металлическим блеском. Почему же йодная настойка не фиолетовая? Оказывается, в разных растворителях йод имеет разный цвет: в воде он желтый, в бензине, тетрахлориде углерода CCl 4 , многих других так называемых «инертных» растворителях имеет фиолетовый цвет – точно такой же, как у паров йода. Раствор йода в бензоле, спирте и ряде других растворителей имеет буро-коричневый цвет (как у иодной настойки); в водном растворе поливинилового спирта (–СН 2 –СН(ОН)–) n йод имеет ярко-синий цвет (это раствор применяется в медицине в качестве дезинфицирующего средства под названием «иодинол», им полощут горло, промывают раны). И вот что любопытно: реакционная способность йода в «разноцветных» раствора неодинакова! Так, в коричневых растворах йод намного активнее, чем в фиолетовых. Если порошок меди или листочек тонкой медной фольги внести в 1%-ный коричневый раствор, он обесцветится за 1–2 минуты в результате реакции 2Cu + I 2 ® 2CuI. Фиолетовый раствор останется в этих условиях без изменений в течение нескольких десятков минут. Каломель (Hg 2 Cl 2) обесцвечивает коричневый раствор за несколько секунд, а фиолетовый – только за две минуты. Эти опыты объясняются тем, что молекулы йода могут взаимодействовать с молекулами растворителя, образуя комплексы, в которых йод более активен.

Синяя окраска появляется и при взаимодействии йода с крахмалом. В этом можно убедиться, капнув иодной настойкой на ломтик картофеля или на кусочек белого хлеба. Реакция эта настолько чувствительна, что с помощью йода легко обнаружить крахмал на свежем срезе картофелины или в муке. Еще в 19 в. эту реакцию использовали, чтобы уличить недобросовестных торговцев, добавляющих в сметану «для густоты» пшеничной муки. Если на образец такой сметаны капнуть иодной настойкой, синее окрашивание сразу выявит обман.

Чтобы вывести пятно от иодной настойки, надо использовать раствор тиосульфата натрия, который применяется в фотографии и продается в магазинах фототоваров (его называют также «фиксажем» и «гипосульфитом»). Тиосульфат мгновенно реагирует с йодом, полностью его обесцвечивая: I 2 + 2Na 2 S 2 O 3 ® 2NaI + Na 2 S 4 O 6 . Достаточно протереть запачканную йодом кожу или ткань водным раствором тиосульфата, как желто-коричневое пятно тут же исчезнет.

Йод в аптечке.

В сознании обычного человека (не химика) слово «йод» ассоциируется с пузырьком, который стоит в аптечке. На самом деле в пузырьке находится не йод, а иодная настойка – 5%-ный раствор йода в смеси спирта и воды (в настойку добавляют также иодид калия; он нужен для того, чтобы йод лучше растворялся). Раньше в медицине широко применялся также иодоформ (трииодметан CHI 3) – дезинфицирующее средство с неприятным запахом. Препараты, содержащие йод, обладают антибактериальными и противогрибковыми свойствами, они оказывают также противовоспалительное действие; их применяют наружно для обеззараживания ран, при подготовке операций.

Иод ядовит. Даже такая привычная иодная настойка при вдыхании ее паров поражает верхние дыхательные пути, а при попадании внутрь вызывает тяжелые ожоги пищеварительного тракта. Длительное введение йода в организм, а также повышенная чувствительность к нему может вызвать насморк, крапивницу, слюно- и слезотечение, угревидную сыпь.

Йод в организме.

Вот строки другого поэта – Беллы Ахмадулиной:

...То ль сильный дух велел искать исхода,

То ль слабость щитовидной железы

выпрашивала горьких лакомств иода?

Зачем же нужно щитовидной железе это «лакомство»?

Как правило, в биохимических процессах участвуют только «легкие» элементы, находящиеся в первой трети периодической таблице. Чуть ли не единственным исключением из этого правила является йод. В человеке содержится около от 20 до 50 мг йода, значительная часть которого сконцентрирована в щитовидной железе (остальной йод находится в плазме крови и мышцах).

Щитовидная железа была уже известна врачам глубокой древности, которые заслуженно приписывали ей важную роль в организме. По форме она похожа на галстук-бабочку, т.е. состоит из двух долей, соединенных перешейком. Щитовидная железа выделяет в кровь гормоны, оказывающие очень разностороннее влияние на организм. Два из них содержат йод – это тироксин (Т4) и трииодтиронин (Т3). Щитовидная железа регулирует развитие и рост как отдельных органов, так и всего организма в целом, настраивает скорости обменных процессов.

В пищевых продуктах и в питьевой воде йод содержится в виде солей иодоводородной кислоты – иодидов, из которых он легко всасывается в передних отделах тонкого кишечника. Из кишечника йод переходит в плазму крови, откуда жадно поглощается щитовидной железой. Там он и превращается в ней в важнейшие для организма тиреоидные гормоны (от греческого thyreoeides – щитовидный). Процесс этот сложный. Сначала ионы I – ферментативно окисляются до I + . Эти катионы реагируют с белком тиреоглобулином, в котором много остатков аминокислоты тирозина. Под действием фермента иодиназы происходит иодирование бензольных колец тирозина с последующим образованием тиреоидных гормонов. В настоящее время их получают синтетически, причем по строению и действию они ничем не отличаются от природного.

Если синтез тиреоидных гормонов замедляется, человек заболевает зобом . Болезнь вызывается недостатком йода в почве, воде и, следовательно, в растениях, животных и производимых в этой местности пищевых продуктах. Такой зоб называется эндемическим, т.е. свойственным данной местности (от греч. endemos – местный). Районы с недостатком йода встречаются довольно часто. Как правило, это местности, удаленные от океана или отгороженные от морских ветров горами. Таким образом, значительная часть почвы земного шара бедна йодом, соответственно, бедны йодом пищевые продукты. В России дефицит йода встречается в горных районах; крайне выраженная иодная недостаточность выявлена в Республике Тува, а также в Забайкалье. Мало его на Урале, Верхней Волге, Дальнем Востоке, Марийской и Чувашской республиках. Не все благополучно в йодом в ряде центральных районов – Тульской, Брянской, Калужской, Орловской, других областях. В питьевой воде, растениях и животных в этих районах содержание йода понижено. Щитовидная железа, как бы компенсируя недостаточное поступление йода, разрастается – иногда до таких размеров, что деформируется шея, сдавливаются кровеносные сосуды, нервы и даже бронхи и пищевод. Эндемический зоб легко предотвратить, если восполнять дефицит йода в организме.

При нехватке йода во время беременности у матери, а также в первый период жизни ребенка у него замедляется рост, снижается умственная деятельность, могут развиться кретинизм, глухонемота и другие тяжелейшие отклонения в развитии. Своевременная диагностика помогает избежать этих несчастий путем простого введения тироксина.

Нехватка йода у взрослых приводит к снижению частоты сердечных сокращений и температуры тела – больные зябнут даже в жаркую погоду. У них снижается иммунитет , выпадают волосы, замедляются движение и даже речь, отекают лицо и конечности, отмечается слабость, быстрая утомляемость, сонливость, ухудшение памяти, безучастность к окружающему миру. Заболевание также лечат препаратами Т3 и Т4. При этом все перечисленные симптомы исчезают.

Где взять йод.

Для профилактики эндемического зоба йод вводится в продукты питания. Самый распространенный метод – иодирование поваренной соли. Обычно в нее вводят иодид калия – примерно 25 мг на 1 кг. Однако KI во влажном теплом воздухе легко окисляется до иода, который улетучивается. Именно этим объясняется малый срок хранения такой соли – всего 6 месяцев. Поэтому в последнее время иодид калия заменяют иодатом KIO 3 . Помимо поваренной соли, йод добавляют в ряд витаминных смесей.

Иодированные продукты не нужны тем, кто потребляет достаточно иода с пищей и водой. Потребность в йоде для взрослого человека мало зависит от пола и возраста и составляет примерно 150 мкг в сутки (однако она возрастает при беременности, усиленном росте, охлаждении). В большинстве пищевых продуктах йода очень мало. Например, в хлебе и макаронных изделиях его обычно меньше 5 мкг; в овощах и фруктах – от 1–2 мкг в яблоках, грушах и черной смородине до 5 мкг в картофеле и до 7–8 мкг в редисе и винограде; в курах и говядине – до 7 мкг. И это в расчете на 100 г сухого продукта, т.е. золы! Причем при длительном хранении или тепловой обработке теряется от 20 до 60% йода. А вот рыба, особенно морская, богата йодом: в сельди и горбуше его 40–50 мкг, в треске, минтае и хеке – до 140–160 (также в расчете на 100 г сухого продукта). Намного больше йода в печени трески – до 800 мкг, но особенно много его в бурых морских водорослях – «морской капусте» (она же ламинария) – в ней может быть до 500 000 мкг йода! В нашей стране ламинария растет в Белом, Баренцевом, Японском и Охотском морях.

Еще в Древнем Китае морскими водорослями успешно лечили заболевания щитовидной железы. В прибрежных районах Китая существовала традиция – после родов женщинам давали морскую капусту. При этом материнское молоко было полноценным, а ребенок рос здоровым. В 13 в. там даже был издан указ, обязывающий всех граждан есть морские водоросли для укрепления здоровья. Восточные врачеватели утверждают, что после 40 лет продукты из морской капусты обязательно должны присутствовать в рационе даже здоровых людей. Употреблением в пищу ламинарии некоторые объясняют долголетие японцев, а также тот факт, что после ядерных бомбардировок Хиросимы и Нагасаки количество погибших в результате загрязнения окружающей среды радиоактивными веществами было сравнительно небольшим.

Йод и радиация.

В природе йод представлен единственным стабильным изотопом 127 I.

Искусственные радиоактивные изотопы йода – 125 I, 131 I, 132 I и другие широко используются в биологии и, особенно, в медицине для определения функционального состояния щитовидной железы и лечения ряда её заболеваний. Применение радиоактивного йода в диагностике связано со способностью йода избирательно накапливаться в щитовидной железе; использование в лечебных целях основано на способности излучения радиоизотопов йода разрушать больные клетки железы.

При загрязнении окружающей среды продуктами ядерного деления радиоактивные изотопы йода быстро включаются в биологический круговорот, попадая, в конечном счете, в молоко и, следовательно, в организм человека. Так, многие жители районов, подвергнутых влиянию ядерного взрыва в Чернобыле, получили изрядную дозу радиоактивного йода-131 (период полураспада 8 суток) и повредили щитовидную железу. Больше всего больных было в областях, где естественного йода мало и жители не были защищены «обычным йодом». Особенно опасен «радиоиод» для детей, щитовидная железа которых в 10 раз меньше, чем у взрослых и обладает большей радиочувствительностью, что может привести к раку щитовидной железы.

Для защиты щитовидной железы от радиоактивного йода рекомендуется применять препараты обычного йода (по 100–200 мг на прием), который «блокирует» щитовидную железу от попадания в нее радиоиода. Не поглощенный щитовидной железой радиоактивный йод почти полностью и сравнительно быстро выделяется с мочой. К счастью, радиоактивный йод живет недолго, и через 2–3 месяца практически полностью распадается.

Йод в технике.

Значительные количества добываемого йода используются для получения металлов высокой степени чистоты. Этот метод очистки основан на так называемом галогенном цикле, открытом в 1915 американским физикохимиком Ирвингом Ленгмюром (1881–1957). Сущность галогенного цикла можно пояснить на примере современного способа получения металлического титана высокой чистоты. При нагревании порошка титана в вакууме в присутствии йода до температуры выше 400 о C образуется газообразный иодид титана (IV). Его пропускают над титановой проволокой, нагреваемой током до 1100–1400 о C. При такой высокой температуре TiI 4 существовать не может и распадается на металлический титан и йод; чистый титан конденсируется на проволоке в виде красивых кристаллов, а выделившийся йод снова может реагировать с титановым порошком, превращая его в летучий иодид. Иодидный метод можно использовать для очистки различных металлов – меди, никеля, железа, хрома, циркония, гафния, ванадия, ниобия, тантала и др.

Этот же цикл осуществляется и в галогенных лампах. В обычных лампах коэффициент полезного действия крайне низок: в горящей лампочке почти вся электроэнергия превращается не в свет, а в теплоту. Чтобы увеличить светоотдачу лампы, необходимо как можно сильнее повысить температуру ее спирали. Но при этом существенно уменьшается срок жизни лампы: спираль в ней быстро перегорает. Если же ввести в колбу лампы очень небольшое количество йода (или брома), то в результате галогенного цикла вольфрам, испарившийся со спирали и осевший на внутренней поверхности стеклянной колбы, снова переносится на спираль. В такой лампе можно значительно – на сотни градусов – повысить температуру спирали, доведя ее до 3000 о C, что увеличивает светоотдачу вдвое. Мощная галогенная лампа выглядит лилипутом по сравнению с обычной лампой такой же мощности. Например, галогенная лампа мощностью 300 ватт имеет диаметр меньше 1,5 см.

Повышение температуры спирали неизбежно приводит и к более сильному разогреву колб в галогенных лампах. Простое стекло такие температуры не выдерживает, поэтому приходится помещать спираль в трубку из кварцевого стекла. Первые патенты на галогенные лампы были выданы лишь в 1949, а их промышленный выпуск был налажен еще позже. Техническая разработка кварцевых ламп с самовосстанавливающейся вольфрамовой нитью была осуществлена в 1959 фирмой «Дженерал электрик». В таких лампах баллон может раскаляться до 1200 о С! Галогенные лампы имеют отличные световые характеристики, поэтому эти лампы, несмотря на их высокую стоимость, широко используются везде, где нужен мощный и компактный источник света, – в кинопроекторах, автомобильных фарах и т.д.

Соединения йода применяются и для того, чтобы вызвать дождь. Дождь, как и снег, начинается с образования в облаках мельчайших кристалликов льда из паров воды. Далее эти кристаллики-зародыши быстро растут, становятся тяжелыми и выпадают в виде осадков, превращаясь, в зависимости от погодных условий, в снег, дождь или град. Если воздух абсолютно чистый, зародыши льда могут образоваться только при очень низкой температуре (ниже –30 o С). В присутствии же некоторых веществ зародыши льда образуются при значительно более высокой температуре. Так можно вызвать искусственный снегопад (или дождь).

Одна из лучших затравок – иодид серебра; в его присутствии кристаллы льда начинают расти уже при –9 o С. Существенно, что «работать» могут уже мельчайшие частицы иодида серебра размером всего 10 нм (1 нм = 10 –9 м). Для сравнения: радиусы ионов серебра и йода составляют соответственно 0,15 и 0,22 нм. Теоретически из кубического кристалла AgI размером всего 1 см можно получить 10 21 таких мельчайших частиц, и не покажется удивительным, что для выпадения искусственного дождя требуется очень мало иодида серебра. Как подсчитали американские метеорологи, всего 50 кг AgI достаточно для «затравки» всей атмосферы над поверхностью США (а это 9 млн. квадратных километров)! При этом в 1 куб. м образуется свыше 3,5 млн. центров кристаллизации льда. А чтобы поддерживать образование ледяных зародышей, достаточно расходовать всего 0,5 кг AgI в час. Поэтому, несмотря на сравнительно высокую стоимость солей серебра, применение AgI с целью вызвать искусственный дождь оказывается практически выгодным.

Иногда требуется выполнить прямо противоположное задание: «разогнать» тучи, не дать пролиться дождю при проведении какого-либо важного мероприятия (например, Олимпийских игр). В этом случае иодид серебра нужно распылять в облаках заблаговременно, за десятки километров от места проведения торжества. Тогда дождь прольется на леса и поля, а в городе будет солнечная сухая погода.

Илья Леенсон

Биологическая роль йода

1. История открытия йода

Йод был открыт в 1811 году французским химиком-технологом Бернаром Куртуа (1777-1838), сыном известного селитровара. Куртуа не был простым ремесленником. Проработав три года в аптеке, он получил разрешение слушать лекции по химии и заниматься в лаборатории Политехнической школы у знаменитого парижского химика и политического деятеля Фуркруа. Бернар Куртуа стал изучать золу морских водорослей, из которой тогда добывали соду. Он заметил, что медный котел, в котором выпаривались зольные растворы, разрушается слишком быстро. Проделывая серию опытов, Куртуа взял две колбы, в одну из которых поместил серную кислоту с железом, а в другую - золу морских водорослей со спиртом. На плече у ученого во время опытов сидел его любимый кот. Однажды он неожиданно спрыгнул, опрокинув колбы, содержимое их смешалось. Куртуа увидел, что над лужицей, которая образовалась при падении сосудов, поднимается фиолетовое облачко.Впоследствии специально нагревая маточный (неразбавленный) раствор золы морских водорослей с концентрированной серной кислотой, он наблюдал выделение "паров великолепного фиолетового цвета", которые осаждались в виде темных блестящих пластинчатых кристаллов. "Удивительная окраска, неизвестная и невиданная ранее, позволяла сделать вывод, что получено новое вещество", - писал Куртуа в своих воспоминаниях.

В 1813 году появилась первая научная публикация об этом веществе, его стали изучать химики разных стран, в том числе такие светила науки, как французский химик Жозеф Гей-Люссак и английский химик Хэмфри Дэви. Год спустя эти ученые доказали элементарную природу вещества, открытого Куртуа, а Гей-Люссак назвал новый элемент йодом (от греческого iodes, ioeides - похожий цветом на фиалку, темно-синий, фиолетовый).

Интересно отметить, что история лечебного применения йода уходит в глубь веков. Считается, что первые сообщения о целебных свойствах веществ, содержащих йод, появились в Китае примерно за три тысячи лет до нашей эры. Древние целители выделяли этот элемент из морских губок и водорослей и прикладывали ткань, смоченную йодом, к ранам, чтобы они не гноились и быстрее заживали.

Антисептические (противомикробные) свойства йода первым использовал в хирургии французский врач Буанэ. Как ни странно, но самые простые лекарственные формы йода - водные и спиртовые растворы - очень долго не находили применения в хирургии, хотя еще в 1865-1866 годах великий русский хирург Н. И. Пирогов применял йодную настойку при лечении ран.

Приоритет подготовки операционного поля с помощью йодной настойки ошибочно приписывается немецкому врачу Гроссиху. Между тем еще в 1904 году, за четыре года до Гроссиха, русский военный врач Н. Филончиков в своей статье "Водные растворы йода как антисептическая жидкость в хирургии" обратил внимание медиков на громадные достоинства водных и спиртовых растворов йода именно при подготовке к операции.

Священник Павел Александрович Флоренский - выдающийся богослов, философ и ученый, один из замечательных представителей русской культуры "Серебряного века" после своего ареста в лагере на Соловецких островах с 1934 года занимался вопросами добычи йода из водорослей на самим изобретенных и сконструированных уникальных аппаратах. Флоренский считал йод очень действенным лекарством, способным излечить многие болезни, и, к примеру, использовал спиртовой раствор йода для профилактики гриппа, добавляя 3-4 капли его в молоко.

Азот и его соединения

Открыт в 1772 шотландским ученым Д. Резерфордом в составе продуктов сжигания угля, серы и фосфора как газ, непригодный для дыхания и горения ("удушливый воздух") и в отличие от CO2не поглощаемый раствором щелочи. Вскоре французский химик А.Л...

Аурум и его соединения

Золото (англ. Gold, франц. Оr, нем. Gold) - один из семи металлов древности. Обычно считают, что золото было первым металлом, с которым познакомился человек еще в эпоху каменного века благодаря его распространению в самородном состоянии...

Ацетилен

Впервые ацетилен получил в 1836 Эдмунд Дэви, двоюродный брат знаменитого Гемфри Дэви. Он подействовал водой на карбид калия: К2С2 + Н2О=С2Н2 + 2КОН и получил новый газ, который назвал двууглеродистым водородом. Этот газ был, в основном...

Капельный анализ

Капельный метод анализа начал использоваться довольно давно. Трудно установить, кто первый использовал капельные реакции для аналитических целей. По-видимому, наиболее ранний пример был опубликован Ф...

Магнийорганические соединения

К магнийорганическим относят химические соединения, в которых атом углерода непосредственно связан с атомом магния. Они представляют отдельный очень важный класс соединений магния...

Меланоидины как результат реакции Майяра

Химия богата именными реакциями, их более тысячи. Но большинство из них мало о чем скажут человеку, далекому от химии, они для тех, кто понимает. Однако в этом богатом перечне есть одна реакция...

Никель и его соединения

Уже с 17 в. рудокопам Саксонии (Германия) была известна руда, которая по внешнему виду напоминала медные руды, но меди при выплавке не давала. Ее называли купферникель (нем. Kupfer - медь, а Nickel - имя гнома...

Цинк является тем элементом, который человек знает и использует с древних времен. Наиболее распространенным минералом является карбонат цинка, или каламин. Как любой карбонат, каламин при нагревании, точнее прокаливании...

Получение фосфорнокислого цинка

В 1817 нем. химик Ф. Штромейер, при ревизии одной из аптек, обнаружил, что имевшийся там карбонат цинка содержит примесь неизвестного металла, который осаждается в виде жёлтого сульфида сероводородом из кислого раствора...

Получение фосфорнокислого цинка

Самородная ртуть была известна за 2000 лет до н. э. народам Древней Индии и Древнего Китая. Ими же, а также греками и римлянами применялась киноварь (природная HgS) как краска, лекарственное и косметическое средство. Греческий врач Диоскорид (1 в. н.э.)...

Практическое применение и свойства неодима

В средние века алхимики выделили группу веществ, почти не растворяющихся в воде и кислотах (из растворов кислот не выделялось пузырьков газа), не изменявшихся при нагревании, не плавившихся и обладающих щелочным характером...

Применение хлорофилла

Возможность экстракции зеленых пигментов листьев спиртом была известна уже французскому ученому Ж. Сенебье в 1782-1800 гг. В 1817 г. французские химики П. Пельтье и Ж. Кванту назвали зеленый спиртовой раствор смеси растительных пигментов хлорофиллом...

Радон, его влияние на человека

После открытия радия, когда ученые с большим увлечением познавали тайны радиоактивности, было установлено, что твердые вещества, находившиеся в близком соседстве с солями радия, становились радиоактивными...

Фармацевтический анализ производных изохинолина (папаверина гидрохлорид)

Папаверин был открыт студентом-химиком Генрихом Мерком в 1848 г. Новое вещество немец выделил из опия -- млечного сока снотворного мака (лат. Papaver Somniferum). По химической структуре средство было причислено к классу алкалоидов. В 1910 г. А...

Фармацевтический анализ производных фурана (фурагин)

Первые сведения о синтетическом получении фурановых веществ появились ещё в начале XIX века, то есть на заре органической химии как самостоятельной науки. Однако только со второй половины XIX столетия...

Этот элемент (англ. Iodine, франц. Iode, нем. Jod, итал. Iodio) был открыт фабрикантом мыла и селитры Куртуа в 1811г. Во Франции и других странах с давних пор из соли морских водорослей получали щелочное вещество, называвшееся Soude de Varech или просто Varech (англ. Wrack или wreck, древнерусское вараха). Куртуа обнаружил, что раствор этой золы, называемой им Salin le varech, сильно разъедает медный котел, в котором производилось выпаривание. Желая выяснить причину этого, Куртуа стал добавлять к раствору различные реагенты. При этом он заметил, что в некоторых случаях образуются тяжелые фиолетовые пары, принадлежащие, по-видимому, какому-то неизвестному веществу. В 1813 г. Гей-Люссак исследовал новое вещество и дал ему название иод. Затем, когда было установлено его сходство с хлором, Дэви предложил именовать элемент иодином (аналогичное хлорином); это название принято в Англии и США до сих пор. Оно произведено от греческого слова - темно-синий, фиалковый. В 1814 г. бельгийский химик Ван-Монс предложил называть новый элемент вареном (Varine) по названию продукта, из которого он был получен, но предложение не было поддержано. В русской химической литературе начала XIX в. иод называли иодиний (Двигубский, 1824), иодис (Страхов, 1825), иодий (Иовский, Двигубский, 1827 - 1828), иод (Двигубский и Гесс, 1824). Часто встречающее теперешнее написание йод - неправильное, следует писать иод.

История открытия йода

Открыл йод в 1811 году французский химик Бернард Куртуа в содружестве с... любимым котом. Толстый и ленивый кот неловко потянулся и столкнул на пол стоявшие рядом сосуды, в одном из которых находился спиртовой раствор золы морских водорослей, а в другом - серная кислота. Жидкости смешались, и тотчас появились облако загадочного сине-фиолетового пара... Новый элемент назвали йодом. Полагают, потому, что по-гречески «jodes» - темно-синий, фиолетовый. Но некоторые уверяют, что на самом деле йод назвали так совсем по другой причине: в древнееврейском алфавите буква «йод» - символ духовного пространства и абсолютной святости, из которого берет начало бытие. Что это? Удивительное совпадение или чудо? В любом случае без йода, действительно, не может быть и речи об интеллекте и физической силе.

Там, где по какой-либо причине йод вдруг становится редким гостем, резко возрастает численность глухих и уродливых слабоумных с зобом. Парадоксально, но факт: в XVIII веке в центре Европы, во французской Швейцарии целые деревни были населены «угодными Богу существами». Причем юродивых было так много, что в армии служить было практически некому. По этой причине Наполеону пришлось стать первым государственным деятелем, который приказал систематически исследовать зоб у своих подданных.

В 1820 г. врач Штрауб предложил ввести йод в практику лечения зобной болезни. А его коллега Кауде параллельно работал над соединениями йода для лечения воспалительных процессов горла.

Знаменитый хирург и ученый Пирогов Н.И., помимо обычной настойки йода для обработки ран, давал смесь йода и крахмала при расстройствах желудка и изнуряющих поносах у пациентов.

Французский ученый Шатен (середина XIX века), проводя количественный анализ воздуха и воды, доказал несомненную связь между распространением зоба и содержанием йода в окружающей среде. Он установил замечательный факт: чем выше в горы, тем меньше йода в воде и воздухе горных долин, а в горных селениях - все больше зоба и кретинизма.

Исследования эндемического зоба (связанного с йододефицитом) в странах Латинской Америки выявили безусловную связь между количеством йода, попадающего в организм, и наличием зоба. Эти исследования показали также, что пополнение запасов йода в организме улучшает физиологическую деятельность щитовидной железы .

Уже со второй половины XIX века йод стал использоваться как антисептик при любых операциях: от удаления зуба до ампутации конечности, что сократило летальность операций до 20%. В то время эта цифра поражала воображение хирургов, не привыкших обходиться без послеоперационных осложнений.

В 1883 г. швейцарский хирург обратил внимание на развитие признаков кретинизма (отставание психического и умственного развития) после удаления щитовидной железы по поводу зоба . Но предположение о взаимосвязи между содержанием йода и возникновением зоба не воспринималось всерьез до тех пор, пока в 1896 г. Бауманн не обнаружил йод в ткани щитовидной железы.

Оказалось, что щитовидная железа, которая двумя своими долями охватывает трахею около подбородка, не может обойтись без йода, потому что из него (на 65%) состоят синтезируемые щитовидной железой гормоны. А они отвечают за обмен веществ в организме: управляют расходом белков, жиров и углеводов; регулируют деятельностью мозга и нервной системы; половых и молочных желез; определяют рост и развитие организма. Именно поэтому нехватка йода как строительного материала для гормонов становится причиной тяжелых недугов.

В 1904 г. синий йод «изобрел» русский врач Колбасенко И.С. Думая, что он - первооткрыватель, предложил свой метод получения йодистого крахмала (врач применял этот порошок для лечения дизентерии), но с касторовым маслом, чтобы предохранить йодистый крахмал от разложения.

Синий йод открывали заново несколько раз. Но каждый раз это открытие переживало свой бум и постепенно забывалось, чтобы заинтриговать своими необыкновенными свойствами следующего «первооткрывателя» и следующее поколение.

4. Мохнач В.О. – основоположник йодотерапии

Истинным первооткрывателем синего йода, широко внедрившим его в клиническую практику, получив при этом поразительные результаты, был Владимир Онуфриевич Мохнач. Он был блестящим врачом, кандидатом химических и доктором биологических наук, директором Дальневосточного филиала Института химии АН СССР.

В 1937 году Мохнач В.О. был репрессирован («за контрреволюционную» деятельность) и отбывал наказание в лагерях ГУЛАГа в ужасных, нечеловеческих условиях.

Постоянными спутниками заключенных были инфекционные заболевания. Так, зимой 1940-1941 гг. началась эпидемия дизентерии. Заболевание протекало в тяжелой форме - с кровавыми поносами, рвотой, коматозными состояниями. В лагере была очень высокая смертность.

Мохнач В.О. тоже заболел дизентерией и впервые на себе применил йодкрахмальный комплекс - синий йод.

Для его приготовления Мохнач В.О. обмороженными руками собирал по лагерю картофельные очистки, а йод выпросил у фельдшера больничного барака. Это «лекарство» назвали «черной кашей» за его черный цвет.

Давая по 1 ст. ложке «черной каши» 5-6 раз в сутки всем заключенным (и больным, и здоровым), Мохнач В.О. добился удивительного результата: больные выздоровели, а здоровые контактные - не заражались.

Об этом методе узнали, он вселил надежду заболевшим узникам на спасение. Рецепт Мохнача В.О. применили на территории всех лагерей Дальстроя СССР, а его самого за исключительные заслуги в подавлении эпидемии дизентерии... допустили в другие очаги инфекции.

После освобождения в 1956 г., Мохнач В.О. с головой окунулся в научные исследования: была написана статья о лечении дизентерии, в которой давалась рецептура синего йода; была отработана минимальная бактерицидная концентрация йода (от 0,02% до 0,2%), при которой йод находится в положительно одновалентной форме, образуя йодвысокомолекулярный комплекс синего цвета.

Мохнач В.О. оставил несколько солидных монографий по йодполимерам, многие годы были посвящены их широким клиническим исследованиям в ленинградских клиниках и Первом ленинградском мединституте. Результаты превзошли все ожидания.

Прочитайте труды Мохнача В.О. и убедитесь, что подобные высказывания - полное дилетантство!



Возникает вопрос: как спустя каких-то 50 лет могло исчезнуть из памяти людей уникальное исследование? Тем более что это не просто препарат, а целое направление в медицине - применение йодвысокополимеров, которые по своим свойствам близки антибиотикам и могут заменить их, а по токсичности - абсолютно безвредны.

Наша задача - восстановить справедливость и рассказать людям о хорошем «старом знакомом» - синем йоде, который многим из них окажет большую помощь.