Что такое глубокий желоб. Секреты глубоководных желобов

Добро пожаловать в словарь греческий - русский. Пожалуйста, напишите слово или фразу, которую Вы хотите проверить, в текстовом поле слева.

Недавние изменения

Glosbe является домом для тысячи словарей. Мы предлагаем не только словарь греческий - русский, но и словари всех существующиих парыязыков - онлайн и бесплатно. Посетите главную страницу нашего сайта, чтобы выбрать из доступных языков.

Translation Memory

Glosbe словари являются уникальными. На Glosbe вы можете увидеть не только перевод на язык греческий или русский: мы предоставляем примеры использования, показывая десятки примеров перевода предложений содержащих переведенные фразы. Это называется «память переводов» и очень полезно для переводчиков. Можно увидеть не только перевод слова, но и как оно ведет себя в предложении. Наша память переводов приходят в основном из параллельных корпусов, которые были сделаны людьми. Такой перевод предложений является очень полезным дополнением к словарям.

Статистика

В настоящее время у нас есть 56 392 переведенных фраз. В настоящее время у нас есть 5729350 переводов предложений

Сотрудничество

Помогите нам в создании крупнейшего греческий - русский словарь онлайн. Просто войдите и добавьте новый перевод. Glosbe является объединенным проектом и каждый может добавлять (или удалять) переводы. Это делает наш словарь греческий русский настоящим, так как он создается носителями языков, которые использует язык каждый день. Вы также можете быть уверены, что любая ошибка в словаре будет исправлена быстро, так что вы можете положиться на наши данные. Если вы нашли ошибку или вы сможете добавлять новые данные, пожалуйста, сделайте это. Тысячи людей будут благодарны за это.

Вы должны знать, что Glosbe наполняется не словами, а представлениями о том, что означают эти слова. Благодаря этому, за счет добавления одного нового перевода, создаются десятки новых переводов! Помогите нам развивать словари Glosbe и Вы увидите, как ваши знания помогают людям по всему миру.

Глубоководные желоба и сопряжённые с ними краевые валы являются важными морфологическими структурами активных окраин океанов, протягиваясь на тысячи километров вдоль островных дуг и восточного континентального обрамления Тихого океана. Глубоководные желоба трассируют выход на поверхность сейсмофокальных зон, рельефно отражая границу между океаническими и континентальными сегментами литосферы Земли. Океанические желоба представляют собой узкие протяженные депрессии океанического дна, являющиеся самыми глубокими зонами Мирового океана.

Различают океанические желоба двух типов:

  • 1. Океанические желоба, связанные с островными дугами (Марианский, Японский, Зондский, Камчатский и др.;
  • 2. Океанические желоба, прилегающие к континентам (Перуанско- Чилийский, Центрально-Американский др.).

Более глубокими обычно являются желоба островных дуг (Марианская впадина - 11022 м). При высоких темпах седиментации океанические желоба могут быть заполнены осадками (южное побережье Чили).

Большинство желобов имеет дугообразную форму и вогнутой стороной обращены к островной дуге или континенту. В разрезе они имеют вид правильных асимметричных впадин (рис. 6.28) с относительно крутым (до 10° и более) прилегающим к суше склоном и более пологим (5°) океанским склоном желоба. На внешнем океанском крае желоба

Рис. 6.28. Схематическое строение глубоководного жёлоба наблюдается внешнее куполообразное поднятие, нередко возвышающееся почти на 500 м над региональным уровнем прилегающего океанского дна.

Желоба, даже самые глубокие, практически не имеют точной V- образной формы.

Ширина океанических желобов около 100 км, протяжённость может достигать нескольких тысяч километров: желоба Тонга и Кермадек имеют длину около 700 км, Перуанско-Чилийский - 4500 км. Узкое дно океанического желоба шириной от нескольких сот метров до нескольких километров обычно плоское и покрыто осадками. В разрезе осадки выглядят в виде клина. Они представлены в нижней части клина геми- пелагическими и пелагическими (приставка геми - полу) осадками океанической плиты, падающими в сторону суши. Выше их несогласно перекрывают горизонтально слоистые отложения мутьевых потоков (турбидиты), образующихся за счет размыва континента или островной дуги. Тип и объем осадков, осевой зоны желоба определяются соотношением между скоростями поступления осадков и скоростью схождения плит. Осадочные клинья осевых зон желобов островных дуг имеют меньшую мощность, чем таковые в желобах, примыкающих к континентам. Это объясняется ограниченной по сравнению с континентом обнаженностью над уровнем океана (моря) поверхности дуги, являющейся основным источником осадков.

Океанические желоба у континентальных окраин могут состоять из серии структурно изолированных небольших впадин, разделенных порогами. В их пределах при наличии слабого наклона оси может сформироваться русло, по которому стекают мутьевые потоки. Последние могут создавать в теле осадочного клина намывные валы, эрозионные структуры и контролировать распределение литофаций в желобе. В областях с очень высокими темпами осадконакоплеиия и низкой скоростью конвергенции (желоб Орегон-Вашингтон) могут возникать обширные конусы выноса, продвигающиеся с континента в сторону океана поверх осевого осадочного клипа.

Океанические желоба являются конвергентными окраинами плит, где океаническая плита поддвигается либо под другую океаническую плиту (под островную дугу), либо под континент. Скорость схождения плит колеблется от нулевого значения до Юсм/год. При столкновении плит одна из них, изгибаясь, пододвигается под другую, что приводит к регулярным сильным землетрясениям с очагами под прилегающим к суше склоном желоба, образованием магматических очагов и действующих вулканов (рис. 6.29). При этом возникающие напряжения в пододвигающейся плите реализуются в двух формах:

  • 1. Образуется внешнее валообразное (куполообразное) поднятие со средней шириной до 200 км и высотой до 500 м.
  • 2. В изогнутой океанической коре на океанском склоне желоба формируются ступенчатые сбросы и крупные структуры типа горстов и грабенов.

Рис. 6.29. Камчатский глубоководный желоб: 1 - действующие вулканы, 2 - глубоководный желоб, 3 - изолинии 1"лубин магматических очагов

На дне желоба в осадочных толщах отсутствуют складчатые деформации. В склоне желоба, прилегающем к суше, образуются пологопадающие надвиги. Зона поддвига (зона Беньоффа - Вадати - Заварицкого) погружается под небольшим углом от оси желоба в сторону суши. Именно в пределах этой зоны концентрируются почти все очаги землетрясений.

В Центрально-Американском, Перу-Чилийском желобах и желобе Яп скважинами вскрыты молодые базальты (рис. 6.30). Интенсивность магнитных аномалий океанического дна вблизи желоба обычно понижена. Это объясняется наличием многочисленных разломов и разрывов в изгибающейся океанической коре.


Рис. 6.30. Тектоническая схема Центрально-Американского сектора Тихого океана, по Ю.И.Дмитриеву (1987): I - глубоководные желоба, 2 - действующие вулканы, 3 - скважины, вскрывшие базальты

Аккреционная призма осадков в нижней части склона желоба деформирована, смята в складки и разбита разломами и надвигами на серию пластин и блоков.

Иногда надвигающийся континент или островная дуга срывает осадки осевого желоба и океанической плиты, формируя аккреционную призму осадков. Этот процесс аккреции сопровождается образованием чешуйчатых надвиговых покровов, хаотических осадочных тел и сложных складок. Здесь может формироваться осадочно-базальтовый меланж, содержащий обломки и крупные блоки океанической коры, осадочного клина и турбидитов. Эта масса аккумулированных неуплотненных осадков создает большую отрицательную изостатическую аномалию силы тяжести, ось которой несколько смещена к суше относительно оси желоба.

Строение разрезов. Мощность осадков над базальтовым фундаментом сильно колеблется. В Центрально-Американском желобе в скв. 500 В она составляет 133,5 м, в скв. 495 - 428 м, при этом в других желобах известны осадочные толщи мощностью до 4 км. На дне жёлоба отмечается наличие обвально-оползневых фаций и переотложенных осадков. Широко развиты осадочные и вулканогенно-осадочные породы: вулка- номиктовые алевролиты, песчаники, гравелиты, глинистые, кремнистоглинистые породы, эдафогенпые брекчии, базальты во внешних зонах. Для базальтов характерны петрохимические и геохимические характеристики, переходные между типичными океанскими и островодужными разностями (Дмитриев, 1987).

В чешуйчатых структурах аккреционных призм эти породы чередуются с гравитационными олистостромами, оползневыми брекчиями. В обломках - отторженцы океанической коры: серпентинизированиые ультраосновные породы и базальты. Метаморфические породы высокого давления и низких температур - глаукофановые сланцы.

Минерагения. Месторождения нефти и газа в слабо литифицирован- ных толщах. Месторождения сурьмы и ртути в палеоаналогах, в мета- соматитах по вмещающим породам (джаспероидам и лиственитам) в зонах тектонических разломных нарушениях.

Контрольные вопросы

  • 1. Определить положение глубоководных желобов в структуре Земли.
  • 2. Назвать морфометрические и структурные особенности глубоководных желобов.
  • 3. Охарактеризовать строение и состав породных ассоциаций, выполняющих глубоководные желоба.

Островные дуги

Это цепочки вулканических островов над зоной субдукциии (место, где океаническая кора погружается в мантию), возникающие там, где одна океаническая плита погружается под другую. Островные дуги образуются при столкновении двух океанических плит. Одна из плит оказывается снизу и поглощается в мантию, на другой (верхней) образуются вулканы. Выгнутая сторона островной дуги направлена в сторону поглощаемой плиты, с этой стороны находится глубоководный желоб. Основанием для островных дуг служат подводные хребты от 40 до 300 км, протяженностью до 1000 км и более. Свод хребта выступает над уровнем моря в виде островов. Нередко островные дуги состоят из параллельных горных гряд, одна из которых чаще внешняя (обращенная к глубоководному желобу), выражена только подводным хребтом. В таком случае гряды отдалены друг от друга продольной депрессией глубиной до 3-4,5 км, заполненной 2-3 километровой толщей осадков. На ранних стадиях развития островные дуги представляют собой зону утолщения океанической коры, насаженными на гребень вулканическими постройками. На более поздних стадиях развития островные дуги образуют крупные массивы островной или полуостровной суши, земная кора здесь приближается по строению к континентальному типу.

Островные дуги широко развиты на окраинах Тихого океана. Это Командоро-Алеутская, Курильская, Японская, Марианская и др. В Индийском океане самой известной является Зондская дуга. В Атлантическом океане - Антильская и Южно-Антильская дуга.

Глубоководные желоба

Это узкие (100-150 км) и протяженные глубокие впадины (рис. 10). Дно желобов имеет V-образную форму, реже плоское, стенки крутые. Внутренние склоны, примыкающие к островным дугам, более крутые (до 10-15°), а противоположные склоны, обращенные в сторону открытого океана, пологие (около 2-3°). Склон желоба бывает осложнен продольными грабенами и горстами, а противоположный склон - ступенчатой системой крутых разломов. На склонах и дне залегают осадки, иногда достигающие мощности в 2-3 км (Яванский желоб). Осадки желобов представлены биогенно-терригенными и терригенно-вулканогенными илами, часты отложения мутьевых потоков и эдафогенные образования. Эдафогенные образования - это несортированные продукты обвалов и оползней с глыбами коренных пород.

Глубина желобов колеблится от 7000-8000 до 11000 м. Максимальная глубинна зафиксирована в Марианском желобе - 11022 м.

Желоба наблюдаются по всей переферии Тихого океана. В западной части океана они протягиваются от Курило-Камчатского желоба на севере, через Японский, Идзу-Бонинский, Марианский, Минданао, Новобританский, Бугенвильский, Новогебридинский до Тонга и Кермадек на юге. В восточной части океана расположен Атакамский, Центральноамериканский и Алеутский желоба. В Атлантическом океане - Пуэрто-Риканский, Южно-Антильский. В Индийском океане - Яванский желоб. В Северном Ледовитом океане желоба не обнаружены.

Глубоководные желоба в тектоническом отношении приурочены к зонам субдукции. Субдукция развивается там, где сходятся континентальная и океаническая плиты (или океанская с океанской). При их встречном движении более тяжелая плита (всегда океанская) уходит по другую, а затем погружается в мантию. Установлено, что субдукция развивается по-разному в зависимости от соотношения векторов движения плит, от возраста субдуцирующей литосферы и ряда других факторов.

Поскольку при субдукции одна из литосферных плит поглощается на глубине, нередко увлекая с собой осадочные формации желоба и даже породы висячего крыла, изучении процессов субдукции связано с большими трудностями. Геологические исследования также затрудняются глубоководностью океана. Поэтому большую ценность представляют результаты первого детального картирования участка дна в желобах, которое проведено по франко-японской программе «Кайко». У берегов Барбадоса, а затем и на склоне желоба Нанкай при бурении удалось пересечь сместитель зоны субдукции, находящийся в точке бурения на глубине нескольких сотен метров под поверхностью дна.

Современные глубоководные желоба простираются перпендикулярно направлению субдукции (ортогональная субдукция) или под острым углом к этому направлению (косоориентированная субдукция). Как было сказано выше, профиль глубоководных желобов всегда ассиметричен: субдуцирущее крыло пологое, а висячее крыло более крутое. Детали рельефа варьируются в зависимости от напряженного состояния литосферных плит, от режима субдукции и других условий.

Интересны формы рельефа прилегающих к глубоководным желобам территорий, строение которых также определяются зонами развития субдукции. Со стороны океана это пологие краевые валы, которые возвышаются над ложем океана на 200-1000 м. Судя по геофизическим данным, краевые валы представляют собой антиклинальный изгиб океанской литосферы. Там, где фрикционное сцепление литосферных плит велико, высота краевого вала находится перпендикулярно относительной глубине соседнего отрезка желоба.

С противоположной стороны, над висячим крылом зоны субдукции, параллельно желобу протягиваются высокие хребты или подводные гряды, имеющие иное строение и происхождение. Если субдукция направляется непосредственно под окраину континента (и глубоководный желоб примыкает к этой окраине), обычно образуются береговой хребет и отдельный от него продольными долинами главный хребет, рельеф которого бывает осложнен вулканическими постройками.

Поскольку любая зона субдукции уходит на глубину наклонно, ее воздействие на висячее крыло и его рельеф может распространяться на 600-700 км и более от желоба, что зависит прежде всего от угла наклона. При этом в соответствии с тектоническими условиями образуются различные формы рельефа при характеристике латеральных структурных рядов над зонами субдукции.

Глубоководные впадины - это преимущественно длинные (они тянутся на сотни и тысячи километ­ров) и узкие (всего в десятки километров) прогибы океанского дна с глубинами более 6000 м, которые расположены у крутых подводных склонов матери­ков и островных цепей. Они представляют собой, наверное, самый характерный элемент дна Мирового океана.

В последнее время термин « » все больше вытесняется термином «глубоковод­ный желоб », который точнее передает именно форму впадин такого рода. Глубоководные океанические же­лоба относятся к самым типичным элементам рельефа переходной зоны между материком и океаном.

Глубоководные желоба имеют наибольшую глуби­ну во всем Мировом океане. Согласно российским исследованиям глубина таких желобов способна до­стигать 11 км и более; это означает, что желоба вдвое глубже ложа океана в глубоководных котловинах. У желобов крутые отвесные склоны и почти ровное дно. В геологическом отношении глубоководные желоба являются современными геологически ак­тивными структурами. В настоящее время известны 20 таких желобов. Они расположены на периферии океанов, больше их в Тихом океане (известны 16 же­лобов), три - в Атлантическом и одна - в Индийском океане. Самые значительные впадины, глубиной более 10 000 м, находятся в Тихом океане - это ста­рейший океан Земли.

Обычно они параллельны окаймляющим их остров­ным дугам и молодым прибрежным горным образова­ниям. Глубоководные желоба имеют резко асиммет­ричный поперечный профиль. Со стороны океана к ним примыкает глубоководная равнина, с противо­положной стороны - островная гряда или высокий горный хребет.

В некоторых местах вершины гор возвышаются от­носительно днища желобов на 17 км, что является ре­кордом среди земных значений.

Все глубоководные впадины и желоба имеют кору океанического типа . Желоб образуется в результате продавливания океанической коры при уходе под дру­гую океаническую или континентальную кору. Плиты литосферы обычно имеют кору различного происхож­дения, иногда это материковая кора, иногда - кора океанского происхождения. Из-за различия типа коры во время сближения плит вдоль их границ происходят разные процессы. Когда плита с материковой корой сближается с плитой, покрытой океанической корой, то плита литосферы с материковой корой всегда на­двигается на плиту с океанической корой и подминает ее под себя.

Океаническая же плита выгибается и слов­но «ныряет» под континентальную плиту, при этом край океанической плиты, погружаясь в мантию, об­разует в океане вдоль берега глубоководный желоб. Противоположный край океанической плиты подни­мается - там образуются островные дуги. На суше вдоль побережья поднимаются горы. По данной при­чине районы желобов часто являются эпицентрами землетрясений, а дно - основанием многих вулканов. Это происходит потому, что желоба примыкают к краям литосферных плит. Большинство ученых полагают, что глубоководные желоба являются краевыми прогиба­ми, где идет интенсивное накопление осадков разру­шенных горных пород.

Самым характерным примером такого взаимодейст­вия плит с корой различного происхождения является развитие Перуанско-Чилийского желоба в Тихом океане у берегов Южной Америки и системы горного хребта Анд на западном побережье этого материка. Это развитие происходит потому, что Американская плита литосферы медленно движется навстречу Тихоокеан­ской плите, подминая ее под себя.

Магма, которая в основном составляет верхнюю часть мантии, в переводе с греческого языка бук­вально означает «густая мазь».

Другой тип представляют поперечные, или ответв­ляющиеся, желоба. Они пересекают океанические хребты, плато и структуры материков. Эти желоба симметрично построены и прямолинейны, имеют по­перечное или диагональное строение. Иногда они вы­страиваются в виде кулис. Возле фасада этих желобов обычно нет островной дуги. Они связаны с разломами, которые пересекают срединно-океанические хребты.

Параллельно глубоководным желобам располага­ются промежуточные впадины , возле которых имеют­ся сдвоенные островные дуги или погруженные хреб­ты. Промежуточная впадина всегда размещается между внутренней вулканической и внешней невулканиче­ской островными дугами. Такие впадины никогда не бывают столь глубоководными, как соседний желоб.

5 (100%) 2 votes


Общая характеристика океанических глубоководных желобов

Глубоководным желобом ученые называют чрезвычайно глубокую и удлиненную впадину на океаническом дне, образовавшуюся проседанием океанической тонкой коры под более мощный континентальный участок, и при встречном движении тектонических плит. По сути, глубоководные желоба сегодня являются по всем тектоническим характеристикам крупными геосинклинальными областями.

Именно по данным причинам регионы глубоководных желобов стали эпицентрами крупных и разрушительных землетрясений, а на их дне много действующих вулканов. Такого происхождения впадины есть во всех океанах, глубочайшие из них расположены по периферии Тихого океана. Наиболее глубокой из тектонических океанических впадин является так называемая Марианская, ее глубина по оценкам экспедиции советского судна «Витязь» составляет 11022 м. Самым удлиненным, почти 6 тыс. м, из исследованных на планете тектонических понижений является Перуанско-Чилийский желоб.

Марианский желоб

Глубочайшим на планете из океанических желобов является Марианский, протянувшийся в тихоокеанских водах на 1,5 тыс. км рядом с Марианскими вулканическими островами. Впадина желоба имеет четкий V-образный поперечный профиль и отвесные склоны. На дне просматривается плоское дно, расчлененное на отдельные замкнутые участки. Давление у дна котловины в 1100 раз превышает данный показатель в поверхностных слоях океана. В котловине есть глубочайшая точка, это вечно темная, угрюмая и неприветливая местность, называемая «Бездной Челенджера». Она расположена в 320 км юго-западнее Гуама, ее координаты 11о22, с. ш., 142о35, в. д.

Впервые таинственные глубины Марианской впадины были открыты и предварительно измерены в 1875 году с борта английского судна «Челенджер». Исследования проводились с помощью специального глубоководного лота, установлена предварительная глубина, составившая 8367 м. Однако при повторном измерении лот показал глубину 8184 м. Современные промеры эхолотом в 1951 году с борта одноименного научного судна «Челенджер» показали отметку — 10 863 м.

Следующие исследования глубины впадины проведены в 1957 году в 25 плавании советского научного судна «Витязь» под руководством А. Д. Добровольского. Они дали результаты по промеру глубины — 11 023 м. Серьезными препятствиями при измерении таких глубоководных впадин является то обстоятельство, что средняя скорость прохождения звука в водных слоях напрямую обусловлено физическими свойствами этой воды.

Для ученых не секрет, что эти свойства океанической воды на разной глубине совершенно разные. Поэтому всю толщу воды надо было условно разделить на несколько горизонтов, имеющих разные температурные и барометрические показатели. Поэтому при измерении сверхглубоких мест океана к показаниям эхолота следует делать определенную правку, учитывающую данные показатели. Экспедиции 1995 г., 2009 г., 2011 г. разнились незначительно по оценке показания глубины впадины, но одно ясно, что глубина ее превышает показатель высоты высочайшей на суше вершины Эвереста.

В 2010 году к Марианским островам отправилась экспедиция ученых университета Нью-Гэмпшир (США). С помощью новейшей аппаратуры и многолучевого эхолота на дне площадью 400 тыс. кв. м обнаружены горы. На месте непосредственного контакта Тихоокеанской и, скромной по размерам и молодой Филиппинской плит ученые обнаружили 4 хребта с высотами более 2,5 тыс. м.

По словам ученых-океанологов земная кора в глубинах у Марианских островов имеет сложное строение. Хребты в этих запредельных глубинах образовались 180 млн. лет назад при постоянном соприкосновении плит. Своим массивным краем Тихоокеанская океаническая плита опускается под край Филиппинской, образуя складчатую область.

Первенство в спуске к самому дну желоба у марианских островов принадлежит Дону Уолшу и Жаку Пикару. Совершили они героическое погружение в 1960 г. на батискафе «Триест». Они увидели здесь некоторые формы жизни, глубоководных моллюсков и весьма необычных рыб. Замечательным итогом данного погружения стало принятие ядерными странами документа о невозможности захоронения токсичных и радиоактивных отходов в Марианской впадине.

Ко дну здесь спускались и беспилотные подводные аппараты, в 1995 году японский глубоководный зонд «Кайко» спустился на рекордную в то время глубину — 10 911 м. Позже, в 2009 году сюда спустился глубоководный аппарат с названием «Нерей». Третьим среди жителей планеты в темные неприветливые глубины в одиночном погружении спустился замечательный режиссер Д. Кемерон на подводном аппарате «Дипси челленджер». Он провел киносъемку в формате 3D, с помощью манипулятора собрал образцы грунта и горных пород в глубочайшей точке желоба «Бездне Челенджера».

Постоянную температуру в донной части желоба +1о С, +4о С поддерживают находящиеся на глубинах близ 1,6 км «черные курильщики», геотермальные источники с водой богатой минеральными соединениями и температурой +450оС. В экспедиции 2012 года рядом с серпентиновыми геотермальными источниками на дне, богатыми метаном и легким водородом, найдены колонии глубоководных моллюсков.

На пути в бездну глубин желоба в 414 м от поверхности есть действующий подводный вулкан Дайкоку, в его районе обнаружено редчайшее не планете явление – целое озеро чистой расплавленной серы, которое кипит при температуре +187оС. Аналогичное явление астрономы обнаружили только в космосе на спутнике Юпитера – Ио.

Желоб Тонга

По периферии Тихого океана кроме Марианского желоба расположено еще 12 глубоководных желобов, составляющих по исследованиям геологов сейсмическую зону, так называемого Тихоокеанского огненного кольца. Вторым по глубине на планете и глубочайшим в водах Южного полушария является желоб Тонга. Его протяженность составляет 860 км и максимальная глубина — 10 882 м.

Расположена впадина Тонга у подножия подводного хребта Тонга от архипелага Самоа и желоба Кармалек. Впадина Тонга уникальна, прежде всего, максимальной на планете скоростью движения земной коры, составляющей 25,4 см ежегодно. Точные данные о движении плит в районе Тонга удалось получить после наблюдений за небольшим островом Ниаутопутану.

В впадины Тонга на глубине 6 тыс. м сегодня находится потерянная посадочная ступень известного лунного модуля «Аполло-13», она была «обронена» при возвращении аппарата на Землю в 1970 г. С таких глубин достать ступень чрезвычайно сложно. Если учесть, что с ней во впадину упал один их плутониевых энергоисточников, содержащих радиоактивный плутоний-238, спуск в глубины Тонга может быть весьма проблематичным.

Филиппинский желоб

Филиппинская океаническая впадина является третьей по глубине на планете, ее отметка 10 540 м. Она протянулась на 1320 км от крупного острова Лусон до Молукских островов близ восточного побережья одноименных Филиппинских островов. Желоб образовался при столкновении базальтовой морской Филиппинской плиты и преимущественно гранитной Евразийской плиты, движущихся навстречу друг другу со скоростью 16 см/год.

Земная кора здесь глубоко прогибается, и части плит плавятся в мантийном веществе планеты на глубине 60-100 км. Такое погружение частей плит на большие глубины с последующим их плавлением в мантии образует здесь зону субдукции. В 1927 году немецким исследовательским судном «Эмден» открыта глубочайшая впадина в Филиппинском желобе, которую назвали соответственно «глубиной Эмдена», ее отметка 10 400 м. Чуть позже датское судно «Галатея» при исследовании желоба произвело точную оценку глубины впадины, она составила 10 540 м, впадину переименовали в «Глубину Галатея».

Желоб Пуэрто-Рико

В Атлантическом океане расположено три глубоководных желоба, Пуэрто-Рико, Южносандвичев и Романш, их глубины заметно скромнее тихоокеанских впадин. Глубочайшей среди атлантических впадин является желоб Пуэрто-Рико с отметкой 8 742 м. Расположен он на самой границе Атлантики и Карибского моря, регион сейсмически весьма активен.

Недавние исследования впадины показали, что его глубина активно и постоянно увеличивается. Происходит это с погружением его южной стенки, являющейся частью Североамериканской плиты. В глубинах впадины Пуэрто-Рико на отметке 7 900 м при исследованиях найден крупный грязевой вулкан, который известен своим сильным извержением в 2004 году, горячая вода и грязь поднялись тогда высоко над океанической поверхностью.

Зондский желоб

В Индийском океане находится два глубоководных желоба Зондский, который часто называют Яванским, и Восточно-Индийский. По глубинам из них лидирует Зондская глубоководная впадина, протянувшаяся на 3 тыс. км вдоль южной оконечности одноименных Зондских островов и отметкой 7729 м близ о-ва Бали. Зондская океаническая впадина начинается неглубоким прогибом близ Мьянмы, продолжается и заметно сужается у индонезийского острова Ява.

Склоны Зондского желоба ассиметричные и очень крутые, северный островной склон из них заметно круче и выше, он сильно расчленен подводными каньонами, на нем различают обширные ступени и высокие уступы. Дно желоба в районе Явы выглядит группой впадин, которые разделены между собой высокими порогами. Наиболее углубленные части сложены вулканическими и морскими терригенными осадками, мощность которых доходит до 3 км. Образовавшуюся «подтеканием» Австралийской тектонической плиты под тектоническую структуру Сунда, Зондскую впадину обнаружила экспедиция исследовательского судна «Планет» в 1906 году.