Бензол получают из. Бензол и его негативное влияние на организм

Ароматические углеводороды составляют важную часть циклического ряда органических соединений. Простейшим представителем таких углеводородов является бензол. Формула этого вещества не только выделила его из ряда остальных углеводородов, но и дала толчок в развитии нового направления органической химии.

Открытие ароматических углеводородов

Ароматические углеводороды были открыты в начале 19 века. В те времена наиболее распространенным топливом для уличного освещения являлся светильный газ. Из его конденсата великий английский физик Майкл Фарадей выделил в 1825 году три грамма маслянистого вещества, подробно описал его свойства и назвал так: карбюрированный водород. В 1834 году немецкий ученый, химик Митчерлих, нагревая бензойную кислоту с известью, получил бензол. Формула, по которой протекала данная реакция, представлена ниже:

C6 H5 COOH + CaO сплавление C6 H6 + CaCO3.

В то время редкую бензойную кислоту получали из смолы бензое, которую могут выделять некоторые тропические растения. В 1845 году новое соединение было обнаружено в каменноугольной смоле, которая являлась вполне доступным сырьем для получения нового вещества в промышленных масштабах. Другим источником бензола является нефть, полученная в некоторых месторождениях. Чтобы обеспечить потребность промышленных предприятий в бензоле, его получают также путем ароматизации некоторых групп ациклических углеводородов нефти.

Современный вариант названия предложил немецких ученый Либих. Корень слова «бензол» следует искать в арабских языках - там оно переводится как «ладан».

Физические свойства бензола

Бензол является бесцветной жидкостью со специфическим запахом. Это вещество кипит при температуре 80,1 о С, отвердевает при 5,5 о С и превращается при этом в белый кристаллический порошок. Бензол практически не проводит тепло и электричество, плохо растворяется в воде и хорошо - в различных маслах. Ароматические свойства бензола отражают суть структуры его внутреннего строения: относительно устойчивое бензольное ядро и неопределенный состав.

Химическая классификация бензола

Бензол и его гомологи - толуол и этилбензол - представляют собой ароматический ряд циклических углеводородов. Строение каждого из этих веществ содержит распространенную структуру, названную бензоловым кольцом. Структура каждого из вышеперечисленных веществ содержит особую циклическую группировку, созданную шестью атомами углерода. Она получила название бензольного ароматического ядра.

История открытия

Установление внутреннего строения бензола растянулось на несколько десятилетий. Основные принципы строения (кольцевая модель) были предложены в 1865 году химиком А. Кекуле. Как рассказывает легенда, немецкий ученый увидел формулу этого элемента во сне. Позднее было предложено упрощенное написание структуры вещества, называемого так: бензол. Формула этого вещества представляет собой шестиугольник. Символы углерода и водорода, которые должны быть расположены в углах шестиугольника, опускаются. Таким образом, получается простой правильный шестиугольник с чередующимися одинарными и двойными линиями на сторонах. Общая формула бензола представлена на рисунке ниже.

Ароматические углеводороды и бензол

Химическая формула этого элемента позволяет утверждать, что для бензола реакции присоединения нехарактерны. Для него, как и для других элементов ароматического ряда, типичны реакции замещения атомов водорода в бензольном кольце.

Реакция сульфирования

При обеспечения взаимодействия концентрированной серной кислоты и бензола, повышая температуру реакции, можно получить бензосульфокислоту и воду. Структурная формула бензола в этой реакции выглядит следующим образом:

Реакция галогенирования

Бром или хром в присутствии катализатора взаимодействует с бензолом. При этом получаются галогенопроизводные. А вот реакция нитрирования проходит с использованием концентрированной азотной кислоты. Конечным итогом реакции является азотистое соединение:

С помощью нитрирования получают известное всем взрывчатое вещество - тротил, или тринитотолуол. Мало кто знает, что в основе тола лежит бензол. Многие другие нитросоединения на основе бензольного кольца также могут быть использованы как взрывчатые вещества

Электронная формула бензола

Стандартная формула бензольного кольца не совсем точно отражает внутренне строение бензола. Согласно ей, бензол должен обладать тремя локализованными п-связями, каждая из которых должна взаимодействовать с двумя атомами углерода. Но, как показывает опыт, бензол не обладает обычными двойными связями. Молекулярная формула бензола позволяет увидеть, что все связи в бензольном кольце равноценны. Каждая из них имеет длину около 0,140 нм, что является промежуточным значением между длиной стандартной простой связи (0,154 нм) и двойной этиленовой связи (0,134 нм). Структурная формула бензола, изображенная с чередованием связей, несовершенна. Более правдоподобна трехмерная модель бензола, которая выглядит так, как показано на картинке ниже.

Каждый из атомов бензольного кольца находится в состоянии sp 2 -гибридизации. Он затрачивает на образование сигма-связей по три валентных электрона. Эти электроны охватывают два соседних атома углевода и один атом водорода. При этом и электроны, и связи С-С, Н-Н находятся в одной плоскости.

Четвертый валентный электрон образует облако в форме объемной восьмерки, расположенное перпендикулярно плоскости бензольного кольца. Каждое такое электронное облако перекрывается над плоскостью бензольного кольца и непосредственно под ней с облаками двух соседних атомов углерода.

Плотность облаков п-электронов этого вещества равномерно распределена между всеми углеродными связями. Таким путем образуется единое кольцевое электронное облако. В общей химии такая структура получила название ароматического электронного секстета.

Равноценность внутренних связей бензола

Именно равноценностью всех граней шестиугольника объясняется выравненность ароматических связей, обуславливающих характерные химические и физические свойства, которыми обладает бензол. Формула равномерного распределения п-электронного облака и равноценность всех его внутренних связей показана ниже.

Как видно, вместо чередующихся одинарных и двойных черт внутреннюю структуру изображают в виде окружности.

Сущность внутренней структуры бензола дает ключ к пониманию внутреннего строения циклических углеводородов и расширяет возможности практического применения этих веществ.

Бензол (также бензол) — первый представитель гомологического ряда ароматических углеводородов, молекулярная формула C 6 H 6. Бесцветная летучая жидкость с характерным запахом. Впервые получен Майклом Фарадеем из конденсата пиролиза китового жира в 1825 году.

Промышленно бензол добывали из фракций каменноугольной смолы, но с середины 20-го века практически весь промышленный объем бензола производится дегидрогенизации нефтяного сырья. Бензол имеет ценные свойства как растворитель, но из-за его высокой токсичности и канцерогенности такое использование пока очень ограничено. Это соединение является сырьем для промышленного органического синтеза, более двух третей бензола идет на производство циклогексана, кумола и етилбензену.

История исследования

Бензол — первый из открытых человеком аренов. В чистом виде он был выделен Майклом Фарадеем путем дистилляции кристаллизации из светящегося газа, является продуктом высокотемпературного разложения китового жира, и использовался в уличных фонарях. Тогда же была установлена ​​относительная плотность его паров и количественное соотношение между атомами элементов, входящих в его состав, на основе этих данных Фарадей подсчитал эмпирическую формулу — C 2 H 2. Ошибка в формуле была сделана из-за того, что в то время считалось, что атомная масса углерода составляет 6 а.о.м.. 1834 Митчерлих выделил бенезен путем сухой дистилляции бензойной кислоты с известью, он установил правильную эмпирическую формулу (C 6 H 6) и назвал это соединение «бензином» от бензойной кислоты Однако Либих предложил использовать название бензол, окончание которой взято из слова нем. Öl — масло. Современное название «бензол» рекомендуется к использованию IUPAC в связи с тем, что суффикс -ол соответствует спиртам. 1860 Кекуле назвал бензол и другие соединения с подобными свойствами ароматическими, потому, что большинство из них имели приятный запах.

На установке правильной эмпирической формулы бензола написания структурных формул органических соединений еще не было принятым в химии. Однако даже после того, как для многих алифатических углеводородов были предложены структурные формулы, для бензола это было сделать сложнее: формула C 6 H 6 свидетельствовала о принадлежности этого соединения до непредельных углеводородов, однако бензол в отличие от алкенов и алкинов лучше вступает в реакции замещения чем присоединение. В 1865 году Кекуле предложил для бензола структурную формулу в виде шестичленного цикла с тремя двойными связями, чередующиеся с одинарными. Широко известны утверждение о том, что идея циклической структуры бензола пришла к Кекуле, когда ему приснился змей, кусающая себя за хвост. В более поздних описаниях сна упоминается о шести обезьян, которые держат друг друга за задние лапы. На самом деле циклическую структуру бенезну впервые опубликовал в своей книге австрийский химик Йозеф Лошмидт 1861 и Кекуле видел это издание.

Формулы Кекуле не могли объяснить некоторые особенности бензола, например того, что не было двух разных изомеров 1,2-диметилбензену. 1872 ученый опубликовал статью, в которой отмечал, что хотя для бензола можно предположить существование двух различных валентных изомеров, реальная соединение является средним между этими двумя вследствие осцилляции (перехода) двойных связей. Однако даже такое дополнение не могло объяснить отличие бензола от известных ненасыщенных углеводородов, поэтому другие ученые продолжали предлагать альтернативные варианты структуры этого вещества. Среди них можно отметить формулы Дьюара 1867 и призматическую структуру Ладенбурга (1869). Сейчас известно, что такие соединения действительно можно синтезировать, они валентными изомерами бензола.

Из объяснений свойств бензола предложенных к открытию природы ковалентной связи, в ближайшее к современному является теория «парциальных валентностей» (от лат. Partialis — частичный) предложена Тиле в 1899 году. Согласно ей атомы углерода в ненасыщенных соединениях имеют частичные свободные валентности, которые в молекуле бензола «замыкаются» между собой, в результате чего разница между одинарными и двойными связями исчезает. Создание теории ковалентной связи позволило лучше понять структуру бенезену, в 1926 году Ингольд предположил, что в молекуле этого соединения электроны π-связей смещены к простым σ-связей, вследствие чего они не существуют в изолированном состоянии, а выравниваются между одинарными. Позже Лайнус Полинг исходя из квантово-механических представлений, предложил считать, что в молекуле бензола отсутствуют отдельные π-связи, а все их электроны объединены в сплошную π-облако.

В научной литературе для обозначения бензола используют как формулу Полинга, так и формулы Кекуле, хотя последние и не отражают структуру этой молекулы корректно.

Физические свойства

Бензол — бесцветная жидкость со своеобразным запахом. Плотность — 0.88 г / см³. При температуре 80.1 ° C кипит, а за 5.5 ° C замерзает в белую кристаллическую массу.

Бензол благодаря своей симметричности является неполярной веществом, поэтому не растворяется в воде, однако образует с ней азеотропную смесь (91.17 масс%) с температурой кипения 69.25 ° C. С большинством неполярных растворителей смешивается в любых отношениях, сам является хорошим растворителем для многих органических веществ.

В ультрафиолетовой области спектра поглощения проявляется рядом полос тонкой структуры с расстоянием между ними 5-6 нм (наиболее интенсивно оно наблюдается в диапазоне 170-120 нм и меньше в диапазоне — 270-240 нм).

Строение

Молекулярная формула — C 6 H 6. Рентгенографическими методами установлено, что молекула бензола имеет форму плоского шестиугольника с атомами углерода в вершинах. Все C-C связи имеют одинаковую длину, что составляет 0.140 нм. Это больше чем у двойного (0.134 нм) связи и меньше чем в одинарного (0.154 нм) связи. Бензол является неполярной соединением с нулевым дипольным моментом (μ).

Все атомы углерода в молекуле бензола находятся в состоянии sp 2 гибридизация. Tри гибридные орбитали расположены под углом 120 °, образуя C-C и C-H σ-связи. Hегибридни p-орбитали расположены перпендикулярно к плоскости молекулы, образуя сплошное электронное кольцо. С точки зрения теории валентных связей это кольцо можно рассматривать как суперпозицию двух резонансных структур воображаемого 1,3,5-циклогексатриену с изолированными двойными C = C связями. С точки зрения теории молекулярных орбиталей его можно рассматривать как результат делокализации вдоль шести атомов углерода трех π-орбиталей двойных C = C связей. Следствием делокализации является меньшая свободная энергия (большая стабильность) бензола по сравнению с 1,3,5-циклогексатриеном. Эта разница в энергии называется энергией сопряжения, делокализации или резонанса. Ее можно вычислить опираясь на теплоты гидрирования циклогексен и бензола:

  • теплота гидрирования циклогексену составляет 120 кДж / моль;
  • тогда ожидаемая теплота гидрирования 1,3,5-циклогексатриену должен составлять около 3 × 120 кДж / моль = 360 кДж / моль;
  • на самом деле теплота гидрирования бензола составляет 208 кДж / моль;
  • тогда энергия сопряжения составляет 360 кДж / моль — 208 кДж / моль = 152 кДж / моль.

Образование сплошной π-облака, содержащего шесть электронов, придает молекуле бензола так называемого ароматического характера. Карбоновый скелет молекулы бензола с таким характером связи называют бензольного кольцом, или бензольного ядра.

Химические свойства

Вследствие значительной устойчивости π-облака для бензола, в отличие от неароматических непредельных углеводородов, характерные реакции замещения, а не присоединения, поскольку они должны приводить к потере ароматичности, однако реакции присоединения также могут происходить за достаточно жестких условий. Замещение происходит электрофильным механизмом. Также бензол вступает в реакции окисления.

Реакции электрофильного замещения

Бензол вступает в реакции электрофильного замещения, происходящих по такому механизму: на первой стадии происходит образование π-комплекса между электрофилом (в форме катиона или сильно поляризованной молекулы E σ + -Nu σ-) и молекулой бензола, в результате перекрывания НСМО Электрофиль с ВЗМО (π-облаком) бензола. После этого пара p-электронов выходит из сопряженного бензольного кольца и участвует в образовании σ-связи с электрофилом, таким образом π-комплекс превращается в σ-комплекс или интермедиат Уэлланда. Эта промежуточное соединение имеет положительный заряд и лишена ароматического характера, из-за чего менее устойчивой по сравнению с ароматическим кольцом, в которое обычно быстро превращается в результате отщепления протона (этот этап происходит через еще один промежуточный π-комплекс).

Алкилирование и ацилирование по Фриделем-Крафтса

Алкилирование бензола осуществляется алкилгалогенидами, алкенами и спиртами, ацилирование — карбоновыми кислотами, галогенангидриды и ангидридами, оба типа реакций катализируемых кислотами Льюиса. Эти реакции назван в честь их первооткрывателей Шарля Фриделя и Джеймса Крафтса.

Роль катализатора в этом типе реакций заключается в том, что он взаимодействует с алкилирующие или ацилюючим реагентом и обеспечивает образование карбкатион или поляризованного комплекса. Например, при взаимодействии Хлорметан и алюминий хлорида образуется комплекс с усиленной електрофильнистю атома углерода:

Примером реакции алкилирование может быть этилирования бензола хлорэтан.

Однако в промышленности етилбензен чаще получают реакцией с этиленом, которая также проходит в присутствии оксида алюминия, фосфорной или серной кислоты:

Продуктами реакций ацилирования бензола являются ароматические кетоны. Примером может быть реакция с ацетилхлоридом, продуктом которой является метиларилкетон:

Галогенирования

В отличие от ненасыщенных углеводородов бензол НЕ обесцвечивает бромную воду. Но для него характерны реакции галогенирования, происходящих по механизму электрофильного замещения, в присутствии кислот Льюиса. Например, при взаимодействии с бромом образуется бромбензол:

Нитрования

Характерной для бензола реакция нитрования использующая нитрующей смесь, которая состоит из концентрированной азотной кислоты и концентрированной серной кислоты как водоотнимающих средства. В этой реакции образуется нитробензен, что является предшественником в синтезе анилина

Сульфирование

При воздействии на бензол концентрированной серной кислоты происходит его сульфирования с образованием бензосульфоновои кислоты, может быть предшественником в синтезе фенола:

Реакции присоединения

Бензол вступает и в реакции присоединения, но значительно труднее, чем в реакции замещения. При этом он проявляет свойства непредельных углеводородов. Так, в присутствии никелевого катализатора и при нагревании происходит реакция гидрирования бензола с образованием циклогексана:

При этом атомы водорода присоединяются молекулой бензола за счет разрыва двойных связей. Бензол вступает также в реакцию присоединения одной, двух или трех молекул хлора. Эта реакция происходит свободнорадикальным механизмом для образования радикалов хлора необходимо ультрафиолетовый свет (достигается облучением ртутно-кварцевой лампой). Продуктом полного присоединения является гексахлорциклогексан:

Реакции окисления

На воздухе бензол горит сильно копоти пламенем, поскольку содержание углерода в нем значений. Смесь пары бензола с воздухом взрывная. Благодаря ароматическом характера бензол устойчив к воздействию окислителей: не окисляется раствором перманганата калия и азотной кислотой. В присутствии катализатора ванадий (V) оксида реагирует с молекулярным кислородом, в результате чего образуется малеиновый ангидрид:

Также бензол окисляется озоном, эта реакция исторически использовалась для установления его строения.

Получение и производство

На сегодняшний день существует несколько принципиально разных способов производства бензола.

  1. Коксования каменного угля. Этот процесс исторически был первым и служил основным источником бензола до Второй мировой войны. В последнее время доля бензола, получаемого этим способом, составляет менее 10%. Следует добавить, что бензол, получаемый из каменноугольной смолы, содержит значительное количество тиофена, что делает такой бензол сырьем, непригодным для ряда технологических процессов.
  2. Каталитический риформинг (аромайзинг) бензиновых фракций нефти. Этот процесс является основным источником бензола в США. В Западной Европе, России и Японии этим способом получают 40-60% от общего количества соединения. В этом процессе кроме бензола образуются толуол и ксилолы. Учитывая то, что толуол образуется в количествах, превышающих спрос на него, его также частично перерабатывают в: бензол — методом гидродеалкилирування; смесь бензола и ксилолов — методом диспропорционирования;
  3. Пиролиз бензиновых и более тяжелых нефтяных фракций. До 50% бензола производится этим методом. Наряду с бензолом образуются толуол и ксилолы. В некоторых случаях всю эту фракцию направляют на стадию деалкилирування, где и толуол, и ксилолы превращаются в бензол.
  4. тримеризация ацетилена

При пропускании ацетилена при 600 ° C над активированным углем с хорошим выходом образуется бензол и другие ароматические углеводороды (реакция Н. Д. Зелинского):

3С 2 Н 2 → С 6 H 6

Применение

Бензол является важным сырьем для химической промышленности. Большие количества его идут для получения нитробензола, который по реакции М. М. Зинина восстанавливают в анилин:

В технике эту реакцию проводят при воздействии на бензол соляной кислоты в присутствии железных стружек. Железо, реагируя с кислотой, образует водород, который в момент выделения восстанавливает нитробензен. С анилина синтезируют самые органические красители и фармацевтические препараты. Значительные количества бензола используют для синтеза фенола, который идет на производство фенолформальдегидных смол. Гексахлорциклогексан, получаемый из бензола (реакция приведена выше), под названием гексахлоран применяется в сельском хозяйстве как один из самых эффективных средств для уничтожения насекомых. Кроме того, бензол используют для синтеза многих других органических соединений и как растворитель

Получение Вещество Применение
+ Cl 2 / AlCl 3 → C 6 H 5 Cl + Cl 2 / AlCl 3 → 1,4-дихлорбензен 1,4-дихлорбензен Инсектицид
+ NaOH / Cu → Фенол Фенол Растворитель, реагент для органического синтеза, пластмассы, красители, лекарства, взрывчатка
+ H 2 SO 4 → Бензосульфонова кислота (C 6 H 5 -SO 2 OH) + NaOH → Фенол
+ Пропен (CH 3 -CH = CH 2) → Кумены (C 6 H 5 -CH (CH 3) 2) + O 2 → Гидроперокисид Кумены (C 6 H 5 -C (CH 3) 2 -OOH) → Фенол + ацетон
+ HNO 3 → нитробензола + 6H → анилин Анилин (C 6 H 5 -NH 2) Красители, лекарства
+ H 2 / Ni → Циклогексан → Капролактам Капролактам Синтетические волокна
+ O 2 / V 2 O 5 → Малеиновая кислота → Малеиновый ангидрид Малеиновый ангидрид Полиэфиры
+ Этилен (CH 2 = CH 2) → Етилбензен (C 6 H 5 -CH 2 -CH 3) + ZnO → стирени (C 6 H 5 -CH = CH 2) + H 2 Стирен Пластмассы, синтетические каучуки
+ HOSO 2 Cl → Бензосульфанилхлорид (C 6 H 5 -SO 2 Cl) → Бензосульфаниламид Бензосульфаниламид Лекарства, красители

Ниже приведены процентное соотношение использования

  • Около 50% бензола превращают в этилбензол (алкилирование бензола этиленом)
  • около 25% бензола превращают в кумол (алкилирование бензола пропиленом)
  • примерно 10 — 15% бензола гидрируют в циклогексан;
  • около 10% бензола расходуется на производство нитробензола;
  • 2 — 3% бензола превращают в линейные алкилбензолы;
  • примерно 1% бензола используется для синтеза хлорбензола.

В существенно меньших количествах бензол используется для синтеза других соединений. Изредка и в крайних случаях, из-за высокой токсичности, бензол используется в качестве растворителя. Кроме того, бензол входит в состав бензина. Ввиду высокой токсичности его содержание новым стандартам ограничена введением до 5%.

Гомологи бензола

Бензол, как и другие углеводороды, образует свой ​​гомологический ряд, имеет общую формулу C n H 2n-6. Гомологи бензола можно рассматривать как продукты замещения одного или нескольких атомов водорода в молекуле бензола различными углеводородными радикалами, образующие боковые цепи.

Самым простым гомологом бензола является метилбензен — продукт замещения атома водорода в молекуле бензола метильной группой — СН 3

Метилбензен, имеющий техническое название толуол, представляет собой бесцветную жидкость с характерным запахом. Температура кипения 110,6 ° C. Плотность 0,867 г / см По своим химическим свойствам метилбензен, или толуол, как другие гомологи бензола, очень близок к бензола. Так, при действии концентрированной азотной кислоты, в присутствии серной кислоты он легко поддается нитрования с образованием тринитротолуену — сильно взрывчатого вещества

Метилбензен (толуол) добывают из каменноугольной смолы и коксового газа вместе с бензола, а затем отделяют путем дробной перегонки. Метилбензен, или толуол применяют главным образом для производства взрывчатых веществ — тринитротолуену, который называют еще тротилом и толом. Кроме того, толуол служит сырьем для производства красителей и других органических продуктов.

Видео по теме

Основное применение бензола - это синтез множества других органических веществ. Процесс, в течение которого можно получить продукт, - это коксование угля. Если нагревать это сырье при высоких температурах и при этом ограничить доступ воздуха, то будет образовываться множество летучих продуктов горения, среди которых выделяют и бензол.

Образование вещества

Ученый Н. Д. Зелинский в свое время доказал, что получить бензол можно не только при коксовании угля. Получить это вещество можно и из такого продукта, как циклогексан, если будет наблюдаться каталитическое воздействие платины или палладия на это вещество (при температуре в 300 градусов по Цельсию). Кроме того, такое вещество, как гексан, также способно преобразовываться в бензол, если применить правильный каталитический процесс и процедуру нагревания.

На сегодняшний день большое практическое значение получили такие операции, как получение бензола из предельных углеводородов и циклопарафинов. Это обусловлено тем, что потребность в этом веществе стремительно растет.

Использование летучего вещества

Область применения бензола довольно обширна. Основным направлением стало получение других веществ на основе этого реактива. Так, к примеру, если использовать реакцию нитрирования, то можно получить нитробензол, если провести процедуру хлорирования, то можно получить хлорбензол, который в жизни чаще всего называют растворителем, а также множество других составов.

Широкое распространение получила процедура применения бензола в качестве исходного продукта для создания лекарственных и душистых веществ. Часто применяется в процессах синтеза мономеров для высокомолекулярных соединений, для создания красителей.

Производные хлора и бензола в настоящее время успешно используются в сельском хозяйстве. Здесь их применяют в качестве химических средств защиты для растений. К примеру, продукт, в котором атомы водорода замещены атомами хлора, гексахлорбензол, активно применяется в качестве продукта для сухого протравливания семян пшеницы и ржи.

Химическая промышленность

Если перечислять области применение бензола, то их очень много. Однако в некоторых он играет одну из ключевых ролей, например в химической промышленности. Здесь этот компонент является одним из наиболее востребованных, так как он является исходным элементом для производства множества других, а также является растворителем во многих операциях. Стоит отметить, что бензол способен растворить практически любые органические соединения. Если в первой половине 20-го века применение бензола приходилось в основном на создание таких составов, как нитро- и динитросоединения, то на сегодняшний день самыми распространенными веществами стали этилбензол, кумол и циклогексан. 60 % всего бензола приходится именно на создание первых двух элементов.

Разновидности состава и их применение

Сам по себе бензол в чистом виде практически не используется. Однако его производные получили очень широкое применение.

Этилбензол, к примеру, распространен в качестве промежуточного компонента при изготовлении стирола, а также успешно используется в качестве добавки для моторного топлива.

Широкий интерес вызывает и один из новых процессов, используя который можно получить стирол прямо из бензола. Применение этого вещества в сочетании с этиленом и Pd-катализатором во время окислительного процесса и является таким способом. Стоит отметить, что при получении этилбензола выделяется побочное вещество, которое стали называть диэтилбензолом. Сам по себе этот элемент не слишком активно применяется, однако с его помощью стало возможным получение дивинилбензола, а уже этот компонент является очень ценным мономером для производства

Еще одним важным компонентом является кумол. Этот продукт - также производная от бензола, а используется он для создания вещества - фенола, который получил широкое практическое применение.

Стоит отметить, что веществ, которые образуются при помощи бензола, очень и очень много.

Бензилхлорид - продукт хлорметирования. Наибольшее распространение он получил при изготовлении бензилового спирта, сложных эфиров, красителей и т. д.

Дифенилметан - вещество, полученное при взаимодействии бензола с такими компонентами, как бензилхлорид или формальдегид. Этот продукт может быть использован в качестве душистого вещества, так как имеет запах герани, или же в качестве растворителя для лакокрасочных изделий.

Известны также сульфопроизводные бензола. Эти продукты являются промежуточными веществами, основное предназначение которых, - получение более сложных промежуточных компонентов. На основе определенных бензолсульфокислот можно получить конечные составы, которые можно применять в производстве полимерных материалов.

Первые попытки использования бензола в медицине были сделаны еще очень давно. Первое направление, где он был применен, - это онкогематология. Основная идея применения бензола состояла в том, чтобы использовать его для лечения такой болезни, как лейкемия. Скорость распространения этой идеи была огромной. В 1912 году медики по всему миру применяли это вещество для того, чтобы лечить белокровие у пациентов. Сначала вещество использовалось только для приема внутрь. Однако довольно скоро были проведены попытки инъекции. К этому времени вспышка использования сырья в лечебных целях уже спадала. Выяснилось, что все же вылечить лейкемию таким способом не получается. Кроме того, этот химикат обладает множеством опасных побочных эффектов.

Однако пока состав все еще применялся, врачи выделяли некоторые положительные моменты. К примеру, бензол приводил к тому, что количество белых шариков в крови значительно уменьшалось к концу 2-й и началу 3-й недели. Красные кровяные тельца изначально уменьшались в своем количестве, однако потом это быстро проходило, а количество снова росло. Отмечалось также, что бензол способен улучшить лейкемический состав крови в тех случаях, когда рентгеновский способ был не способен справиться.

Однако, как уже говорилось, этот метод довольно быстро был признан недейственным, опасным.

Таким соединением, как бензол, госпожа Химия в своем хозяйстве окончательно и бесповоротно обзавелась только в 1833 году. Бензол - это соединение, которое имеет вспыльчивый, можно сказать, даже взрывной характер. Как это выяснили?

История

Иоган Глаубер в 1649 году обратил свое внимание на соединение, которое благополучно образовалось, когда химик занимался обработкой каменноугольной смолы. Но оно пожелало остаться инкогнито.

Спустя около 170 лет, а если быть гораздо более точным, в середине двадцатых годов XIX века, по воле случая из светильного газа, а именно из выделившегося конденсата, извлекли бензол. Таким стараниям человечество обязано Майклу Фарадею, ученому из Англии.

Эстафету по приобретению бензола перехватил немец Эйльгард Мичерлих. Это случилось, когда проходил процесс обработки безводных солей кальция бензойной кислоты. Возможно, поэтому соединению дали такое наименование - бензол. Еще, как вариант, ученый называл его бензином. Благовоние, если в переводе с арабского.

Бензол красиво и ярко горит, в связи с этими наблюдениями Огюст Лоран посоветовал назвать его «фен» или «бензен». Яркий, блистающий - если перевести с греческого языка.

Опираясь на мнение понятие о природе электронной связи, о качествах бензола, ученый предоставил молекулу соединения в виде следующего образа. Это шестиугольник. В него вписана окружность. Вышесказанное говорит о том, что у бензола целостное электронное облако, которое благополучно заключает шесть (без исключения) атомов углерода цикла. Скрепленных бинарных связей не наблюдается.

С бензолом раньше работали как с растворителем. А в основном, как говорится, не состоял, не участвовал, не привлекался. Но это в XIX веке. В XX произошли существенные перемены. Свойства бензола выражают ценнейшие качества, которые помогли ему стать более популярным. Октановое число, которое оказалось высоким, предоставило возможность применять его в качестве элемента топлива для заправки автомобилей. Сие действо послужило толчком обширного изъятия бензола, добыча оного осуществляется как вторичный продукт коксования изготовления стали.

К сороковым годам в химической сфере бензол начал потребляться в изготовлении веществ, которые быстро взрываются. XX век увенчал себя тем, что нефтеперерабатывающая промышленность выработала бензола столько, что стала снабжать химическую индустрию.

Характеристика бензола

Ненасыщенные углеводороды очень схожи с бензолом. Например, углеводородный ряд этилена характеризует себя как ненасыщенный углеводород. Ему свойственна реакция присоединения. Бензол охотно вступает в Все это благодаря атомам, которые находятся в одной плоскости. И как факт - сопряженное электронное облако.

Если в формуле присутствует бензольное кольцо, значит, можно прийти к элементарному выводу, что это - бензол, структурная формула которого выглядит именно так.

Физические свойства

Бензол - это жидкость которая не имеет цвета, зато имеет достойный сожаления запах. Плавится бензол, когда температура достигает 5,52 градусов по Цельсию. Кипит при 80,1. Плотность составляет 0,879 г/см 3 , масса молярная равна 78,11 г/моль. При горении сильно коптит. Формирует взрывоопасные соединения, когда проникает воздух. породы (бензин, эфир и прочие) с описываемым веществом соединяются без проблем. Азеотропное соединение создает с водой. Нагрев до начала парообразования происходит при 69,25 градусов (91 % бензола). При 25 градусах по Цельсию может растворяться в воде 1,79 г/л.

Химические свойства

Бензол реагирует с серной и азотной кислотой. А также с алкенами, галогенами, хлоралканами. Реакция замещения - вот что ему свойственно. Температура давления влияет на прорыв кольца бензола, которое проходит в достаточно резких условиях.

Каждое уравнение реакции бензола мы можем рассмотреть более детально.

1. Электрофильное замещение. Бром, при наличии катализатора, взаимодействует с хлором. В результате получаем хлоробензол:

С6H6+3Cl2 → C6H5Cl + HCl

2. Реакция Фриделя-Крафтса, или алкилирование бензола. Появление алкилбензолов происходит благодаря соединению с алканами, которые являются галогенопроизводными:

C6H6 + C2H5Br → C6H5C2H5 + HBr

3. Электрофильное замещение. Здесь идет реакция нитрования и сульфирования. Выглядеть уравнение бензола будет следующим образом:

C6H6 + H2SO4 → C6H5SO3H + H2O

C6H6 + HNO3 → C6H5NO2 + H2O

4. Бензол при горении:

2C6H6 + 15O2 → 12CO2 + 6H2O

При определенных условиях проявляет характер, свойственный насыщенным углеводородам. П-электронное облако, которое находится в строении рассматриваемого вещества, объясняет эти реакции.

От спецтехнологии зависят различные виды бензола. Отсюда происходит маркировка нефтяного бензола. Например, очищенный и высшей очистки, для синтеза. Хотелось бы отдельно отметить гомологи бензола, а если конкретнее - их химические свойства. Это алкилбензолы.

Гомологи бензола гораздо охотнее реагируют. Но вышесказанные реакции бензола, а именно гомологов, проходят с некоторым отличием.

Галогенирование алкилбензолов

Вид уравнения следующий:

С6H5-CH3 + Br = C6H5-CH2Br + HBr.

Стремление брома в кольцо бензола не наблюдается. Он выходит в цепочку сбоку. Зато благодаря катализатору соли Al(+3) бром смело идет в кольцо.

Нитрование алкилбензолов

Благодаря серной и азотной кислотам нитрируются бензолы и алкилбензолы. Реакционноспособные алкилбензолы. Получаются два продукта из представленных трех - это пара- и орто-изомеры. Можно записать одну из формул:

C6H5 - CH3 + 3HNO3 → C6H2CH3 (NO2)3.

Окисление

Для бензола это неприемлемо. Зато алкилбензолы реагируют охотно. Например, бензойная кислота. Формула приведена ниже:

C6H5CH3 + [O] → C6H5COOH.

Алкилбензол и бензол, их гидрирование

В присутствии усилителя водород начинает реагировать с бензолом, вследствие чего образуется циклогексан, как об этом говорилось выше. Подобным образом алкибензолы без проблем преобразуются в алкилциклогексаны. Для получения алкилциклогексана требуется подвергнуть гидрированию нужный алкилбензол. В основном это необходимая процедура для производства беспримесного продукта. И это далеко не все реакции бензола и алкилбензола.

Производство бензола. Промышленность

Фундамент такого производства зиждется на том, чтобы переработать составляющие: толуола, нафты, смолы, которая выделяется при крекинге угля, и прочих. Посему бензол производится на нефтехимических, металлургических предприятиях. Важно знать, как получить бензол разной степени очистки, ведь от принципа изготовления и предназначения следует прямая зависимость марки данного вещества.

Львиную долю изготавливают термокаталитическим реформингом каустобиолитной части, выкипающей при 65 градусах, обладающей эффектом экстракта, дистилляции с диметилформамидом.

При выработке этилена и пропилена получают жидкие продукты, которые образуются в ходе распада неорганических и органических соединений под воздействием тепла. Из них и выделяют бензол. Но, к сожалению, исходного материала для этого варианта добычи бензола не так уж и много. Потому интересующее нас вещество добывают риформингом. Посредством такого способа объем бензола увеличивается.

Путем деалкилирования при температуре 610-830 градусов со знаком плюс, при наличии пара, образующегося при кипении воды и водорода, из толуола получают бензол. Есть еще вариант - каталитический. Когда наблюдается наличие цеолитов, или, как вариант, катализаторов оксидных, при соблюдении температурного режима 227-627 градусов.

Существует еще один, более старый, способ разработки бензола. С помощью абсорбции поглотителями органического происхождения его выделяют из конечного результата коксования каменного угля. Продукт парогазовый и заранее подвергся охлаждению. Например, в ход пускается масло, источником которого является нефть или каменный уголь. Когда перегонка осуществляется с водяным паром, поглотитель отделяется. Гидроочистка помогает сырой бензол освободить от лишних веществ.

Каменноугольное сырье

В металлургии при использовании каменного угля, а если уточнить - его сухой перегонки, получают кокс. Во время этой процедуры ограничивается поступление воздуха. Не стоит забывать и то, что до температуры 1200-1500 по Цельсию нагревается уголь.

Углехимический бензол нуждается в доскональном очищении. Нужно избавиться в обязательном порядке от метила циклогексана и его товарища н-гептана. тоже должны быть изъяты. Бензолу предстоит процесс разделения, очищения, который будет осуществляться не один раз.

Метод, описанный выше, самый старый, но по истечении времени он теряет свои высокие позиции.

Нефтяные фракции

0,3-1,2 % - такие показатели состава нашего героя в необработанной нефти. Мизерные показатели, чтобы вкладывать финансы и силы. Лучше всего задействовать промышленную процедуру по переработке нефтяных фракций. То есть каталитический риформинг. При наличии алюмо-платино-рениевого усилителя растет процент вмещения ароматических углеводов, и возрастает показатель, определяющий возможности топлива не самовозгораться при его сжатии.

Смолы пиролиза

Если добывать наш нефтепродукт из не твердого сырья, а именно путем пиролиза возникающих при изготовлении пропилена и этилена, то сей подход окажется наиболее приемлемым. Если быть точным, бензол выделяется из пироконденсата. Разложение определенных долей нуждается в гидроочистке. При очистке отстраняются сернистые и непредельные смеси. В исходном результате замечено содержание ксилола, толуола, бензола. С помощью перегона, который является экстактивным, БТК-группа разделяется и получается бензол.

Гидродеалкилирование толуола

Главные герои процесса, коктейль из водородного потока и толуола, подаются нагретыми в реактор. Толуол проходит через пласт катализатора. Во время этого процесса метильная группа отделяется с формированием бензола. Здесь уместен определенный способ очищения. Результатом становится высокочистое вещество (для нитрования).

Диспропорционирование толуола

В следствии отторжения метильного класса совершается созидание до бензола, окисляется ксилол. В данном процессе было замечено переалкилирование. Действие катализации происходит благодаря палладию, платине и неодиму, которые находятся на оксиде алюминия.

В реактор со стойким пластом катализатора подается талуол и водород. Его цель - удержать оседание на плоскость катализатора углеводородов. Поток, который выходит из реактора, подвергается охлаждению, а на рецикл благополучно извлекается водород. То, что осталось, перегоняется трижды. На начальной стадии изымаются соединения, которые являются неароматическими. Вторым добывается бензол, и последний шаг - это выделение ксилолов.

Ацетилена тримеризация

Благодаря трудам французского физико-химика Марселена Бертло из ацетилена стали изготавливать бензол. Но при этом выделялся тяжелый коктейль из многих других элементов. Стоял вопрос, как понизить температуру реакции. Ответ был получен лишь в конце сороковых годов XX века. В. Реппе нашёл соответствующий катализатор, им оказался никель. Тримеризация - это единственный вариант обрести из ацетилена бензол.

Образование бензола происходит с помощью активированного угля. При больших показателях теплоты над углем проходит ацетилен. Бензол выделяется, если температура составляет не менее 410 градусов. При этом еще рождаются разнообразные ароматические углеводороды. Поэтому необходима хорошая аппаратура, которая способна качественно очистить ацетилен. При таком трудоемком способе, как тримеризация, ацетилена расходуется очень много. Чтобы получить 15 мл бензола, берется 20 литров ацетилена. Можно просмотреть, как это выглядит в реакция не заставит себя долго ждать.

3C2H2 → C6H6 (уравнение Зелинского).

3CH → CH = (t, kat) = C6H6.

Где используется бензол

Бензол — это достаточно популярное детище химии. Особенно часто было замечено, как бензол принимали на вооружение в изготовлении кумола, циклогексана, этилбензола. Для создания стирола без этилбензола не обойтись. Исходным материалом для того, чтобы выработать капролактам, служит циклогексан. Изготавливая термопластичную смолу, применяют именно капролактам. Описываемое вещество незаменимо при изготовлении разных красок, лаков.

Насколько опасен бензол

Бензол - это токсичное вещество. Проявление ощущения недомогания, которое сопровождается тошнотой и сильным головокружением - это признак отравления. Не исключается даже летальный исход. Чувство неописуемого восторга - это не менее тревожные звоночки при отравлении бензолом.

Бензол в жидком состоянии вызывает раздражение кожи. Бензольные пары с легкостью проникают даже через неповрежденный кожный покров. При самых недолгосрочных контактах с веществом в небольшой дозе, но на регулярной основе, неприятные последствия не заставят себя долго ждать. Это может быть поражение костного мозга и лейкозы острого характера разного вида.

Ко всему прочему, вещество вызывает зависимость у человека. Бензол действует как дурман. Из табачного дыма получается дегтеобразный продукт. Кода его изучили, то пришли к выводу, что содержание последнего небезопасно для человека. Обнаружилось помимо присутствия никотина еще и наличие ароматических углеводов вида бензпирена. Отличительной чертой бензпирена являются канцерогенные вещества. Действие они оказывают очень вредное. Например, вызывают онкологические заболевания.

Несмотря на вышесказанное, бензол является стартовым сырьем для производства разнообразных лекарственных препаратов, пластмасс, резины синтетического происхождения и, конечно же, красителей. Это самое распространённое детище химии и ароматическое соединение.