1 определение дифференцирования формулы дифференцирования. Приложения производной к исследованию функции

2. Основные правила дифференцирования

Если с - постоянное число, и u = u(x), v = v(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

1) (с) " = 0, (cu) " = cu";

2) (u+v)" = u"+v";

3) (uv)" = u"v+v"u;

4) (u/v)" = (u"v-v"u)/v 2;

Пример 1. Найти производную функции

Решение. Применяя правила (5) и (8) и формулу (4) дифференцирования степенной функции получим

Пример 2. Найти производную функции

Решение. Применим правило (7) дифференцирования произведения, а затем найдём производные сомножителей так же, как в примере 4. Тогда получим

Пример 3. Найти производную функции у =

Решение. Применим правило (10) дифференцирования частного:

Затем, так же как и выше, вычислим производные в числителе. Имеем

Текст задания:

Вариант 1

1. Найти производную функции .

2. Найти производную функции .

в точке с абсциссой , .

t

Вариант 2

1. Найти производную функции .

2. Найти производную функции .

3. Написать уравнение касательной к графику функции в точке с абсциссой , .

4. Материальная точка движется по закону . Найти скорость и ускорение в момент времени t =5 с. (Перемещение измеряется в метрах.)

Вариант 3

1. Найти производную функции .

2. Найти производную функции .

3. Написать уравнение касательной к графику функции в точке с абсциссой , .

4. Материальная точка движется по закону . Найти скорость и ускорение в момент времени t =5 с. (Перемещение измеряется в метрах.)

Вариант 4

1. Найти производную функции .

2. Найти производную функции .

3. Написать уравнение касательной к графику функции в точке с абсциссой , .

4. Материальная точка движется по закону . Найти скорость и ускорение в момент времени t =5 с. (Перемещение измеряется в метрах.)

Вариант 5

1. Найти производную функции .

2. Найти производную функции .

3. Написать уравнение касательной к графику функции в точке с абсциссой , .

4. Материальная точка движется по закону . Найти скорость и ускорение в момент времени t =5 с. (Перемещение измеряется в метрах.)

Вариант 6

1. Найти производную функции .

2. Найти производную функции .

3. Написать уравнение касательной к графику функции в точке с абсциссой , .

4. Материальная точка движется по закону . Найти скорость и ускорение в момент времени t =5 с. (Перемещение измеряется в метрах.)

Практическая работа № 16



Тема: Применение производной к исследованию функций и построению графиков

Цель работы: закрепить знания и умения студентов по освоению темы, формировать навыки прикладного использования аппарата производной.

Теоритическое обоснование:

Схема исследования функции и построение ее графика

I. Найти область определения функции.
II. Найти точки пересечения графика функции с осями координат.
III. Найти асимптоты.
IV. Найти точки возможного экстремума.
V. Найти критические точки.
VI. С помощью вспомогательного рисунка исследовать знак первой производных. Определить участки возрастания и убывания функции, точки экстремумов.
VII. Построить график, учитывая исследование, проведенное в п.1-6.

Пусть функция y = f(x) определена в промежутке X. Производной функции y = f(x) в точке х o называется предел

= .

Если этот предел конечный, то функция f(x) называется дифференцируемой в точке x o ; при этом она оказывается обязательно и непрерывной в этой точке.

Если же рассматриваемый предел равен  (или - ), то при условии, что функция в точке х o непрерывна, будем говорить, что функция f(x) имеет в точке х o бесконечную производную .

Производная обозначается символами

y , f (x o), , .

Нахождение производной называется дифференцированием функции. Геометрический смысл производной состоит в том,что производная есть угловой коэффициент касательной к кривой y=f(x) в данной точке х o ; физический смысл - в том, что производная от пути по времени есть мгновенная скорость движущейся точки при прямолинейном движении s = s(t) в момент t o .

Если с - постоянное число, и u = u(x), v = v(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

1) (с) " = 0, (cu) " = cu";

2) (u+v)" = u"+v";

3) (uv)" = u"v+v"u;

4) (u/v)" = (u"v-v"u)/v 2;

5) если y = f(u), u = (x), т.е. y = f((x)) - сложная функция, или суперпозиция , составленная из дифференцируемых функций  и f, то , или

6) если для функции y = f(x) существует обратная дифференцируемая функция x = g(y), причем  0, то .

На основе определения производной и правил дифференцирования можно составить список табличных производных основных элементарных функций.

1. (u )" =  u  1 u" (  R ).

2. (a u)" = a u lna u".

3. (e u)" = e u u".

4. (log a u)" = u"/(u ln a).

5. (ln u)" = u"/u.

6. (sin u)" = cos u u".

7. (cos u)" = - sin u u".

8. (tg u)" = 1/ cos 2 u u".

9. (ctg u)" = - u" / sin 2 u.

10. (arcsin u)" = u" / .

11. (arccos u)" = - u" / .

12. (arctg u)" = u"/(1 + u 2).

13. (arcctg u)" = - u"/(1 + u 2).

Вычислим производную степенно-показательного выражения y=u v , (u>0), где u и v суть функции от х , имеющие в данной точке производные u" , v" .

Прологарифмировав равенство y=u v , получим ln y = v ln u.

Приравнивая производные по х от обеих частей полученного равенства с помощью правил 3, 5 и формулы для производной логарифмической функции, будем иметь:

y"/y = vu"/u +v" ln u, откуда y" = y (vu"/u +v" ln u).

(u v)"=u v (vu"/u+v" ln u), u > 0.

Например, если y = x sin x , то y" = x sin x (sin x/x + cos x ln x).

Если функция y = f(x) дифференцируема в точке x , т.е. имеет в этой точке конечную производную y" , то = y"+, где 0 при х 0; отсюда  y = y" х +  x.

Главная часть приращения функции, линейная относительно х, называется дифференциалом функции и обозначается dy: dy = y" х. Если положить в этой формуле y=x, то получим dx = x"х = 1х =х, поэтому dy=y"dx, т. е. символ для обозначения производной можно рассматривать как дробь.

Приращение функции  y есть приращение ординаты кривой, а дифференциал dy есть приращение ординаты касательной.

Пусть мы нашли для функции y=f(x) ее производную y = f (x). Производная от этой производной называется производной второго порядка функции f(x), или второй производной, и обозначается .

Аналогично определяются и обозначаются:

производная третьего порядка - ,

производная четвертого порядка -

и вообще производная n-го порядка - .

Пример 3 .15. Вычислить производную функции y=(3x 3 -2x+1)sin x.

Решение. По правилу 3, y"=(3x 3 -2x+1)"sin x + (3x 3 -2x+1)(sin x)" = = (9x 2 -2)sin x + (3x 3 -2x+1)cos x.

Пример 3.16 . Найти y", y = tg x + .

Решение. Используя правила дифференцирования суммы и частного, получим: y"=(tgx + )" = (tgx)" + ()" = + = .

Пример 3 .17. Найти производную сложной функции y= , u=x 4 +1.

Решение. По правилу дифференцирования сложной функции, получим: y" x =y " u u" x =()" u (x 4 +1)" x =(2u + . Так как u=x 4 +1,то (2 x 4 +2+ .

Таблица производных элементарных функций

Определение 1

Вычисление производной называют дифференцированием .

Обозначают производную $y"$ или $\frac{dy}{dx}$.

Замечание 1

Для нахождения производной функции согласно основным правилам дифференцирования превращают в другую функцию.

Рассмотрим таблицу производных. Обратим внимание на то, что функции после нахождения их производных преобразуются в другие функции.

Исключение составляет лишь $y=e^x$, превращающаяся сама в себя.

Правила дифференцирования производной

Чаще всего при нахождении производной требуется не просто посмотреть в таблицу производных, а вначале применить правила дифференцирования и доказательство производной произведения, и только потом использовать таблицу производных элементарных функций.

1. Постоянная выносится за знак производной

$C$ – постоянная (константа).

Пример 1

Продифференцировать функцию $y=7x^4$.

Решение.

Находим $y"=(7x^4)"$. Выносим число $7$ за знак производной, получаем:

$y"=(7x^4)"=7(x^4)"=$

используя таблицу, необходимо находить значение производной степенной функции:

$=7 \cdot 4x^3=$

Преобразуем результат к принятому в математике виду:

Ответ: $28x^3$.

2. Производная суммы (разницы) равна сумме (разнице) производных:

$(u \pm v)"=u" \pm v"$.

Пример 2

Продифференцировать функцию $y=7+x-5x^3+4 \sin x-9\sqrt{x^2}+\frac{4}{x^4} -11\cot x$.

Решение.

$y"=(7+x-5x^5+4 \sin x-9\sqrt{x^2}+\frac{4}{x^4} -11\cot x)"=$

применим правило дифференцирования производной суммы и разницы:

$=(7)"+(x)"-(5x^5)"+(4 \sin x)"-(9\sqrt{x^2})"+(\frac{4}{x^4})"-(11\cot x)"=$

отметим, что при дифференцировании все степени и корни необходимо преобразовать к виду $x^{\frac{a}{b}}$;

вынесем все постоянные за знак производной:

$=(7)"+(x)"-(5x^5)"+(4\sin x)"-(9x^{\frac{2}{5}})"+(4x^{-4})"-(11\cot x)"=$

$=(7)"+(x)"-5(x^5)"+4(\sin x)"-9(x^{\frac{2}{5}})"+4(x^{-4})"-11(\cot x)"=$

разобравшись с правилами дифференцирования, некоторые из них (например, как последние два) применяются одновременно во избежание переписывания длинного выражения;

мы получили выражение из элементарных функций, стоящих под знаком производной; воспользуемся таблицей производных:

$=0+1-5 \cdot 5x^4+4\cos x-9 \cdot \frac{2}{5} x^{-\frac{3}{5}}+12x^{-5}-11 \cdot \frac{-1}{\sin^2 x}=$

преобразуем к виду, принятому в математике:

$=1-25x^4+4 \cos x-\frac{18}{5\sqrt{x^3}}+\frac{12}{x^5} +\frac{11}{\sin^2 x}$

Обратим внимание, что при нахождении результата принято слагаемые с дробными степенями преобразовать в корни, а с отрицательными – в дроби.

Ответ : $1-25x^4+4 \cos x-\frac{18}{5\sqrt{x^3}}+\frac{12}{x^5} +\frac{11}{\sin^2 x}$.

3. Формула производной произведения функций:

$(uv)"=u" v+uv"$.

Пример 3

Продифференцировать функцию $y=x^{11} \ln x$.

Решение.

Сначала применим правило вычисления производной произведения функций, а затем используем таблицу производных:

$y"=(x^{11} \ln x)"=(x^{11})" \ln x+x^{11} (\lnтx)"=11x^{10} \ln x+x^{11} \cdot \frac{1}{x}=11x^{10} \ln x-\frac{x^{11}}{x}=11x^{10} \ln x-x^{10}=x^{10} (11 \ln x-1)$.

Ответ : $x^{10} (11 \ln x-1)$.

4. Формула производной частной функции:

$(\frac{u}{v})"=\frac{u" v-uv"}{v^2}$.

Пример 4

Продифференцировать функцию $y=\frac{3x-8}{x^5-7}$.

Решение.

$y"=(\frac{3x-8}{x^5-7})"=$

по правилам приоритета математических операций сначала выполним деление, а потом сложение и вычитание, поэтому применим сначала правило вычисления производной частного:

$=\frac{(3x-8)" (x^5-7)-(3x-8) (x^5-7)"}{(x^5-7)^2} =$

применим правила производных суммы и разности, раскроем скобки и упростим выражение:

$=\frac{3(x^5-7)-5x^4 (3x-8)}{(x^5-7)^2} =\frac{3x^5-21-15x^5+40x^4}{(x^5-7)^2} =\frac{-12x^5+40x^4-21}{(x^5-7)^2}$ .

Ответ: $\frac{-12x^5+40x^4-21}{(x^5-7)^2}$.

Пример 5

Продифференцируем функцию $y=\frac{x^7-2x+3}{x}$.

Решение.

Функция y является частным двух функций, поэтому можно применить правило вычисления производной частного, но в таком случае получим громоздкую функцию. Для упрощения данной функции можно почленно разделить числитель на знаменатель:

$y=\frac{x^7-13x+9}{x}=x^6-13+\frac{9}{x}$.

Применим к упрощенной функции правило дифференцирования суммы и разности функций:

$y"=(x^6-13+\frac{9}{x})"=(x^6)"+(-13)"+9(x^{-1})"=6x^5+0+9 \cdot (-x^{-2})=$

$=6x^5-\frac{9}{x^2}$.

Ответ : $6x^5-\frac{9}{x^2}$.


Дифференцирование – это вычисление производной.

1. Формулы дифференцирования.

Основные формулы дифференцирования – в таблице. Их необязательно зазубривать. Поняв некоторые закономерности, вы сможете из одних формул самостоятельно выводить другие.

1) Начнем с формулы (kx + m)′ = k.
Ее частными случаями являются формулы x ′ = 1 и C′ = 0.

В любой функции вида у = kx + m производная равна угловому коэффициенту k.

Например, дана функция у = 2х + 4. Ее производная в любой точке будет равна 2:

(2 х + 4)′ = 2 .

Производная функции у = 9 х + 5 в любой точке равна 9 . И т.д.

А давайте найдем производную функции у = 5х . Для этого представим 5х в виде (5х + 0). Мы получили выражение, похожее на предыдущее. Значит:

(5х )′ = (5х + 0)′ = 5.

Наконец, выясним, чему равна x ′.
Применим прием из предыдущего примера: представим х в виде 1х + 0. Тогда получим:

x ′ = (1х + 0)′ = 1.

Таким образом, мы самостоятельно вывели формулу из таблицы:

(0 · x + m)′ = 0.

Но тогда получается, что m′ тоже равна 0. Пусть m = C, где C – произвольная постоянная. Тогда мы приходим к еще одной истине: производная постоянной равна нулю. То есть получаем еще одну формулу из таблицы.

Операция отыскания производной называется дифференцированием.

В результате решения задач об отыскании производных у самых простых (и не очень простых) функций по определению производной как предела отношения приращения к приращению аргумента появились таблица производных и точно определённые правила дифференцирования. Первыми на ниве нахождения производных потрудились Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716).

Поэтому в наше время, чтобы найти производную любой функции, не надо вычислять упомянутый выше предел отношения приращения функции к приращению аргумента, а нужно лишь воспользоваться таблицей производных и правилами дифференцирования. Для нахождения производной подходит следующий алгоритм.

Чтобы найти производную , надо выражение под знаком штриха разобрать на составляющие простые функции и определить, какими действиями (произведение, сумма, частное) связаны эти функции. Далее производные элементарных функций находим в таблице производных, а формулы производных произведения, суммы и частного - в правилах дифференцирования. Таблица производных и правила дифференцирования даны после первых двух примеров.

Пример 1. Найти производную функции

Решение. Из правил дифференцирования выясняем, что производная суммы функций есть сумма производных функций, т. е.

Из таблицы производных выясняем, что производная "икса" равна единице, а производная синуса - косинусу. Подставляем эти значения в сумму производных и находим требуемую условием задачи производную:

Пример 2. Найти производную функции

Решение. Дифференцируем как производную суммы, в которой второе слагаемое с постоянным множителем, его можно вынести за знак производной:

Если пока возникают вопросы, откуда что берётся, они, как правило, проясняются после ознакомления с таблицей производных и простейшими правилами дифференцирования. К ним мы и переходим прямо сейчас.

Таблица производных простых функций

1. Производная константы (числа). Любого числа (1, 2, 5, 200...), которое есть в выражении функции. Всегда равна нулю. Это очень важно помнить, так как требуется очень часто
2. Производная независимой переменной. Чаще всего "икса". Всегда равна единице. Это тоже важно запомнить надолго
3. Производная степени. В степень при решении задач нужно преобразовывать неквадратные корни.
4. Производная переменной в степени -1
5. Производная квадратного корня
6. Производная синуса
7. Производная косинуса
8. Производная тангенса
9. Производная котангенса
10. Производная арксинуса
11. Производная арккосинуса
12. Производная арктангенса
13. Производная арккотангенса
14. Производная натурального логарифма
15. Производная логарифмической функции
16. Производная экспоненты
17. Производная показательной функции

Правила дифференцирования

1. Производная суммы или разности
2. Производная произведения
2a. Производная выражения, умноженного на постоянный множитель
3. Производная частного
4. Производная сложной функции

Правило 1. Если функции

дифференцируемы в некоторой точке , то в той же точке дифференцируемы и функции

причём

т.е. производная алгебраической суммы функций равна алгебраической сумме производных этих функций.

Следствие. Если две дифференцируемые функции отличаются на постоянное слагаемое, то их производные равны , т.е.

Правило 2. Если функции

дифференцируемы в некоторой точке , то в то же точке дифференцируемо и их произведение

причём

т.е. производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой.

Следствие 1. Постоянный множитель можно выносить за знак производной :

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные.

Например, для трёх множителей:

Правило 3. Если функции

дифференцируемы в некоторой точке и , то в этой точке дифференцируемо и их частное u/v , причём

т.е. производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя.

Где что искать на других страницах

При нахождении производной произведения и частного в реальных задачах всегда требуется применять сразу несколько правил дифференцирования, поэтому больше примеров на эти производные - в статье "Производная произведения и частного функций " .

Замечание. Следует не путать константу (то есть, число) как слагаемое в сумме и как постоянный множитель! В случае слагаемого её производная равна нулю, а в случае постоянного множителя она выносится за знак производных. Это типичная ошибка, которая встречается на начальном этапе изучения производных, но по мере решения уже нескольких одно- двухсоставных примеров средний студент этой ошибки уже не делает.

А если при дифференцировании произведения или частного у вас появилось слагаемое u "v , в котором u - число, например, 2 или 5, то есть константа, то производная этого числа будет равна нулю и, следовательно, всё слагаемое будет равно нулю (такой случай разобран в примере 10).

Другая частая ошибка - механическое решение производной сложной функции как производной простой функции. Поэтому производной сложной функции посвящена отдельная статья. Но сначала будем учиться находить производные простых функций.

По ходу не обойтись без преобразований выражений. Для этого может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями .

Если Вы ищете решения производных дробей со степенями и корнями, то есть, когда функция имеет вид вроде , то следуйте на занятие "Производная суммы дробей со степенями и корнями ".

Если же перед Вами задача вроде , то Вам на занятие "Производные простых тригонометрических функций".

Пошаговые примеры - как найти производную

Пример 3. Найти производную функции

Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители - суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило дифференцирования произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой:

Далее применяем правило дифференцирования суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций. В нашем случае в каждой сумме второе слагаемое со знаком минус. В каждой сумме видим и независимую переменную, производная которой равна единице, и константу (число), производная которой равна нулю. Итак, "икс" у нас превращается в единицу, а минус 5 - в ноль. Во втором выражении "икс" умножен на 2, так что двойку умножаем на ту же единицу как производную "икса". Получаем следующие значения производных:

Подставляем найденные производные в сумму произведений и получаем требуемую условием задачи производную всей функции:

Пример 4. Найти производную функции

Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:

Производную сомножителей в числителе мы уже нашли в примере 2. Не забудем также, что произведение, являющееся вторым сомножителем в числителе в текущем примере берётся со знаком минус:

Если Вы ищете решения таких задач, в которых надо найти производную функции, где сплошное нагромождение корней и степеней, как, например, , то добро пожаловать на занятие "Производная суммы дробей со степенями и корнями" .

Если же Вам нужно узнать больше о производных синусов, косинусов, тангенсов и других тригонометрических функций, то есть, когда функция имеет вид вроде , то Вам на урок "Производные простых тригонометрических функций" .

Пример 5. Найти производную функции

Решение. В данной функции видим произведение, один из сомножителей которых - квадратный корень из независимой переменной, с производной которого мы ознакомились в таблице производных. По правилу дифференцирования произведения и табличному значению производной квадратного корня получаем:

Пример 6. Найти производную функции

Решение. В данной функции видим частное, делимое которого - квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на .