Окружность и вписанный угол. Визуальный гид (2019)

Сопряжение двух параллельных прямых

Заданы две параллельные прямые и на одной из них точка сопряжения М (рис. 2.19, а ). Требуется построить сопряжение.

  • 1) находят центр сопряжения и радиус дуги (рис. 2.19, б). Для этого из точки М восставляют перпендикуляр до пересечения с прямой в точке N. Отрезок MN делят пополам (см. рис. 2.7);
  • 2) из точки О – центра сопряжения радиусом ОМ = ON описывают дугу от точек сопряжения М и N (рис. 2.19, в ).

Рис. 2.19.

Даны окружность с центром О и точка А. Требуется провести из точки А касательную к окружности.

1. Точку А соединяют прямой с заданным центром О окружности.

Строят вспомогательную окружность диаметром, равным ОА (рис. 2.20, а ). Чтобы найти центр О 1, делят отрезок ОА пополам (см. рис. 2.7).

2. Точки M и N пересечения вспомогательной окружности с заданной – искомые точки касания. Точку А соединяют прямыми с точками М или N (рис. 2.20, б ). Прямая AM будет перпендикулярна прямой ОМ, так как угол АМО опирается на диаметр.

Рис. 2.20.

Проведение прямой, касательной к двум окружностям

Даны две окружности радиусов R и R 1. Требуется построить прямую, касательную к ним.

Различают два случая касания: внешнее (рис. 2.21, б ) и внутреннее (рис. 2.21, в ).

При внешнем касании построение выполняют следующим образом:

  • 1) из центра О проводят вспомогательную окружность радиусом, равным разности радиусов заданных окружностей, т.е. R – R 1 (рис. 2.21, а ). К этой окружности из центра О1 проводят касательную прямую Ο 1Ν. Построение касательной показано на рис. 2.20;
  • 2) радиус, проведенный из точки О в точку Ν, продолжают до пересечения в точке М с заданной окружностью радиуса R. Параллельно радиусу ОМ проводят радиус Ο 1Ρ меньшей окружности. Прямая, соединяющая точки сопряжений М и Р, – касательная к заданным окружностям (рис. 2.21, б ).

Рис. 2.21.

При внутреннем касании построение проводят аналогично, но вспомогательную окружность проводят радиусом, равным сумме радиусов R + R 1 (рис. 2.21, в ). Затем из центра О 1 проводят касательную к вспомогательной окружности (см. рис. 2.20). Точку N соединяют радиусом с центром О. Параллельно радиусу ON проводят радиус O1Р меньшей окружности. Искомая касательная проходит через точки сопряжений М и Р.

Сопряжение дуги и прямой дугой заданного радиуса

Даны дуга окружности радиуса R и прямая. Требуется соединить их дугой радиуса R 1.

  • 1. Находят центр сопряжения (рис. 2.22, а ), который должен находиться на расстоянии R 1 от дуги и от прямой. Поэтому проводят вспомогательную прямую, параллельную заданной прямой, на расстоянии, равном радиусу сопрягающей дуги R1) (рис. 2.22, а ). Раствором циркуля, равным сумме заданных радиусов R + R 1 описывают из центра О дугу до пересечения со вспомогательной прямой. Полученная точка О1 – центр сопряжения.
  • 2. По общему правилу находят точки сопряжения (рис. 2.22, б ): соединяют прямой центры сопрягаемых дуг O1 и О и опускают из центра сопряжения Ο 1 перпендикуляр на заданную прямую.
  • 3. Из центра сопряжения Οχ между точками сопряжения Μ и Ν проводят дугу, радиус которой R 1 (рис. 2.22, б ).

Рис. 2.22.

Сопряжение двух дуг дугой заданного радиуса

Даны две дуги, радиусы которых R 1 и R 2. Требуется построить сопряжение дугой, радиус которой задан.

Различают три случая касания: внешнее (рис. 2.23, а, б ), внутреннее (рис. 2.23, в ) и смешанное (см. рис. 2.25). Во всех случаях центры сопряжений должны быть расположены от заданных дуг на расстоянии радиуса дуги сопряжения.

Рис. 2.23.

Построение выполняют следующим образом:

Для внешнего касания:

  • 1) из центров Ο 1 и О2 раствором циркуля, равным сумме радиусов заданной и сопрягающей дуг, проводят вспомогательные дуги (рис. 2.23, а ); радиус дуги, проведенной из центра Ο 1, равен R 1 + R 3; а радиус дуги, проведенной из центра O2, равен R 2 + R 3. На пересечении вспомогательных дуг расположен центр сопряжения – точка O3;
  • 2) соединив прямыми точку Ο1 с точкой 03 и точку O2 с точкой O3, находят точки сопряжения M и N (рис. 2.23, б );
  • 3) из точки 03 раствором циркуля, равным R 3, между точками Μ и Ν описывают сопрягающую дугу.

Для внутреннего касания выполняют те же построения, но радиусы дуг берут равными разности радиусов заданной и сопрягающей дуг, т.е. R 4 – R 1 и R 4 – R 2. Точки сопряжения Р и К лежат на продолжении линий, соединяющих точку O4 с точками O1 и O2 (рис. 2.23, в ).

Для смешанного (внешнего и внутреннего ) касания (1-й случай):

  • 1) раствором циркуля, равным сумме радиусов R 1 и R 3, из точки O2, как из центра, проводят дугу (рис. 2.24, а);
  • 2) раствором циркуля, равным разности радиусов R 2 и R 3, из точки O2 проводят вторую дугу, пересекающуюся с первой в точке O3 (рис. 2.24, б );
  • 3) из точки О1 проводят прямую линию до точки O3, из второго центра (точка O2) проводят прямую через точку O3 до пересечения с дугой в точке М (рис. 2.24, в).

Точка O3 является центром сопряжения, точки М и N – точками сопряжения;

4) поставив ножку циркуля в точку O3, радиусом R 3 проводят дугу между точками сопряжения Μ и Ν (рис. 2.24, г ).

Рис. 2.24.

Для смешанного касания (2-й случай):

  • 1) две сопрягаемые дуги окружностей радиусов R 1 и R 2 (рис. 2.25);
  • 2) расстояние между центрами О i и O2 этих двух дуг;
  • 3) радиус R 3 сопрягающей дуги;

требуется:

  • 1) определить положение центра O3 сопрягающей дуги;
  • 2) найти на сопрягаемых дугах точки сопряжения;
  • 3) провести дугу сопряжения

Последовательность построения

Откладывают заданные расстояния между центрами Ο 1 и O2. Из центра О 1 проводят вспомогательную дугу радиусом равным сумме радиусов сопрягаемой дуги радиуса R 1 и сопрягающей дуги радиуса R 3, а из центра O2 проводят вторую вспомогательную дугу радиусом, равным разности радиусов R 3 и R 2, до пересечения с первой вспомогательной дугой в точке O3, которая будет искомым центром сопрягающей дуги (рис. 2.25).

Рис. 2.25.

Точки сопряжения находят по общему правилу, соединяя прямыми центры дуг O3 и O1, O 3 и O2. На пересечении этих прямых с дугами соответствующих окружностей находят точки М и N.

Лекальные кривые

В технике встречаются детали, поверхности которых ограничены плоскими кривыми: эллипсом, эвольвентной окружностью, спиралью Архимеда и др. Такие кривые линии нельзя вычертить циркулем.

Их строят по точкам, которые соединяют плавными линиями с помощью лекал. Отсюда название лекальные кривые.

Приведена на рис. 2.26. Каждая точка прямой, если ее катить без скольжения по окружности, описывает эвольвенту.

Рис. 2.26.

Рабочие поверхности зубьев большинства зубчатых колес имеют эвольвентное зацепление (рис. 2.27).

Рис. 2.27.

Спираль Архимеда изображена на рис. 2.28. Это плоская кривая, которую описывает точка, равномерно движущаяся от центра О по вращающемуся радиусу.

Рис. 2.28.

По спирали Архимеда нарезают канавку, в которую входят выступы кулачков самоцентрирующего трехкулачкового патрона токарного станка (рис. 2.29). При вращении конической шестерни, на обратной стороне которой нарезана спиральная канавка, кулачки сжимаются.

При выполнении этих (и других) лекальных кривых на чертеже можно для облегчения работы воспользоваться справочником.

Размеры эллипса определяются величиной его большой АВ и малой CD осей (рис. 2.30). Описывают две концентрические окружности. Диаметр большей равен длине эллипса (большой оси АВ ), диаметр меньшей – ширине эллипса (малой оси CD ). Делят большую окружность на равные части, например на 12. Точки деления соединяют прямыми, проходящими через центр окружностей. Из точек пересечения прямых с окружностями проводят линии, параллельные осям эллипса, как показано на рисунке. При взаимном пересечении этих линий получают точки, принадлежащие эллипсу, которые, соединив предварительно от руки тонкой плавной кривой, обводят с помощью лекала.

Рис. 2.29.

Рис. 2.30.

Практическое применение геометрических построений

Дано задание: выполнить чертеж ключа, показанного на рис. 2.31. Как это сделать?

Прежде чем начинать чертить, проводят анализ графического состава изображения, чтобы установить, какие случаи геометрических построений необходимо применить. На рис. 2.31 показаны эти построения.

Рис. 2.31.

Чтобы вычертить ключ, нужно провести взаимно перпендикулярные прямые, описать окружности, построить шестиугольники, соединив верхние и нижние их вершины прямыми, выполнить сопряжение дуг и прямых дугами заданного радиуса.

Какова последовательность этой работы?

Вначале проводят те линии, положение которых определено заданными размерами и не требует дополнительных построений (рис. 2.32, а ), т.е. проводят осевые и центровые линии, описывают по заданным размерам четыре окружности и соединяют концы вертикальных диаметров меньших окружностей прямыми линиями.

Рис. 2.32.

Дальнейшая работа по выполнению чертежа требует применения изложенных в п. 2.2 и 2.3 геометрических построений.

В данном случае нужно построить шестиугольники и выполнить сопряжение дуг с прямыми (рис. 2.32, б ). Это и будет второй этап работы.

Введение. Рассмотрим последовательно сопряжение двух прямых, прямой и дуги и двух дуг при заданном радиусе R.

Рассмотрим последовательно сопряжение двух прямых, прямой и дуги и двух дуг при заданном радиусе R.

Для построения сопряжения двух пересекающихся прямых l 1 иl 2 нарасстоянии заданного радиуса R проводим две вспомогательные прямые, соответственно параллельные заданным l 1 и l 2 (рисунок 32). Точка пересечения этих прямых является центром сопряжения О. Из полученного центра опускаем перпендикуляры на заданные прямые - получаем точки сопряжений М и N. Из центра О величиной заданного радиуса R проводим дугу в пределах между найденными точками М и N.

Для построения сопряжения прямой линии l с дугой радиуса R 1 , проведенной из центра O 1 (рисунок 33), проводим вспомогательную прямую, параллельную прямой l , на расстоянии заданного радиуса сопряжения R , а из центра O 1 проводим вспомогательную дугу радиусом R 1 +R . В точке пересечения этих вспомогательных линий получаем центр сопряжения О . Из этого центра опускаем перпендикуляр на прямую - получаем точку сопряжения на прямой М , затем соединяем центр О с центром дуги O 1 - в пересечении прямой ОО 1 с заданной дугой получаем точку сопряжения на дуге - точкуN . Между найденными точками М и N радиусом R проводим дугу сопряжения.

Рисунок 32 Рисунок 33

Для построения сопряжения двух дуг: дуги R 1 из центра O 1 и дуги R 2 из центра O 2 (рисунок 34), проводим две вспомогательные дуги радиусами, соответственно равными R 1 +R и R 2 +R . Точка пересечения вспомогательных дуг определяет центр сопряжения - точку О . Для определения точек сопряжения М и N соединяем центр сопряжения О с центрами заданных дуг O 1 и O 2 . Радиусом R проводим дугу сопряжения в пределах MN .

Рисунок 34

Сопряжение двух дуг при заданном радиусе R возможно при следующем условии: O 1 O 2 ≤ R 1 + 2R + R 2

Рассмотрев наиболее характерные случаи сопряжений при заданном радиусе, можно выявить общее правило построения сопряжений для подобных случаев. Центр сопряжения определяется в пересечении двух вспомогательных линий, параллельных заданным дугам и отстоящих от заданных линий на расстоянии радиуса сопряжения.

Точки сопряжений определяются: на прямых - перпендикуляром, опущенным из центра сопряжений на прямую; на дугах - прямой, соединяющей центр сопряжений с центром заданной дуги (рисунки 32 – 34).

7.2.2 Задана точка сопряжения

Рассмотрим несколько характерных случаев сопряжения двух прямых, прямой и дуги и двух дуг, когда задана одна точка сопряжения М .

Для построения сопряжения двух пересекающихся прямых l 1 и l 2 (рисунок 35) центр сопряжения О определяем в точке пересечения перпендикуляра к прямой l 1 , восставленного из заданной точки М , и биссектрисы угла, образованного прямыми l 1 и l 2 . Вторую точку сопряжения N на прямой l 2 определяем с помощью перпендикуляра, опущенного из центра O на прямую l 2 . Радиус сопряжения определяем графически: R X = | ОМ |= |ON| .

Рисунок 35

Построение сопряжения прямой линии l c дугой радиуса R 1 , проведенной из центра O 1 . Эта задача может быть решена в двух вариантах, точка М может быть задана на дуге и на прямой. Рассмотрим последовательно оба варианта.

Первый вариант. Точка М задана на дуге. В точке М проводим касательную к дуге. Точка пересечения биссектрисы угла, образованного касательной и заданной прямой l , с продолжением радиуса O 1 М определяем центр дуги сопряжения О (рисунок 36).

Вторая точка сопряжения N на прямой определяется перпендикуляром, опущенным из точки О на прямую l . Радиус сопряжения определился графически: R X = | ОМ |= |ON| .

Рисунок 36 Рисунок 37

Второй вариант. Точка М задана на прямой. Из заданной точки М восстанавливаем перпендикуляр к прямой l и откладываем на нем расстояние, равное R 1 (рисунок 37). Полученную точку К соединяем с центром O 1 и делим отрезок O 1 К O определяется в точке пересечения перпендикуляра, восстановленного из середины отрезка O 1 К и прямой, проходящей через точки М и К .

Вторую точку сопряжения N на дуге определяем в точке пересечения прямой O O 1 c заданной дугой. Радиус сопряжения R X = | ОМ | = |ON| .

Построить сопряжение двух дуг R 1 из центра O 1 и R 2 из центра O 2 . Точка сопряжения М задана на дуге, проведенной из центра O 1 . Соединяем заданную точку М с центром O 1 и откладываем на продолжении радиуса O 1 М расстояние, равное R 2 (рисунок 38). Дальнейшее построение аналогично предыдущему случаю; полученную точку К соединяем с центром O 2 и делим отрезок КO 2 пополам. Центр дуги сопряжения О определяется в точке пересечения перпендикуляра, восстановленного от середины отрезка КO 2 , и прямой, проходящей через точки M и O 1 . Вторую точку сопряжения на второй дуге определяем в точке пересечения дуги с прямой OO 2 . Радиус сопряжения R X = | ОМ |= |ON| .

Рисунок 38

При обводке сопряженных линий сначала следует обводить дуги до точек сопряжений, а затем прямолинейные участки.

7.3 Лекальные кривые

Лекальные кривые имеют большое применение в технике. Рассмотрим наиболее часто встречающиеся способы построения плоских кривых: эллипса, параболы, циклоиды, синусоиды, эвольвенты. Это кривые обычно обводят с помощью лекал, поэтому они получили название лекальных кривых.

Эллипс (рисунок 39). Эллипсом называется замкнутая плоская кривая, для которой сумма расстояний от любой ее точки до двух точек той же плоскости - фокусов эллипса - есть величина постоянная, равная большой оси эллипса. Отрезок MN называется большой осью эллипса, а отрезок DE - малой его осью. Если из точки D или Е провести дугу радиусом R=MN:2 , то на большой оси эллипса будут получены его фокусы (точки F 1 и F 2 ).

Рисунок 39

Для построения эллипса проводят две концентрические окружности, диаметры которых равны осям эллипса. Эти окружности делят на несколько частей (12…16). Через точки деления на большой окружности проводят вертикальные линии, через соответствующие точки деления на малой окружности - горизонтальные линии. Пересечение этих линий даст точки эллипса I , II , III ... (другие способы построения эллипса см. в рекомендуемой литературе).

Парабола (рисунок 40). Параболой называется плоская кривая, каждая точка которой расположена на одинаковом расстоянии от заданной прямой, носящей название директрисы, и точки, называемой фокусом параболы, расположенных в той же плоскости.



Рассмотрим один из способов построения параболы. Даны: вершина параболы О , одна из точек параболы D и направление оси ОС. На отрезках ОС и CD строят прямоугольник, стороны этого прямоугольника ОВ и BD делят на произвольное одинаковое число равных частей и нумеруют точки деления. Вершину О соединяют с точками деления BD, а из точек деления отрезка ОВ проводят прямые, параллельные оси. Пересечение прямых, проходящих через точки с одинаковыми номерами, определяет ряд точек параболы (другие способы построения параболы см. в рекомендуемой литературе).

Рисунок 40

Циклоида (рисунок 41). Траектория точки А , принадлежащей окружности, перекатываемой без скольжения по прямой, называется циклоидой. Для ее построения от исходного положения точки A на направляющей прямой откладывают отрезок АA 1 , равный длине данной окружности 2πR . Окружность и отрезок АA 1 делят на одинаковое число равных частей. Восстанавливая перпендикуляры из точек деления прямой АA 1 до пересечения с прямой, проходящей через центр данной окружности параллельно АA 1 , намечают ряд последовательных положений центра перекатываемой окружности O 1 , O 2 , O 3 , …, O 8 . Описывая из этих центров окружности радиуса R, отмечают точки пересечения с ними прямых, проходящих параллельно АA 1 , через точки деления окружности 1 ,2, 3 и т. д.

В пересечении горизонтальной прямой, проходящей через точку 1, с окружностью, описанной из центра O 1 , находится одна из точек циклоиды; в пересечении прямой, проходящей через точку 2, с окружностью, проведенной из центра О 2 , находится другая точка циклоиды и т. д. Соединяя полученные точки плавной кривой, получаем циклоиду.

Рисунок 41

Синусоида (рисунок 42). Для построения синусоиды делят окружность заданного радиуса на равные части (6 , 8 , 12 и т. д.) и на продолжении осевой линии от условного начала - точки А - проводят отрезок прямой AB , равный 2πR . Затем прямую делят на такое же число равных частей, как и окружность (6 , 8 , 12 и т. д.). Из точек окружности 1, 2, 3, ... , 12 проводят прямые линии параллельно выбранной прямой до пересечения с соответствующими перпендикулярами, восстановленными или опущенными из точек деления прямой. Полученные точки пересечения (1" , 2" , 3" , ... , 12" ) будут точками синусоиды с периодом колебания, равным 2πR . Точки 3" и 9" кривой являются вершинами точки А, 6 и В - точками перегиба.

Рисунок 42

Эвольвента (развертка окружности, рисунок 43). Эвольвентой называется траектория, описываемая каждой точкой прямой линии, перекатываемой по окружности без скольжения. В машиностроении по эвольвенте очерчивают профиль зубьев зубчатых колес. Для построения эвольвенты окружность предварительно делят на произвольное число равных частей; в точках деления проводят касательные к окружности, направленные в одну сторону. На касательной, проведенной через последнюю точку деления, откладывают отрезок, равный длине окружности 2πR , и делят его на то же число n равных частей. Откладывая на первой касательной одно деление, равное πD/n , на второй - два, на третьей - три и т. д., получают ряд точек I , II , III и т. д., которые соединяют по лекалу.

Рисунок 43

Построение гиперболы, эпициклоиды, гипоциклоиды, спирали Архимеда, строфоиды и т. д. см. в рекомендуемой литературе.

Для обводки кривой по лекалу рекомендуется соединить полученные точки тонкой линией от руки на глаз, стараясь при этом придать кривой линии возможно более плавные очертания, и лишь после этого подобрать лекало, соответствующее кривизне того или иного ее участка (рисунок 44), соединяя не менее трех точек одновременно.

Рисунок 44

7.4 Сопряжения прямой с лекальными кривыми (касательные к лекальным кривым)

Ранее были рассмотрены различные случаи сопряжения прямых, прямой с дугой и двух дуг. На практике нередко встречается сопряжение прямой с лекальными кривыми, при этом сопрягаемая прямая должна быть направлена по касательной к кривой, проведенной через заданную точку сопряжения.

Рассмотрим примеры построения сопряжений прямой с эллипсом (рисунок 45). Задана точка сопряжения D . Касательная к эллипсу в данной точке проходит перпендикулярно биссектрисе угла, образованного прямыми F 1 D и F 2 D , где F 1 и F 2 - фокусы эллипса.

Рисунок 45

На рисунке 46 показано построение касательной к параболе в заданной точке М . Касательная соединяет заданную точку М с точкой К , положение которой определяется соотношением AK=AN . Способы построения касательных к другим заданным лекальным кривым можно изучить в рекомендуемой литературе.

Рисунок 46


7.5 Вопросы для самопроверки

Вопросы для самопроверки к теме 1:

1. Сколько листов формата А4 содержится в листе формата А1?

2. Как образуются дополнительные форматы чертежей?

3. Чем определяется размер шрифта?

4. Чему равна высота строчных букв по сравнению с
прописными?

5. Допускается ли применение в чертежах прямого шрифта?

6. От чего зависит выбор толщины линии обводки видимого контура?

7. Какого начертания и какой толщины проводят линии осевые, центровые, выносные, размерные и невидимого контура?

8. Как проводят центровые линии окружности небольшого диаметра (менее 12 мм)?

9. В каких единицах проставляют размеры на чертежах?

11. В каких случаях стрелку размерной линии заменяют точкой или штрихом?

12. Как располагают цифры размеров угла?

13. В каких случаях проставляют знак диаметра Æ?

14. Какие проставляют размеры при выполнении чертежа в масштабе, отличном от 1:1?

15. На каких двух положениях геометрии основано построение сопряжений?

16. Перечислите элементы сопряжений.


Введение

Изучение интенсивно развивающейся и наукоемкой предметной области, такой как микроэлектроника и микропроцессорная техника - задача интересная и сложная, требующая постоянного со-вершенствования, пополнения получаемых знаний и знакомства со смежными научно-техническими областями. В связи с широким применением электронных систем управления и с целью эффективного решения любых прикладных задач современный специалист, профессионально связанный и не связанный с вычислительной тех-никой, должен иметь не только элементарное представление об основных понятиях построения современных электронных систем, но и иметь адекватное представление о состоянии и перспективах раз-вития элементной базы.

Развитие компьютерной техники - наивысшего достижения электроники - последнее десятилетие шло такими шагами, что на сегодняшний день практически невозможно представить ни одну сферу жизни, где бы не применялись микропроцессоры (МП): от персональных компьютеров - до управления сложнейшими технологическими процессами, от управления бытовыми стиральными машинами и сотовыми телефонами - до проектирующих рабочих станций и многопроцессорных супер-ЭВМ.

За чуть более чем четверть вековую историю микропроцессоры прошли поистине гигантский путь.

Первая микросхема МП, выпущенная фирмой INTEL в 1971 г., работала на тактовой частоте 108 кГц, содержала 2300 транзисторов, выполнена была по 10 мкм технологии и стоила около 200 долларов. Одна из последних модификаций микросхемы INTEL PENTIUM-4 выполнена по 0,09 мкм технологии, имеет 140 миллионов транзисторов внутри кристалла полупроводника размером 87кв.мм.

Сравнение вышеприведенных данных подтверждает и образная оценка успехов микропроцессорной индустрии, данная основателем и председателем совета директоров фирмы INTEL Гордоном Муром (Gordon Moore): «Если бы автомобилестроение эволюционировало со скоростью полупроводникововой промышленности, то сегодня «Роллс-ройс» стоил бы 3 доллара, мог проехать полмиллиона миль на одном галлоне бензина, и было бы дешевле его выбросить, чем платить за парковку».

Не трудно понять, что и на сегодняшний день компьютеризация является одним из главных направлений научно-технического прогресса и концентрированным его выражением. В МП воплощены самые передовые достижения инженерной мысли, и от того, в какой степени насыщены вычислительной техникой самые различные отрасли производства, зависит не только экономический, но и военный потенциал страны.

Средний уровень

Окружность и вписанный угол. Визуальный гид (2019)

Основные термины.

Хорошо ли ты помнишь все названия, связанные с окружностью? На всякий случай напомним - смотри на картинки - освежай знания.

Ну, во-первых - центр окружности - такая точка, расстояния от которой до всех точек окружности одинаковые.

Во-вторых - радиус - отрезок, соединяющий центр и точку на окружности.

Радиусов очень много (столько же, сколько и точек на окружности), но длина у всех радиусов - одинаковая.

Иногда для краткости радиусом называют именно длину отрезка «центр - точка на окружности», а не сам отрезок.

А вот что получится, если соединить две точки на окружности ? Тоже отрезок?

Так вот, этот отрезок называется «хорда» .

Так же, как и в случае с радиусом, диаметром часто называют длину отрезка, соединяющего две точки на окружности и проходящего через центр. Кстати, а как связаны диаметр и радиус? Посмотри внимательно. Конечно же, радиус равен половине диаметра.

Кроме хорд бывают еще и секущие.

Вспомнили самое простое?

Центральный угол - угол между двумя радиусами.

А теперь - вписанный угол

Вписанный угол - угол между двумя хордами, которые пересекаются в точке на окружности .

При этом говорят, что вписанный угол опирается на дугу (или на хорду) .

Смотри на картинку:

Измерения дуг и углов.

Длина окружности. Дуги и углы измеряются в градусах и радианах. Сперва о градусах. Для углов проблем нет - нужно научиться измерить дугу в градусах.

Градусная мера (величина дуги) - это величина (в градусах) соответствующего центрального угла

Что здесь значит слово «соответствующего»? Смотрим внимательно:

Видишь две дуги и два центральных угла? Ну вот, большей дуге соответствует больший угол (и ничего страшного, что он больше), а меньшей дуге соответствует меньший угол.

Итак, договорились: в дуге содержится столько же градусов, сколько в соответствующем центральном угле.

А теперь о страшном - о радианах!

Что же это за зверь такой «радиан»?

Представь себе: радианы - это способ измерения угла … в радиусах!

Угол величиной радиан - такой центральный угол, длина дуги которого равна радиусу окружности.

Тогда возникает вопрос - а сколько же радиан в развёрнутом угле?

Иными словами: сколько радиусов «помещается» в половине окружности? Или ещё по-другому: во сколько раз длина половины окружности больше радиуса?

Этим вопросом задавались учёные ещё в Древней Греции.

И вот, после долгих поисков они обнаружили, что отношение длины окружности к радиусу никак не хочет выражаться «человеческими» числами вроде и т.п.

И даже не получается выразить это отношение через корни. То есть, оказывается, нельзя сказать, что половина окружности в раза или в раз больше радиуса! Представляешь, как удивительно это было обнаружить людям впервые?! Для отношения длины половины окружности к радиусу на хватило «нормальных» чисел. Пришлось вводить букву.

Итак, - это число, выражающее отношение длины полуокружности к радиусу.

Теперь мы можем ответить на вопрос: сколько радиан в развёрнутом угле? В нём радиан. Именно оттого, что половина окружности в раз больше радиуса.

Древние (и не очень) люди на протяжении веков (!) попытались поточнее подсчитать это загадочное число, получше выразить его (хоть приблизительно) через «обыкновенные» числа. А мы сейчас до невозможности ленивы - нам достаточно двух знаков после занятой, мы привыкли, что

Задумайся, это значит, например, что y окружности с радиусом единица длина приблизительно равна, а точно эту длину просто невозможно записать «человеческим» числом - нужна буква. И тогда эта длина окружности окажется равной. И конечно, длина окружности радиуса равна.

Вернёмся к радианам.

Мы выяснили уже, что в развёрнутом угле содержится радиан.

Что имеем:

Значит, рад., то есть рад. Таким же образом получается табличка с наиболее популярными углами.

Соотношение между величинами вписанного и центрального углов.

Имеет место удивительный факт:

Величина вписанного угла вдвое меньше, чем величина соответствующего центрального угла.

Посмотри, как это утверждение выглядит на картинке. «Соответствующий» центральный угол такой, у которого концы совпадают с концами вписанного угла, а вершина в центре. И при этом «соответствующий» центральный угол должен «смотреть» на ту же хорду (), что и вписанный угол.

Почему же так? Давай разберёмся сначала на простом случае. Пусть одна из хорд проходит через центр. Ведь бывает же так иногда, верно?

Что же тут получается? Рассмотрим. Он равнобедренный - ведь и - радиусы. Значит, (обозначили их).

Теперь посмотрим на. Это же внешний угол для! Вспоминаем, что внешний угол равен сумм двух внутренних, не смежных с ним, и записываем:

То есть! Неожиданный эффект. Но и есть центральный угол для вписанного.

Значит, для этого случая доказали, что центральный угол вдвое больше вписанного. Но уж больно частный случай: правда ведь, далеко не всегда хорда проходит прямиком через центр? Но ничего, сейчас этот частный случай нам здорово поможет. Смотри: второй случай: пусть центр лежит внутри.

Давай сделаем вот что: проведём диаметр. И тогда … видим две картинки, которые уже разбирали в первом случае. Поэтому уже имеем, что

Значит, (на чертеже, а)

Ну вот, и остался последний случай: центр вне угла.

Делаем то же самое: проводим диаметр через точку. Все то же самое, но вместо суммы - разность.

Вот и всё!

Давай теперь сформируем два главных и очень важных следствия из утверждения о том, что вписанный угол вдвое меньше центрального.

Следствие 1

Все вписанные углы, опирающиеся на одну дугу, равны между собой.

Иллюстрируем:

Вписанных углов, опирающихся на одну и ту же дугу (у нас эта дуга) - бесчисленное множество, они могут выглядеть совсем по-разному, но у них у всех один и тот же центральный угол (), а значит, все эти вписанные углы равны между собой.

Следствие 2

Угол, опирающийся на диаметр - прямой.

Смотри: какой угол является центральным для?

Конечно, . Но он равен! Ну вот, поэтому (а так же ещё множество вписанных углов, опирающихся на) и равен.

Угол между двумя хордами и секущими

А что, если интересующий нас угол НЕ вписанный и НЕ центральный, а, например, такой:

или такой?

Можно ли его как-то выразить всё-таки через какие-то центральные углы? Оказывается, можно. Смотри: нас интересует.

a) (как внешний угол для). Но - вписанный, опирается на дугу - . - вписанный, опирается на дугу - .

Для красоты говорят:

Угол между хордами равен полусумме угловых величин дуг, заключённых в этот угол.

Так пишут для краткости, но конечно, при использовании этой формулы нужно иметь в виду центральные углы

b) А теперь - «снаружи»! Как же быть? Да почти так же! Только теперь (снова применяем свойство внешнего угла для). То есть теперь.

И значит, . Наведём красоту и краткость в записях и формулировках:

Угол между секущими равен полуразности угловых величин дуг, заключённых в этот угол.

Ну вот, теперь ты вооружён всеми основными знаниями об углах, связанных с окружностью. Вперёд, на штурм задач!

ОКРУЖНОСТЬ И ВПИСАННЫЙ УГОЛ. СРЕДНИЙ УРОВЕНЬ

Что такое окружность, знает и пятилетний ребёнок, не правда ли? У математиков, как всегда, на этот счёт есть заумное определение, но мы его приводить не будем (смотри ), а лучше вспомним, как называются точки, линии и углы, связанные с окружностью.

Важные термины

Ну, во-первых:

центр окружности - такая точка, расстояния от которой до всех точек окружности одинаковые.

Во-вторых:

Тут есть ещё одно принятое выражение: «хорда стягивает дугу». Вот, здесь на рисунке, например, хорда стягивает дугу. А если хорда вдруг проходит через центр, то у неё есть специальное название: «диаметр».

Кстати, а как связаны диаметр и радиус? Посмотри внимательно. Конечно же,

А теперь - названия для углов.

Естественно, не правда ли? Стороны угла выходят из центра - значит, угол - центральный.

Вот здесь иногда возникают сложности. Обрати внимание - НЕ ЛЮБОЙ угол внутри окружности - вписанный, а только такой, у которого вершина «сидит» на самой окружности.

Давай увидим разницу на картинках:

По-другому ещё говорят:

Тут есть один хитрый момент. Что такое «соответствующий» или «свой» центральный угол? Просто угол с вершиной в центре окружности и концами в концах дуги? Не совсем так. Посмотри-ка на рисунок.

Один из них, правда, и на угол-то не похож - он больше. Но это в треугольнике не может быть углов больше, а в окружности - вполне может! Так вот: меньшей дуге AB соответствует меньший угол (оранжевый), а большей - больший. Просто как, не правда ли?

Соотношение между величинами вписанного и центрального угла

Запомни очень важное утверждение:

В учебниках этот же факт любят записывать так:

Правда, с центральным углом формулировка проще?

Но всё же давай найдём соответствие между двумя формулировками, а заодно научимся находить на рисунках «соответствующий» центральный угол и дугу, на которую «опирается» вписанный угол.

Смотри: вот окружность и вписанный угол:

Где же его «соответствующий» центральный угол?

Снова смотрим:

Какое же правило?

Но! При этом важно, чтобы вписанный и центральный угол «смотрели» с одной стороны на дугу. Вот, например:

Как ни странно, голубой! Потому что дуга-то длинная, длиннее половины окружности! Вот и не путай никогда!

Какое же следствие можно вывести из «половинчатости» вписанного угла?

А вот, например:

Угол, опирающийся на диаметр

Ты уже успел заметить, что математики очень любят об одном и том же говорить разными словами? Зачем это им? Понимаешь, язык математики хоть и формальный, но живой, а поэтому, как и в обычном языке, каждый раз хочется сказать так, как удобнее. Ну вот, что такое «угол опирается на дугу» мы уже видели. И представь себе, та же самая картина называется «угол опирается на хорду». На какую? Да конечно на ту, которая стягивает эту дугу!

Когда же опираться на хорду удобнее, чем на дугу?

Ну, в частности, когда эта хорда - диаметр.

Для такой ситуации есть удивительно простое, красивое и полезное утверждение!

Смотри: вот окружность, диаметр и угол, который на него опирается.

ОКРУЖНОСТЬ И ВПИСАННЫЙ УГОЛ. КОРОТКО О ГЛАВНОМ

1. Основные понятия.

3. Измерения дуг и углов.

Угол величиной радиан - такой центральный угол, длина дуги которого равна радиусу окружности.

Это число, выражающее отношение длины полуокружности к радиусу.

Длина окружности радиуса равна.

4. Соотношение между величинами вписанного и центрального углов.

В этой небольшой статье, будут рассмотрены основные виды сопряжений и Вы узнаете о том, как построить сопряжение углов, прямых линий, окружностей и дуг, окружностей с прямой.

Сопряжением называют плавный переход одной линии в другую. Для того чтобы построить сопряжение, нужно найти центр сопряжения и точки сопряжений.

Точка сопряжения – это общая точка для сопрягаемых линий. Точку сопряжения также называют точкой перехода.

Ниже будут рассмотрены основные типы сопряжений .

Сопряжение углов (Сопряжение пересекающихся прямых)

Сопряжение прямого угла(Сопряжение пересекающихся прямых под прямым углом)

В данном примере будет рассмотрено построение сопряжения прямого угла заданным радиусом сопряжения R. Первым делом найдём точки сопряжения. Для нахождения точек сопряжения, нужно поставить циркуль в вершину прямого угла и провести дугу радиусом R до пересечения со сторонами угла. Полученные точки и будут являться точками сопряжения. Далее нужно найти центр сопряжения. Центром сопряжения будет точка равноудалённая от сторон угла. Проведём из точек a и b две дуги радиусом сопряжения R до пересечения друг с другом. Полученная на пересечении точка О и будет центром сопряжения. Теперь из центра сопряжения точки О описываем дугу радиусом сопряжения R от точки a до точки b. Сопряжение прямого угла построено.

Сопряжение острого угла(Сопряжение пересекающихся прямых под острым углом)

Ещё один пример сопряжения угла. В этом примере будет построено сопряжение
острого угла
. Для построения сопряжения острого угла раствором циркуля,равным радиусу сопряжения R, проведём из двух произвольных точек на каждой стороне угла по две дуги. Затем проведём касательные к дугам до пересечения в точке О, центре сопряжения. Из полученного центра сопряжения опустим перпендикуляр к каждой из сторон угла. Так мы получим точки сопряжения a и b. Затем проведём из центра сопряжения, точки О, дугу радиусом сопряжения R, соединив точки сопряжения a
и b. Сопряжение острого угла построено.

Сопряжение тупого угла(Сопряжение пересекающихся прямых под тупым углом)

Строится по аналогии с сопряжением острого угла. Мы также, сначала радиусом сопряжения R проводим по две дуги из двух произвольно взятых точек на каждой из сторон, а затем проводим касательные к этим дугам до пересечения в точке О, центре сопряжения. Затем опускаем перпендикуляры из центра сопряжения к каждой из сторон и соединяем дугой, равной радиусу сопряжения тупого угла R, полученные точки a и b.

Сопряжение параллельных прямых линий

Построим сопряжение двух параллельных прямых . Нам задана точка сопряжения a, лежащая на одной прямой. Из точки a проведём перпендикуляр до пересечения его с другой прямой в точке b. Точки a и b являются точками сопряжения прямых линий. Проведя из каждой точки дугу, радиусом больш отрезка ab, найдём центр сопряжения — точку О. Из центра сопряжения проведём дугу заданного радиуса сопряжения R.

Сопряжение окружностей(дуг) с прямой линией

Внешнее сопряжение дуги и прямой линии

В этом примере будет построено сопряжение заданным радиусом r прямой линии, заданной отрезком AB, и дуги окружности радиусом R.

Сначала найдём центр сопряжения. Для этого проведём прямую, параллельную отрезку AB и отстоящую от него на расстояние радиуса сопряжения r, и дугу, из центра окружности OR радиусом R+r. Точка пересечения дуги и прямой и будет центром сопряжения – точкой Оr .

Из центра сопряжения, точки Оr , опустим перпендикуляр на прямую AB. Точка D, полученная на пересечении перпендикуляра и отрезка AB, и будет точкой сопряжения. Найдём вторую точку сопряжения на дуге окружности. Для этого соединим центр окружности ОR и центр сопряжения Оr линией. Получим вторую точку сопряжения – точку C. Из центра сопряжения проведём дугу сопряжения радиусом r, соединив точки сопряжения.

Внутреннее сопряжение прямой линии с дугой

По аналогии строится внутреннее сопряжение прямой линии с дугой. Рассмотрим пример построения сопряжения радиусом r прямой линии, заданной отрезком AB, и дуги окружности радиуса R. Найдём центр сопряжения. Для этого построим прямую, параллельную отрезку AB и отстоящую от него на расстояние радиуса r, и дугу, из центра окружности OR радиусом R-r. Точка Оr , полученная на пересечении прямой и дуги, и будет центром сопряжения.

Из центра сопряжения(точка Оr ) опустим перпендикуляр на прямую AB. Точка D, полученная на основании перпендикуляра, и будет точкой сопряжения.

Для нахождения второй точки сопряжения на дуге окружности, соединим центр сопряжения Оr и центр окружности ОR прямой линией. На пересечении линии с дугой окружности получим вторую точку сопряжения – точку C. Из точки Оr , центра сопряжения, проведём дугу радиусом r, соединив точки сопряжения.

Сопряжение окружностей (дуг)

Внешним сопряжением считается сопряжение, при котором центры сопрягаемых окружностей(дуг) O1(радиус R1) и O2 (радиус R2) располагаются за сопрягающей дугой радиуса R. На примере рассмотрено внешнее сопряжение дуг. Сначала находим центр сопряжения. Центром сопряжения является точка пересечения дуг окружностей с радиусами R+R1 и R+R2, построенных из центров окружностей O1(R1) и O2(R2) соответственно. Затем центры окружностей O1 и O2 соединяем прямыми с центром сопряжения, точкой O, и на пересечении линий с окружностями O1 и O2 получаем точки сопряжения A и B. После этого, из центра сопряжения строим дугу заданного радиуса сопряжения R и соединяем ей точки A и B.

Внутренним сопряжением называется сопряжение, при котором центры сопрягаемых дуг O1, радиуса R1, и O2, радиус R2, располагаются внутри сопрягающей их дуги заданного радиуса R. На картинке ниже приведён пример построения внутреннего сопряжения окружностей(дуг). Вначале мы находим центр сопряжения, которым является точка O, точка пересечения дуг окружностей с радиусами R-R1 и R-R2 проведённых из центров окружностей O1и O2 соответственно. После чего соединяем центры окружностей O1 и O2 прямыми линиями с центром сопряжения и на пересечении линий с окружностями O1 и O2 получаем точки сопряжения A и B. Затем из центра сопряжения строим дугу сопряжения радиуса R и строим сопряжение.

Смешанным сопряжением дуг является сопряжение, при котором центр одной из сопрягаемых дуг (O1) лежит за пределами сопрягающей их дуги радиуса R, а центр другой окружности(O2) – внутри её. На иллюстрации ниже приведён пример смешанного сопряжения окружностей. Сначала находим центр сопряжения, точку O. Для нахождения центра сопряжения строим дуги окружностей с радиусами R+R1, из центра окружности радиуса R1 точки O1, и R-R2, из центра окружности радиуса R2 точки O2. После чего соединяем центр сопряжения точку O с центрами окружностей O1 и O2 прямыми и на пересечении с линиями соответствующих окружностей получаем точки сопряжения A и B. Затем строим сопряжение.