Что такое теория графов. Остовное дерево наименьшего веса

ВЛАДИМИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ

РЕФЕРАТ

«ТЕОРИЯ ГРАФОВ»

Выполнила:

Зудина Т.В.

Владимир 2001

1. Введение

2. История возникновения теории графов

3. Основные определения теории графов

4. Основные теоремы теории графов

5. Задачи на применение теории графов

6. Применение теории графов в школьном курсе математики

7. Приложение теории графов в различных областях науки и техники

8. Последние достижения теории графов

§1. ИСТОРИЯ ВОЗНИКНОВЕНИЯ ТЕОРИИ ГРАФОВ.

Родоначальником теории графов принято считать математика Леонарда Эйлера (1707-1783). Историю возникновения этой теории можно проследить по переписке великого ученого. Вот перевод латинского текста, который взят из письма Эйлера к итальянскому математику и инженеру Маринони, отправленного из Петербурга 13 марта 1736 года [см. стр. 41-42]:

"Некогда мне была предложена задача об острове, расположенном в городе Кенигсберге и окруженном рекой, через которую перекинуто семь мостов. Спрашивается, может ли кто-нибудь непрерывно обойти их, проходя только однажды через каждый мост. И тут же мне было сообщено, что никто еще до сих пор не мог это проделать, но никто и не доказал, что это невозможно. Вопрос этот, хотя и банальный, показался мне, однако, достойным внимания тем, что для его решения недостаточны ни геометрия, ни алгебра, ни комбинаторное искусство… После долгих размышлений я нашел легкое правило, основанное на вполне убедительном доказательстве, с помощью которого можно во всех задачах такого рода тотчас же определить, может ли быть совершен такой обход через какое угодно число и как угодно расположенных мостов или не может. Кенигсбергские же мосты расположены так, что их можно представить на следующем рисунке [рис.1], на котором A обозначает остров, а B , C иD – части континента, отделенные друг от друга рукавами реки. Семь мостов обозначены буквами a , b , c , d , e , f , g ".

(РИСУНОК 1.1)

По поводу обнаруженного им способа решать задачи подобного рода Эйлер писал [см. стр. 102-104]:

"Это решение по своему характеру, по-видимому, имеет мало отношения к математике, и мне непонятно, почему следует скорее от математика ожидать этого решения, нежели от какого-нибудь другого человека, ибо это решение подкрепляется одним только рассуждением, и нет необходимости привлекать для нахождения этого решения какие-либо законы, свойственные математике. Итак, я не знаю, каким образом получается, что вопросы, имеющие совсем мало отношения к математике, скорее разрешается математиками, чем другими".

Так можно ли обойти Кенигсбергские мосты, проходя только один раз через каждый из этих мостов? Чтобы найти ответ, продолжим письмо Эйлера к Маринони:

"Вопрос состоит в том, чтобы определить, можно ли обойти все эти семь мостов, проходя через каждый только однажды, или нельзя. Мое правило приводит к следующему решению этого вопроса. Прежде всего, нужно смотреть, сколько есть участков, разделенных водой, – таких, у которых нет другого перехода с одного на другой, кроме как через мост. В данном примере таких участков четыре – A , B , C , D . Далее нужно различать, является ли число мостов, ведущих к этим отдельным участкам, четным или нечетным. Так, в нашем случае к участку A ведут пять мостов, а к остальным – по три моста, т. е. Число мостов, ведущих к отдельным участкам, нечетно, а этого одного уже достаточно для решения задачи. Когда это определено, применяем следующее правило: если бы число мостов, ведущих к каждому отдельному участку, было четным, то тогда обход, о котором идет речь, был бы возможен, и в то же время можно было бы начать этот обход с любого участка. Если же из этих чисел два были бы нечетные, ибо только одно быть нечетным не может, то и тогда мог бы совершиться переход, как это предписано, но только начало обхода непременно должно быть взято от одного из тех двух участков, к которым ведет нечетное число мостов. Если бы, наконец, было больше двух участков, к которым ведет нечетное число мостов, то тогда такое движение вообще невозможно… если можно было привести здесь другие, более серьезные задачи, этот метод мог бы принести еще большую пользу и им не следовало бы пренебрегать".

Обоснование вышеприведенного правила можно найти в письме Л. Эйлера к своему другу Элеру от 3 апреля того же года. Мы перескажем ниже отрывок из этого письма.

Математик писал, что переход возможен, если на участке разветвления реки имеется не более двух областей, в которые ведет нечетное число мостов. Для того, чтобы проще представить себе это, будем стирать на рисунке уже пройденные мосты. Легко проверить, что если мы начнем двигаться в соответствии с правилами Эйлера, пересечем один мост и сотрем его, то на рисунке будет изображен участок, где опять имеется не более двух областей, в которые ведет нечетное число мостов, а при наличии областей с нечетным числом мостов мы будем располагаться в одной из них. Продолжая двигаться так далее, пройдем через все мосты по одному разу.

История с мостами города Кенигсберга имеет современное продолжение. Откроем, например, школьный учебник по математике под редакцией Н.Я. Виленкина для шестого класса. В нем на странице 98 в рубрике развития внимательности и сообразительности мы найдем задачу, имеющую непосредственное отношение к той, которую когда-то решал Эйлер.

Задача № 569 . На озере находится семь островов, которые соединены между собой так, как показано на рисунке 1.2. На какой остров должен доставить путешественников катер, чтобы они могли пройти по каждому мосту и только один раз? Почему нельзя доставить путешественников на остров A ?

(РИСУНОК 1.2)

Решение. Поскольку эта задача подобна задаче о Кенигсбергских мостах, то при ее решении мы также воспользуемся правилом Эйлера. В результате получим следующий ответ: катер должен доставить путешественников на остров E или F , чтобы они смогли пройти по каждому мосту один раз. Из того же правила Эйлера следует невозможность требуемого обхода, если он начнется с острова A .

В заключение отметим, что задача о Кенигсбергских мостах и подобные ей задачи вместе с совокупностью методов их исследования составляют очень важный в практическом отношении раздел математики, называемый теорией графов. Первая работа о графах принадлежала Л. Эйлеру и появилась в 1736 году. В дальнейшем над графами работали Кениг (1774-1833), Гамильтон (1805-1865), из современных математиков – К. Берж, О. Оре, А. Зыков.

§2. ОСНОВНЫЕ ТЕОРЕМЫ ТЕОРИИ ГРАФОВ

Теория графов, как было сказано выше, – дисциплина математическая, созданная усилиями математиков, поэтому ее изложение включает в себя и необходимые строгие определения. Итак, приступим к организованному введению основных понятий этой теории.

Определение 2.01. Графом называется совокупность конечного числа точек, называемых вершинами графа, и попарно соединяющих некоторые из этих вершин линий, называемых ребрами или дугами графа.

Это определение можно сформулировать иначе: графом называется непустое множество точек (вершин ) и отрезков (ребер ), оба конца которых принадлежат заданному множеству точек (см. рис. 2.1).

(РИСУНОК 2.1)

В дальнейшем вершины графа мы будем обозначать латинскими буквами A , B ,C ,D . Иногда граф в целом будем обозначать одной заглавной буквой.

Определение 2.02. Вершины графа, которые не принадлежат ни одному ребру, называются изолированными .

Определение 2.03. Граф, состоящий только из изолированных вершин, называется нуль - графом .

Обозначение: O " – граф с вершинами, не имеющий ребер (рис. 2.2).

(РИСУНОК 2.2)

Определение 2.04. Граф, в котором каждая пара вершин соединена ребром, называется полным .

Обозначение: U " граф, состоящий из n вершин и ребер, соединяющих всевозможные пары этих вершин. Такой граф можно представить как n –угольник, в котором проведены все диагонали (рис. 2.3).

(РИСУНОК 2.3)

Определение 2.05. Степенью вершины называется число ребер, которым принадлежит вершина.

Обозначение: p (A ) степень вершины A . Например, на рисунке 2.1: p (A )=2, p (B )=2, p (C )=2, p (D )=1, p (E )=1.

Определение 2.06. Граф, степени всех k вершин которого одинаковы, называется однородным графом степени k .

На рисунке 2.4 и 2.5 изображены однородные графы второй и третьей степени.

(РИСУНОК 2.4 и 2.5)

Определение 2.07. Дополнением данного графа называется граф, состоящий из всех ребер и их концов, которые необходимо добавить к исходному графу, чтобы получить полный граф.

На рисунке 2.6 изображен исходный граф G , состоящий из четырех вершин и трех отрезков, а на рисунке 2.7 – дополнение данного графа – граф G " .

(РИСУНОК 2.6 и 2.7)

Мы видим, что на рисунке 2.5 ребра AC и BD пересекаются в точке, не являющейся вершиной графа. Но бывают случаи, когда данный граф необходимо представить на плоскости в таком виде, чтобы его ребра пересекались только в вершинах (этот вопрос будет рассмотрен подробно далее, в параграфе 5).

Определение 2.08. Граф, который можно представить на плоскости в таком виде, когда его ребра пересекаются только в вершинах, называется плоским .

Например, на рисунке 2.8 показан плоский граф, изоморфный (равный) графу на рисунке 2.5. Однако, заметим, что не каждый граф является плоским, хотя обратное утверждение верно, т. е. любой плоский граф можно представить в обычном виде.

(РИСУНОК 2.8)

Определение 2.09. Многоугольник плоского графа, не содержащий внутри себя никаких вершин или ребер графа, называют его гранью .

Неформально граф можно рассматривать как множество точек и соединяющих эти точки линий со стрелками или без них.

Первой работой теории графов как математической дисциплины считают статью Эйлера (1736 г.), в которой рассматривалась задача о Кёнингсбергских мостах. Эйлер показал, что нельзя обойти семь городских мостов и вернуться в исходную точку, пройдя по каждому мосту ровно один раз. Следующий импульс теория графов получила спустя почти 100 лет с развитием исследований по электрическим сетям, кристаллографии, органической химии и другим наукам.

С графами, сами того не замечая, мы сталкиваемся постоянно. Например, графом является схема линий метрополитена. Точками на ней представлены станции, а линиями - пути движения поездов. Исследуя свою родословную и возводя ее к далекому предку, мы строим так называемое генеалогическое древо. И это древо - граф.

Графы служат удобным средством описания связей между объектами. Ранее мы уже использовали графы как способ наглядного представления конечных бинарных отношений.

Но граф используют отнюдь не только как иллюстрацию. Например, рассматривая граф, изображающий сеть дорог между населенными пунктами, можно определить маршрут проезда от пункта А до пункта Б. Если таких маршрутов окажется несколько, хотелось бы выбрать в определенном смысле оптимальный, например самый короткий или самый безопасный. Для решения задачи выбора требуется проводить определенные вычисления над графами. При решении подобных задач удобно использовать алгебраическую технику, да и само понятие графа необходимо формализовать.

Методы теории графов широко применяются в дискретной математике. Без них невозможно обойтись при анализе и синтезе различных дискретных преобразователей: функциональных блоков компьютеров, комплексов программ и т.д.

В настоящее время теория графов охватывает большой материал и активно развивается. При ее изложении ограничимся только частью результатов и основной акцент сделаем на описании и обосновании некоторых широко распространенных алгоритмов анализа графов, которые применяются в теории формальных языков.

  • Основные определения

    Графы, как уже отмечалось в примерах, есть способ „визуализации" связей между определенными объектами. Связи эти могут быть „направленными", как, например, в генеалогическом древе, или "ненаправленными" (сеть дорог с двусторонним движением). В соответствии с этим в теории графов выделяют два основных типа графов: ориентированные (или направленные) и неориентированные.

  • Способы представления

    До сих пор мы задавали ориентированные и неориентированные графы, изображая их с помощью рисунков. Можно задать граф как пару множеств, следуя определению, однако этот способ довольно громоздкий и представляет, скорее, теоретический интерес. Развитие алгоритмических подходов к анализу свойств графов требует иных способов описания графов, более пригодных для практических вычислений, в том числе с использованием ЭВМ. Рассмотрим три наиболее распространенных способа представления графов.

  • Деревья

    Определение 5.5. Неориентированным деревом называют связный и ациклический неориентированный граф. Определение 5.6. Ориентированным деревом называют бесконтурный ориентированный граф, у которого полустепень захода любой вершины не больше 1 и существует ровно одна вершина, называемая корнем ориентированного дерева, полустепень захода которой равна 0.

  • Остовное дерево наименьшего веса

    Следующая задача известна в теории графов под названием задачи Штейнера: на плоскости заданы п точек; нужно соединить их отрезками прямых таким образом, чтобы суммарная длина отрезков была наименьшей.

  • Методы систематического обхода вершин графа

    Важными задачами теории графов являются задачи глобального анализа как неориентированных, так и ориентированных графов. К этим задачам относятся, например, задачи поиска циклов или контуров, вычисление длин путей между парами вершин, перечисление путей с теми или иными свойствами и т.п. Глобальный анализ графа следует отличать от локального, примером которого может служить задача определения множеств предшественников и преемников фиксированной вершины ориентированного графа.

  • Задача о путях во взвешенных ориентированных графах

  • Изоморфизм графов

    Для ориентированного графа (V, Е) множество Е дуг можно рассматривать как график бинарного отношения непосредственной достижимости, заданного на множестве вершин. В неориентированном графе (V, Е) множество Е ребер является множеством неупорядоченных пар. Для каждой неупорядоченной пары {u, v} ∈ Е можно считать, что вершины u и v связаны симметричным бинарным отношением р, т.е. (u, v) ∈ р и (v, u) ∈ р.

  • Топологическая сортировка

    Определение 5.17. Ориентированной сетью (или просто сетью) называют бесконтурный ориентированный граф*. Поскольку сеть является бесконтурным графом, можно показать, что существуют вершины (узлы) сети с нулевой полустепенью исхода, а также вершины (узлы) с нулевой полустепенью захода. Первые называют стоками или выходами сети, а вторые - источниками или входами сети.

  • Элементы цикломатики

    При обсуждении алгоритма поиска в глубину в неориентированном графе рассматривался вопрос о поиске так называемых фундаментальных циклов графа. При этом под фундаментальным понимался цикл, содержащий в точности одно обратное ребро, и между фундаментальными циклами и обратными ребрами устанавливалось взаимно однозначное соответствие, фундаментальные циклы возникают всякий раз, как только фиксировано произвольное разбиение всех ребер неориентированного графа на древесные (формирующие некоторый максимальный оспьовный лес исходного графа) и обратные, причем в общем случае это разбиение может быть задано совершенно независимо от алгоритма поиска в глубину. Поиск в глубину есть лишь один из способов реализации такого разбиения.

Теория графов – это раздел дискретной математики, изучающий объекты, представимые в виде отдельных элементов (вершин) и связей между ними (дуг, рёбер).

Теория графов берет начало с решения задачи о кенигсбергских мостах в 1736 году знаменитым математиком Леонардом Эйлером (1707-1783: родился в Швейцарии, жил и работал в России).

Задача о кенигсбергских мостах.

В прусском городке Кенигсберг на реке Прегал семь мостов. Можно ли найти маршрут прогулки, который проходит ровно 1 раз по каждому из мостов и начинается и заканчивается в одном месте?

Граф, в котором найдется маршрут, начинающийся и заканчивающийся в одной вершине, и проходящий по всем ребрам графа ровно один раз, называется Эйлеровым графом.

Последовательность вершин (может быть с повторением), через которые проходит искомый маршрут, как и сам маршрут, называется Эйлеровым циклом .

Задача о трех домах и трех колодцах.

Имеется три дома и три колодца, каким-то образом расположенные на плоскости. Провести от каждого дома к каждому колодцу тропинку так, чтобы тропинки не пересекались. Эта задача была решена (показано, что решения не существует) Куратовским (1896 – 1979) в 1930 году.

Задача о четырех красках. Разбиение плоскости на непересекающиеся области называется картой . Области карты называются соседними, если они имеют общую границу. Задача состоит в раскрашивании карты таким образом, чтобы никакие две соседние области не были закрашены одним цветом. С конца XIX века известна гипотеза, что для этого достаточно четырех красок. Гипотеза не доказана до сих пор.

Суть опубликованного решения состоит в том, чтобы перебрать большое, но конечное число (около 2000) типов потенциальных контрпримеров к теореме о четырех красках и показать, что ни один случай контрпримером не является. Этот перебор был выполнен программой примерно за тысячу часов работы суперкомпьютера.

Проверить «вручную» полученное решение невозможно – объем перебора выходит за рамки человеческих возможностей. Многие математики ставят вопрос: можно ли считать такое «программное доказательство» действительным доказательством? Ведь в программе могут быть ошибки…

Таким образом, остается уповать на программистскую квалификацию авторов и верить, что они все сделали правильно.

Определение 7.1. Графом G = G (V , E ) называется совокупность двух конечных множеств: V – называемого множеством вершин и множества E пар элементов из V, т.е. EÍV´V, называемого множеством рёбер , если пары неупорядочены, или множеством дуг , если пары упорядочены.

В первом случае граф G (V , E ) называется неориентированным , во втором – ориентированным.


ПРИМЕР. Граф с множеством вершин V = {а,b,с} и множеством ребер Е ={{а, b}, {b, с}}

ПРИМЕР. Граф, у которого V = {a,b,c,d,e} и Е = {{а, b}, {а, е}, {b, е}, {b, d}, {b, с}, {с, d}},

Если e=(v 1 ,v 2), еÎЕ, то говорят, что ребро е соединяет вершины v 1 и v 2 .

Две вершины v 1 ,v 2 называются смежными , если существует соединяющее их ребро. В этой ситуации каждая из вершин называется инцидентной соответствующему ребру.

Два различных ребра смежны , если они имеют общую вершину. В этой ситуации каждое из ребер называется инцидентным соответствующей вершине.

Число вершин графа G обозначим v , а число ребер - e :

.

Геометрическое представление графов следующее:

1) вершина графа – точка в пространстве (на плоскости);

2) ребро неориентированного графа – отрезок;

3) дуга ориентированного графа – направленный отрезок.

Определение 7.2. Если в ребре e=(v 1 ,v 2) имеет место v 1 =v 2 , то ребро е называется петлёй . Если в графе допускается наличие петель, то он называется графом с петлями или псевдографом .

Если в графе допускается наличие более одного ребра между двумя вершинами, то он называется мультиграфом .

Если каждая вершина графа и (или) ребра помечена, то такой граф называется помеченным (или нагруженным ). В качестве пометок обычно используются буквы или целые числа.

Определение 7.3. Граф G (V , E ) называется подграфом (или частью ) графа G (V ,E ), если V V , E E . Если V = V , то G называется остовным подграфом G .

Пример 7 . 1 . Дан неориентированный граф.



Определение 7.4. Граф называется полным , если любые две его вершины соединены ребром. Полный граф с n вершинами обозначается через K n .

Графы К 2 , К 3, К 4 и К 5 .

Определение 7.5. Граф G =G (V , E ) называется двудольным , если V можно представить как объединение непересекающихся множеств, скажем V =A B , так что каждое ребро имеет вид (v i , v j ), где v i A и v j B .

Каждое ребро связывает вершину из А с вершиной из В, но никакие две вершины из А или две вершины из В не являются связанными.

Двудольный граф называется полным двудольным графом K m , n , если A содержит m вершин, B содержит n вершин и для каждого v i A , v j B имеем (v i , v j )E .

Таким образом, для каждого v i A , и v j B имеется связывающее их ребро.

K 12 K 23 K 22 K 33

Пример 7 . 2 . Построить полный двудольный граф K 2,4 и полный граф K 4 .

Граф единичного n -мерного куба В n .

Вершины графа - n-мерные двоичные наборы. Рёбра соединяют вершины, отличающиеся одной координатой.

Пример:

Теория графов - один из обширнейших разделов дискретной математики, широко применяется в решении экономических и управленческих задач, в программировании, химии, конструировании и изучении электрических цепей, коммуникации, психологии, психологии, социологии, лингвистике, других областях знаний. Теория графов систематически и последовательно изучает свойства графов, о которых можно сказать, что они состоят из множеств точек и множеств линий, отображающих связи между этими точками. Основателем теории графов считается Леонард Эйлер (1707-1882), решивший в 1736 году известную в то время задачу о кёнигсбергских мостах.

Графы строят для того, чтобы отобразить отношения на множествах . Пусть, например, множество A = {a 1 , a 2 , ... a n } - множество людей, а каждый элемент будет отображён в виде точки. Множество B = {b 1 , b 2 , ... b m } - множество связок (прямых, дуг, отрезков - пока не важно). На множестве A задано отношение знакомства между людьми из этого множества. Строим граф из точек и связок. Связки будут связывать пары людей, знакомых между собой. Естественно, число знакомых у одних людей может отличаться от числа знакомых у других людей, а некоторые вполне могут и не быть ни с кем знакомы (такие элементы будут точками, не соединёнными ни с одной другой). Вот и получился граф!

То, что мы сначала назвали "точками", следует называть вершинами графа, а то, что называли "связками" - рёбрами графа.

Теория графов не учитывает конкретную природу множеств A и B . Существует большое количество самых разных конкретных задач, при решении которых можно временно забыть о специфическом содержании множеств и их элементов. Эта специфика никак не сказывается на ходе решения задачи, независимо от её трудности! Например, при решении вопроса о том, можно ли из точки a добраться до точки e , двигаясь только по соединяющим точки линиям, неважно, имеем ли мы дело с людьми, городами, числами и т.д. Но, когда задача решена, мы получаем решение, верное для любого содержания, которое было смоделировано в виде графа. Не удивительно поэтому, что теория графов - один из самых востребованных инструментов при создании искусственного интеллекта: ведь искусственный интеллект может обсудить с собеседником и вопросы любви, и вопросы музыки или спорта, и вопросы решения различных задач, причем делает это без всякого перехода (переключения), без которого в подобных случаях не обойтись человеку.

А теперь строгие математические определения графа.

Определение 1. Графом называется система объектов произвольной природы (вершин) и связок (рёбер), соединяющих некоторые пары этих объектов.

Определение 2. Пусть V – (непустое) множество вершин, элементы v V – вершины. Граф G = G (V ) с множеством вершин V есть некоторое cемейство пар вида: e = (a , b ) , где a ,b V , указывающих, какие вершины остаются соединёнными. Каждая пара e = (a , b ) - ребро графа. Множество U - множество рёбер e графа. Вершины a и b – концевые точки ребра e .

Графы как структура данных. Широким применением теории графов в компьютерных науках и информационных технологиях обусловлено добавлением к вышеизложенным определениям понятия графа как структуры данных. В компьютерных науках и информационных технологиях граф определяется как нелинейная структура данных. Что же тогда - линейная структура данных и чем от них отличаются графы? Линейные структуры данных характеризуются тем, что связывают элементы отношениями типа "простого соседства". Линейными структурами данных являются, например, массивы, таблицы, списки, очереди, стеки, строки. В противоположность им нелинейные структуры данных - такие, в которых элементы располагаются на различных уровнях иерархии и подразделяются на три вида: исходные, порождённые и подобные. Итак, граф - нелинейная структура данных.

Слово граф греческого происхождения, от слов "пишу", "описываю". Из начала этой статьи известно, что именно описывает граф: описывает он отношения. То есть, любой граф описывает отношения. И наоборот: любое отношение можно описать в виде графа.

Основные понятия теории графов

Понятие инцидентности необходимо и при составлении алгоритмов решения многих практических задач с графами. Например, можно ознакомиться с программной реализацией обхода в глубину графа, представленного матрицей инцидентности . Идея проста: можно двигаться лишь через вершины, соединённые рёбрами. А уж если рёбрам приписаны какие-то значения ("весы", чаще всего в виде чисел, такие графы называются взвешенными или помеченными), то можно решать сложные прикладные задачи, некоторые из которых упомянуты в завершающем параграфе этого урока.

Классические задачи теории графов и их решения

Один из первых опубликованных примеров работ по теории графов и применения графов - работа о "задаче с Кёнигсбергскими мостами" (1736 г.), автором которой является выдающийся математик 18-го века Леонард Эйлер. В задаче даны река, острова, которые омываются этой рекой, и несколько мостов. Вопрос задачи: возможно ли, выйдя из некоторого пункта, пройти каждый мост только по одному разу и вернуться в начальный пункт? (рисунок ниже)

Задачу можно смоделировать следующим образом: к каждому участку суши прикрепляется одна точка, а две точки соединяются линией тогда и только тогда, когда соответствующие участки суши соединены мостом (рисунок ниже, соединительные линии начерчены пунктиром). Таким образом, построен граф.

Ответ Эйлера на вопрос задачи состоит в следующем. Если бы у этой задачи было положительное решение, то в получившемся графе существовал бы замкнутый путь, проходящий по рёбрам и содержащий каждое ребро только один раз. Если существует такой путь, то у каждой вершины должно быть только чётное число рёбер. Но в получившемся графе есть вершины, у которых нечётное число рёбер. Поэтому задача не имеет положительного решения.

По устоявшейся традиции эйлеровым графом называется граф, в котором можно обойти все вершины и при этом пройти одно ребро только один раз. В нём каждая вершина должна иметь только чётное число рёбер. Задача средней трудности на эйлеровы графы - в материале "Основные виды графов ".

В 1847 г. Кирхгоф разработал теорию деревьев для решения совместной системы линейных алгебраических уравнений, позволяющую найти значение силы тока в каждом проводнике (дуге) и в каждом контуре электрической цепи. Абстрагируясь от электрических схем и цепей, которые содержат сопротивления, конденсаторы, индуктивности и т.д., он рассматривал соответствующие комбинаторные структуры, содержащие только вершины и связи (рёбра или дуги), причём для связей не нужно учитывать, каким типам электрических элементов они соответствуют. Таким образом, Кирхгоф заменил каждую электрическую цепь соответствующим графом и показал, что для решения системы уравнений необязательно рассматривать в отдельности каждый цикл графа электрической цепи.

Кэли в 1858 г., занимаясь чисто практическими задачами органической химии, открыл важный класс графов, называемых деревьями. Он стремился перечислить изомеры насыщенных углеводородов, с данным числом атомов углерода. Кэли прежде всего сформулировал задачу абстрактно: найти число всех деревьев с p вершинами, каждое из которых имеет вершины со степенями 1 и 4. Ему не удалось сразу решить эту задачу, и он стал изменять её формулировку таким образом, чтобы можно было решить новую задачу о перечислении:

  • корневых деревьев (в которых выделена одна из вершин);
  • всех деревьев;
  • деревьев, у которых степени вершин не превышают 4;
  • деревьев, у которых степени вершин равны 1 и 4 (постановка задачи из химии).

Задачи с графами для закрепления основных понятий

Пример 1. Пусть A - множество чисел 1, 2, 3 : A = {1, 2, 3} . Построить граф для отображения отношения "

Решение. Очевидно, что числа 1, 2, 3 следует представить в виде вершин графа. Тогда каждую пару вершин должно соединять одно ребро. Решая эту задачу, мы пришли к таким основным понятиям теории графов, как ориентированные и неориентированные графы . Неориентированные графы - такие, рёбра которых не имели направления. Или, как говорят ещё чаще, порядок двух концов ребра не существенен. В самом деле, граф, построенный в самом начале этого урока и отображавший отношение знакомства между людьми, не нуждается в направлениях рёбер, так как можно утверждать, что "человек номер 1" знаком с "человеком номер 2" в той же мере, как и "человек номер 2" с "человеком номер 1". В нашем же нынешнем примере одно число меньше другого, но не наоборот. Поэтому соответствующее ребро графа должно иметь направление, показывающее, какое всё же число меньше другого. То есть, порядок концов ребра существенен. Такой граф (с рёбрами, имеющими направление) называется ориентированным графом или орграфом.

Итак, в нашем множестве A число 1 меньше числа 2 и числа 3, а число 2 меньше числа 3. Этот факт отображаем рёбрами, имеющими направление, что показывается стрелками. Получаем следующий граф:

Пример 2. Пусть A - множество чисел 2, 4, 6, 14 : A = {2, 4, 6, 14} . Постоить граф для отображения отношения "делится нацело на" на этом множестве.

Решение. В этом примере часть рёбер будут иметь направление, а некоторые не будут, то есть строим смешанный граф . Перечислим отношения на множестве: 4 делится нацело на 2, 6 делится нацело на 2, 14 делится нацело на 2, и ещё каждое число из этого множества делится нацело на само себя. Это отношение, то есть когда число делится нацело на само себя, будем отображать в виде рёбер, которые соединяют вершину саму с собой. Такие рёбра называются петлями . В данном случае нет необходимости давать направление петле. Таким образом, в нашем примере три обычных направленных ребра и четыре петли. Получаем следующий граф:

Пример 3. Пусть даны множества A = {α, β, γ} и B = {a, b, c} . Построить граф для отображения отношения "декартово произведение множеств".

Решение. Как известно из определения декартова произведения множеств , в нём нет упорядоченных наборов из элементов одного и того же множества. То есть в нашем примере нельзя соединять греческие буквы с греческими и латинские с латинскими. Этот факт отображается в виде двудольного графа , то есть такого, в котором вершины разделены на две части так, что вершины, принадлежащие одной и той же части, не соединены между собой. Получаем следующий граф:

Пример 4. В агентстве по недвижимости работают менеджеры Игорь, Сергей и Пётр. Обслуживаются объекты О1, О2, О3, О4, О5, О6, О7, О8. Построить граф для отображения отношений "Игорь работает с объектами О4, О7", "Сергей работает с объектами О1, О2, О3, О5, О6", "Пётр работает с объектом О8".

Решение. Граф, отображающий данные отношения, будет так же двудольным, так как менеджер не работает с менеджером и объект не работает с объектом. Однако, в отличии от предыдущего примера, граф будет ориентированным. В самом деле, например, Игорь работает с объектом О4, но не объект О4 работает с Игорем. Часто, когда такое свойство отношений очевидно, необходимость давать рёбрам направления может показаться "математической тупостью". Но всё же, и это вытекает из строгого характера математики, если отношение носит односторонний характер, то давать направления рёбрам нужно. В приложениях отношений эта строгость окупается, например, в программах, предназначенных для планирования, где тоже применяются графы и маршрут по вершинам и рёбрам должен проходить строго в заданном направлении. Итак, получаем следующий ориентированный двудольный граф:

И вновь к примерам с числами.

Пример 5. Пусть задано множество C = {2, 3, 5, 6, 15, 18} . Построить граф, реализующий отношение, определяющее все пары чисел a и b из множества C , у которых при делении второго элемента на первый получаем частное, которое является целым числом больше 1.

Решение. Граф, отображающий данные отношения, будет ориентированным, так как в условии есть упоминание о втором и первом элементе, то есть, ребро будет направлено от первого элемента ко второму. Из этого однозначно понятно, какой элемент является перым, а какой вторым. Ещё добавим терминологии: ориентированные рёбра принято называть дугами. В нашем графе будет 7 дуг: e 1 = (3, 15) , e 2 = (3, 18) , e 3 = (5, 15) , e 4 = (3, 6) , e 5 = (2, 18) , e 6 = (6, 18) , e 7 = (2, 6) . В этом примере рёбра (дуги) графа просто пронумерованы, но порядковые номера - не единственное, что можно приписать дуге. Дуге можно приписать также весы означающие, например, стоимость пересылки груза из одного пункта в другой. Но с весами дуг мы познакомимся позже и подробнее. Итак, получаем следующий ориентированный граф:

Как мы уже знаем из теоретической вступительной части, теория графов не учитывает специфическую природу множеств и с помощью одного и того же графа можно задать отношения на множествах с самым разным содержанием. То есть, от этого самого содержания при моделировании задачи можно абстрагироваться. Перейдём к примерам, иллюстрирующим это замечательное свойство теории графов.

Пример 6. На кусочке шахматной доски размером 3 Х 3 размещены два белых коня и два чёрных коня так, как показано на рисунке ниже.

Можно ли переместить коней в состояние, которое изображено на следующем рисунке, не забывая, что две фигуры не могут находиться на одной клетке?

Решение. В конструируемом графе пары вершин будут связаны отношением "ход коня". То есть, одна вершина - та, из которой конь ушёл, а другая - та, в которую пришёл, а промежуточная клетка буквы "г" будет за пределами этого отношения. Получаем следующий граф:

И всё же конструкция получилась громозкой. В ней видны клетки шахматной доски, а многие рёбра графа пересекаются. Нельзя ли абстрагироваться от физического вида шахматной доски и вообразить отношения проще? Оказывается, можно. В новом графе соседними вершинами будут те, которые связаны отношением "ход коня", а не соседние по шахматной доске (рисунок ниже).

Теперь легко увидеть, что ответ на вопрос этой задачи - отрицательный. В начальном состоянии между двумя белыми конями нет чёрного коня, а в конечном состоянии этот чёрный конь должен быть. Рёбра графа размещены так, что два находящихся рядом коня не могут перепрыгнуть друг через друга.

Пример 7. Задача о волке, козе и капусте. На одном берегу реки находятся человек (Ч), лодка, волк (В), коза (Кз) и капуста (Кп). В лодке одновременно могут находиться человек и не более одного из перевозимых объектов. Человек должен перевезти на другой берег все объекты, соблюдая условие: нельзя оставлять без присмотра волка вместе с козой и козу вместе с капустой.

Решение. В конструируемом графе вершины - конфигурации, а рёбра - отношение "связь одним плаваньем лодки" между конфигурациями. Конфигурация означает расположение объектов на первоначальном берегу и на противоположном берегу. Каждая конфигурация отображается в виде (A |B ) , где A - объекты, находящиеся на первоначальном берегу, а B - объекты, находящиеся на противоположном берегу. Первоначальная конфигурация, таким образом, - (ЧВКпКз | ) . Например, после переправки на другой берег козы конфигурация будет (ВКп |ЧКз ) . Конечная конфигурация всегда ( |ЧВКпКз ) . Теперь можем построить граф, зная уже, что означают вершины и рёбра:

Разместим вершины графа так, чтобы рёбра не пересекались, а соседними были вершины, которые связаны отношением на графе. Тогда увидеть отношения будет намного проще (для увеличения рисунка щёлкните по нему левой кнопкой мыши):


Как видим, существуют два различных непрерывных маршрута из начальной конфигурации в конечную. Поэтому задача имеет два различных решения (и оба правильные).

Теория графов и важнейшие современные прикладные задачи

На основе теории графов разработаны методы решения прикладных задач, в которых в виде графов моделируются весьма сложные системы. В этих моделях узлы содержат отдельные компоненты, а рёбра отображают связи между компонентами. Обычно для моделирования транспортных сетей, систем массового обслуживания, в сетевом планировании используются взвешенные графы. Мы о них уже говорили, это графы, в которым дугам присвоены весы.

Графы-деревья применяются, например, для построения деревьев решений (служат для анализа рисков, анализа возможных приобретений и убытков в условиях неопределённостей). С применением теории графов разработаны и другие многочисленные математические модели для решения задач в конкретных предметных областях.

Графы и задача о потоках

Постановка задачи. Имеется система водопроводных труб, представленная графом на рисунке ниже.

Каждая дуга графа отображает трубу. Числа над дугами (весы) - пропускная способность труб. Узлы - места соединения труб. Вода течёт по трубам только в одном направлении. Узел S - источник воды, узел T - сток. Требуется максимизировать объём воды, протекающей от источника к стоку.

Для решения задачи о потоках можно воспользоваться методом Форда-Фулкерсона. Идея метода: поиск максимального потока производится по шагам. В начале работы алгоритма поток полагается равным нулю. На каждом последующем шаге значение потока увеличивается, для чего ищется дополняющий путь, по которому поступает дополнительный поток. Эти шаги повторяются до тех пор, пока существуют дополнительные пути. Задача успешно применяется в различных распределённых системах: система электоснабжения, коммуникационная сеть, система железных дорог и других.

Графы и сетевое планирование

В задачах планирования сложных процессов, состоящих из множества работ, часть из которых выполняется параллельно, а часть последовательно, широкое применение получили взвешенные графы, известные под названием сети ПЕРТ (PERT).

PERT - Program (Project) Evaluation and Review Technique - техника оценки и анализа программ (проектов), которая используется при управлении проектами.

Сеть ПЕРТ - взвешенный ациклический ориентированный граф, в котором каждая дуга представляет работу (действие, операцию), а вес дуги - время, требуемое для её выполнения.

Если в сети есть дуги (a , b ) и (b , c ) , то работа, представленная дугой (a , b ) , должна быть завершена до начала выполнения работы, представленной дугой (b , c ) . Каждая вершина (v i ) представляет момент времени, к которому должны быть завершены все работы, задаваемые дугами, оканчивающимися в вершине (v i ) .

В таком графе:

  • одна вершина, не имеющая предшественников, определяет момент времени начала выполнения работ;
  • одна вершина, не имеющая последователей, соответствует моменту времени завершения комплекса работ.

Путь максимальной длины между этими вершинами графа (из начала в конец процесса выполнения работ), называется критическим путём. Для сокращения времени выполнения всего комплекса работ необходимо найти работы, лежащие на критическом пути, и уменьшить их продолжительность за счёт, например, привлечения дополнительных исполнителей, механизмов, новых технологий.

Весь блок "Теория графов"

Теория графов - раздел математики, используемый в информатике и программировании, экономике, логистике, химии.

Что такое граф

Часто для описания строения систем используют графические схемы. Элементы в них изображают кружками, точками, квадратами и т. п., а связи между элементами - линиями или стрелками. При этом ни то, как изображаются элементы, ни длина или форма линий не важны - имеет значение только, какие элементы соединены. Итак, граф - это пара вида (A, M), где A - конечное множество вершин, а M - множество ребер - линий, связывающих некоторые вершины.

Основные понятия теории графов

У ориентированного графа или орграфа (см. рисунок ниже) ребра ориентированы, называются дугами и изображаются стрелками. Дуга может быть обозначена упорядоченной парой вершин, которые она связывает, - начальной и конечной.

У неориентированного графа (см. рисунок ниже) ребра изображаются линиями без ориентации. Соответственно, пара вершин, которую связывает ребро, является неупорядоченной. Обе эти вершины есть концы ребра.

Если вершины a и b - концы ребра (или начало и конец дуги) графа, то говорят, что вершины a и b инцидентны этому ребру (дуге), также ребро (дуга) инцидентно вершинам a и b. Если вершины a и b - концы ребра, то они (a и b) называются смежными.

Чаще всего рассматривают графы, ребра которых имеют один тип - являются ориентированными или нет.

Если ребра имеет одинаковые начало и конец, то их называют кратными ребрами, а граф, в котором они присутствуют, называется мультиграфом.

Теория графов также использует понятие «петля» - ребро, выходящее и заходящее в одну и ту же вершину. Граф, в котором есть петли, называется псевдографом.

Чаще всего встречаются неориентированные графы, у которых нет кратных ребер и нет петель. Такие графы называются обыкновенными. Они не имеют кратных ребер, поэтому можно отождествить ребро и соответствующую пару вершин.

Каждая вершина орграфа характеризуется:

  • Полустепенью исхода. Это количество дуг, выходящих из нее.
  • Полустепенью захода. Это количество дуг, которые входят в данную вершину.

Сумма полустепеней захода орграфа, а также сумма полустепеней исхода равны общему количеству дуг графа.

У неориентированного графа каждая вершина характеризуется степенью вершины. Так называется количество ребер, которые инцидентны вершине. Общая сумма степеней вершин графа есть количество ребер, умноженное на два: каждое ребро будет давать вклад, который равен двум.

Вершина со степенью 0 называется изолированной.

Висячей вершиной является вершина со степенью 1.

Теория графов называет пустым графом такой, в котором нет ни одного ребра. Полный граф - это обыкновенный граф, в котором смежны любые 2 вершины.

Взвешенные графы - это графы, вершинам или ребрам (дугам) которых или и вершинам, и ребрам (дугам) сразу, приписываются некоторые числа. Они называются весами. На втором рисунке показан неориентированный граф, ребра которого взвешены.

Графы: изоморфизм

Понятие изоморфизма используется в математике. В частности, теория графов определяет его так: два графа U и V изоморфны, если в этих графах существует биекция между множествами их вершин: каждые 2 вершины в графе U соединены ребром в том и только том случае, если в графе V связаны ребром те же вершины (которые могут по-другому называться). На рисунке ниже показаны два изоморфных графа, в которых между вершинами, окрашенными в одинаковые цвета и в первом, и во втором графе, существует вышеописанная биекция.

Пути и циклы

Путем в неориентированном или ориентированном графе является последовательность ребер, где каждое следующее начинается в вершине, в которой заканчивается предыдущее. Простой путь - такой, в котором все вершины, исключая, может быть, начальную и конечную, и ребра различны. Циклом в орграфе называется путь, у которого совпадают начальная и конечная вершины и который включает не менее одного ребра. Циклом в неориентированном графе является путь, который содержит не менее трех различных ребер. На втором рисунке циклом является, например, путь (3, 1), (6, 3), (1, 6).

Теория графов в программировании используется для построения граф-схем алгоритмов.