Железо менделеев. Соединения двухвалентной меди

Fe (лат. Ferrum), химический элемент VIII группы периодической системы, атомный номер 26, атомная масса 55,847. Блестящий серебристо-белый металл. Образует полиморфные модификации; при обычной температуре устойчиво a - Fe (кристаллическая решетка кубическая объемноцентрированная) с плотностью 7,874 г./см?. a - Fe вплоть до 769°С (точка Кюри) ферромагнитно; tпл 1535°С.

На воздухе окисляется покрывается рыхлой ржавчиной. По распространенности элементов в природе железо находится на 4-м месте; образует ок. 300 минералов. На долю сплавов железа с углеродом и другими элементами приходится около 95% всей металлической продукции (чугун, сталь, ферросплавы). В чистом виде практически не используется (в быту железными часто называются стальные или чугунные изделия). Необходимо для жизнедеятельности животных организмов; входит в состав гемоглобина.

Желемзо - элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д.И. Менделеева, с атомным номером 26. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия).

Простое вещество железо (CAS-номер: 7439-89-6) - ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро коррозирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.

На самом деле железом обычно называют его сплавы с малым содержанием примесей (до 0,8%), которые сохраняют мягкость и пластичность чистого металла. Но на практике чаще применяются сплавы железа с углеродом: сталь (до 2,14 вес.% углерода) и чугун (более 2,14 вес.% углерода), а также нержавеющая (легированная) сталь с добавками легирующих металлов (хром, марганец, никель и др.). Совокупность специфических свойств железа и его сплавов делают его «металлом №1» по важности для человека.

В природе железо редко встречается в чистом виде, чаще всего оно встречается в составе железо-никелевых метеоритов. Распространённость железа в земной коре - 4,65% (4-е место после O, Si, Al). Считается также, что железо составляет бомльшую часть земного ядра.

Железо в трудах ученых

O том, что древние люди пользовались вначале именно железом метеоритного происхождения, свидетельствуют и распространенные у некоторых народов мифы о богах или демонах, сбросивших с неба железные предметы и орудия, - плуги, топоры и пр.

Интересен также факт, что к моменту открытия Америки индейцы и эскимосы Северной Америки не были знакомы со способами получения железа из руд, но умели обрабатывать метеоритное железо.

В древности и в средние века семь известных тогда металлов сопоставляли с семью планетами, что символизировало связь между металлами и небесными телами и небесное происхождение металлов. Такое сопоставление стало обычным более 2000 лет назад и постоянно встречается в литературе вплоть до XIX в.

Во II в. н.э. железо сопоставлялось с Меркурием и называлось меркурием, но позднее его стали сопоставлять с Марсом и называть марс (Mars), что, в частности, подчеркивало внешнее сходство красноватой окраски Марса с красными железными рудами.

Впрочем, некоторые народы не связывали название железа с небесным происхождением металла. Так, у славянских народов железо называется по «функциональному» признаку.

Русское железо (южнославянское зализо, польское zelaso, литовское gelesis и т.д.) имеет корень «лез» или «рез» (от слова лезо - лезвие). Такое словообразование прямо указывает на функцию предметов, изготовлявшихся из железа, - режущих инструментов и оружия.

Приставка «же», по-видимому, смягчение более древнего «зе» или «за»; она сохранилась в начальном виде у многих славянских народов (у чехов - zelezo).

Старые немецкие филологи - представители теории индоевропейского, или, как они его называли, индогерманского праязыка - стремились произвести славянские названия от немецких и санскритских корней.

Например, Фик сопоставляет слово железо с санскритским ghalgha (расплавленный металл, от ghal - пылать). Но вряд ли это соответствует действительности: ведь древним людям была недоступна плавка железа. С санскритским ghalgha скорее можно сопоставить греческое название меди, но не славянское слово железо.

Функциональный признак в названиях железа нашел отражение и в других языках. Так, на латинском языке наряду с обычным названием стали (chalybs), происходящим от наименования племени халибов, жившего на южном побережье Черного моря, употреблялось название acies, буквально обозначающее лезвие или острие.

Это, слово в точности соответствует древнегреческому, применявшемуся в том же самом смысле.

Упомянем в нескольких словах о происхождении немецкого и английского названий железа. Филологи обычно принимают, что немецкое слово Eisen имеет кельтское происхождение, так же как и английское Iron. В обоих терминах отражены кельтские названия рек (Isarno, Isarkos, Eisack), которые затем трансформировались) isarn, eisarn) и превратились в Eisen. Существуют, впрочем, и другие точки зрения.

Некоторые филологи производят немецкое Eisen от кельтского isara, означающего «крепкий, сильный». Существуют также теории, утверждающие, что Eisen происходит от ayas или aes (медь), а также от Eis (лед) и т.д. Староанглийское название железа (до 1150 г.) - iren; оно употреблялось наряду с isern и isen и перешло в средние века. Современное Iron вошло в употребление после 1630 г.

Заметим, что в «Алхимическом лексиконе» Руланда (1612) в качестве одного из старых названий железа приведено слово Iris, означающее «радуга» и созвучное Iron.

Ставшее международным, латинское название Ferrum принято у романских народов. Оно, вероятно, связано с греколатинским fars (быть твердым), которое происходит от санскритского bhars (твердеть). Возможно сопоставление и с ferreus, означающим у древних писателей «нечувствительный, непреклонный, крепкий, твердый, тяжкий», а также с ferre (носить). Алхимики наряду с Ferrum yпoтребляли и многие другие названия, например Iris, Sarsar, Phaulec, Mineraи др.

Железные изделия из метеоритного железа найдены в захоронениях, относящихся к очень давним временам (IV-V тысячелетиях до н.э.), в Египте и Месопотамии. Однако железный век в Египте начался лишь с ХIIв. до н.э., а в других странах еще позднее. В древнерусской литературе слово железо фигурирует в древнейших памятниках (с XI в.) под названиями желъзо, железо, железо.

МЕТАЛЛЫ ПОБОЧНЫХ ПОДГРУПП

Характеристика переходных элементов – меди, хрома, железа по их положению в периодической системе химических элементов Д.И. Менделеева и особенностям строения их атомов.

Понятие переходный элемент обычно используется для обозначения любого из d- или f-элементов. Эти элементы занимают переходное положение между электроположительными s-элементами и электроотрицательными p-элементами. d-Элементы образуют три переходных ряда - в 4-м, 5-м и 6-м периодах соответственно. Первый переходный ряд включает 10 элементов, от скандия до цинка. Он характеризуется внутренней застройкой 3d-орбиталей. Хром и медь имеют на 4s-орбиталях всего по одному электрону. Дело в том, что полузаполненные или заполненные d-подоболочки обладают большей устойчивостью, чем частично заполненные. В атоме хрома на каждой из пяти 3d-орбиталей, образующих 3d-подоболочку, имеется по одному электрону. Такая подоболочка является полузаполненной. В атоме меди на каждой из пяти 3d-орбиталей находится по паре электронов (аналогичным образом объясняется аномалия серебра). Все d-элементы являются металлами. Большинство из них имеет характерный металлический блеск. По сравнению с s-металлами их прочность в целом значительно выше. В частности, для них характерны свойства: высокий предел прочности на разрыв; тягучесть; ковкость (их можно расплющить ударами в листы). d-элементы и их соединения обладают рядом характерных свойств: переменные состояния окисления; способность к обра зованию комплексных ионов; образование окрашенных соединений. d-Элементы характеризуются также более высокой плотностью по сравнению с другими металлами. Это объясняется сравнительно малыми радиусами их атомов. Атомные радиусы этих металлов мало изменяются в этом ряду. d-Элементы - хорошие проводники электрического тока, особенно те из них, в атомах которых имеется только один внешний s-электрон сверх полузаполненной или заполненной d-оболочки. Например, медь.

Химические свойства .

Электроотрицательность металлов первого переходного ряда возрастают в направлении от хрома к цинку. Это означает, что металлические свойства элементов первого переходного ряда постепенно ослабевают в указанном направлении. Такое изменение их свойств проявляется и в последовательном возрастании окислительно-восстановительных потенциалов с переходом от отрицательных к положительным значениям.

Характеристика хрома и его соединений

Хром - твердый, голубовато-белый металл.ρ = 7,2г/см 3 , t плавл = 1857 0 С СО: +1,+2,+3,+4,+5,+6

Химические свойства.

    При обычных условиях хром реагирует только со фтором. При высоких температурах (выше 600 0 C) взаимодействует с кислородом, галогенами, азотом, кремнием, бором, серой, фосфором.

4Cr + 3O 2 2Cr 2 O 3

2Cr + 3Cl 2 2CrCl 3

2Cr + 3S Cr 2 S 3

    В раскалённом состоянии реагирует с парами воды:

2Cr + 3H 2 O Cr 2 O 3 + 3H 2

    Хром растворяется в разбавленных сильных кислотах (HCl, H 2 SO 4). В отсутствии воздуха образуются соли Cr 2+ , а на воздухе – соли Cr 3+ .

Cr + 2HCl → CrCl 2 + H 2 -

2Cr + 6HCl + O 2 → 2CrCl 3 + 2H 2 O + H 2 -

    Наличие защитной окисной плёнки на поверхности металла объясняет его пассивность по отношению к холодным концентрированным кислотам – окислителям. Однако при сильном нагревании эти кислоты растворяют хром:

2 Сr + 6 Н 2 SО 4 (конц) Сr 2 (SО 4) 3 + 3 SО 2 + 6 Н 2 О

Сr + 6 НNО 3 (конц) Сr(NО 3) 3 + 3 NO 2 + 3 Н 2 О

Получение.

Соединения хрома

Соединения двухвалентного хрома

Оксид хрома (II ) CrO

Физические свойства: твердое нерастворимое в воде вещество ярко-красного или коричнево- красного цвета. Химические свойства. CrO – основной оксид.

Получение.

Cr 2 O 3 + 3Н 2 2Cr + 3H 2 O Гидроксид хрома (II ) Сr(ОН) 2 Физические свойства: твердое нерастворимое в воде вещество желтого цвета . Химические свойства. Сr(ОН) 2 – слабое основание.

    Взаимодействует с кислотами: Cr(OH) 2 + 2HCl → CrCl 2 + 2H 2 O Легко окисляется в присутствии влаги кислородом воздуха в Сr(ОН) 3:

4Cr(OH) 2 + O 2 + 2H 2 O → 4Cr(OH) 3

    При прокаливании разлагается:
а) без доступа воздуха: Сr(ОН) 2 CrO + H 2 O б) в присутствии кислорода: 4Сr(ОН) 2 2 Cr 2 O 3 + 4H 2 O Получение.
    Действием щелочи на растворы солей Cr(II): СrСl 2 + 2 NaОН = Сr(ОН) 2 ↓ + 2 NaСl.

Соединения трёхвалентного хрома

Оксид хрома (III ) Cr 2 O 3 Физические свойства: темно-зеленое тугоплавкое вещество, нерастворимое в воде. Химические свойства. Cr 2 O 3 - амфотерный оксид.

Хромит натрия

    При высокой температуре восстанавливается водородом, кальцием, углеродом до хрома:

Cr 2 O 3 + 3Н 2 2Cr + 3H 2 O

Получение.

Гидроксид хрома (III ) Cr (OH ) 3 Физические свойства: нерастворимое в воде вещество зелёного цвета. Химические свойства. Сr(ОН) 3 – амфотерный гидроксид

2Cr(OH) 3 + 3H 2 SO 4 →Cr 2 (SO 4) 3 + 6H 2 O

Cr(OH) 3 + KOH → KCrO 2 + 2H 2 O

(хромит калия) Получение.

    При действии щелочей на соли Сr 3+ выпадает студнеобразный осадок гидроксида хрома (III) зеленого цвета:

Сr 2 (SО 4) 3 + 6NaОН → 2 Сr(ОН) 3 ↓ + 3 Na 2 SО 4 ,

Соединения шестивалентного хрома

Оксид хрома (VI ) CrO 3 Физические свойства: твердое вещество темно-красного цвета, хорошо растворимое в воде. Ядовит! Химические свойства. CrO 3 – кислотный оксид.
    Взаимодействует со щелочами, образуя соли желтого цвета-хроматы:

CrO 3 + 2KOH → K 2 CrO 4 + H 2 O

    Взаимодействует с водой, образуя кислоты: CrO 3 + H 2 O → H 2 CrO 4 хромовая кислота
2 CrO 3 + H 2 O → H 2 Cr 2 O 7 дихромовая кислота
    Термически неустойчив: 4 CrO 3 → 2Cr 2 O 3 + 3O 2
Получение.
    Получают из хромата (или дихромата) калия действием H 2 SO 4 (конц.).

K 2 CrO 4 + H 2 SO 4 → CrO 3 + K 2 SO 4 + H 2 O

K 2 Cr 2 O 7 + H 2 SO 4 → 2CrO 3 + K 2 SO 4 + H 2 O

Гидроксиды хрома (VI) H 2 CrO 4 - хромовая кислота , H 2 Cr 2 O 7 - дихромовая кислота Обе кислоты неустойчивы, при попытке их выделения в чистом виде распадаются на воду и оксид хрома (VI). Однако соли их вполне устойчивы. Соли хромовой кислоты называют хроматами, они окрашены в желтый цвет, а соли дихромовой кислоты – дихроматами, они окрашены в оранжевый цвет.

Железо и его соединения

Железо – сравнительно мягкий ковкий металл серебристого цвета, пластичный, намагничивается. T плавл =1539 0 С. ρ = 7,87г/см 3 . СО: +2 – со слабыми окислителями – растворы кислот, солей, неметаллы, кроме кислорода и галогенов +3 – с сильными окислителями – концентрированные кислоты, кислород, галогены.

Химические свойства.

    Горит в кислороде, образуя окалину - оксид железа (II,III): 3Fe + 2O 2 → Fe 3 O 4 Железо реагирует с неметаллами при нагревании:
    При высокой температуре (700–900C) железо реагирует с парами воды:

3Fe + 4H 2 O Fe 3 O 4 + 4H 2 -

    На воздухе в присутствии влаги ржавеет: 4Fе + 3O 2 + 6Н 2 О → 4Fе(ОН) 3 . Железо легко растворяется в соляной и разбавленной серной кислотах, проявляя СО +2:

Fe + 2HCl → FeCl 2 + H 2 -

Fe + H 2 SO 4 (разб.) → FeSO 4 + H 2 -

    В концентрированных кислотах–окислителях железо растворяется только при нагревании, проявляя СО +3:

2Fe + 6H 2 SO 4 (конц.) Fe 2 (SO 4) 3 + 3SO 2 - + 6H 2 O

Fe + 6HNO 3 (конц.) Fe(NO 3) 3 + 3NO 2 - + 3H 2 O

(на холоде концентрированные азотная и серная кислоты пассивируют железо).

    Железо вытесняет металлы, стоящие правее его в ряду напряжений из растворов их солей.

Fe + CuSO 4 → FeSO 4 + Cu↓

Получение.
    Восстановлением из оксидов углём или оксидом углерода (II)

Fe 2 O 3 + 3CO 2Fe + 3CO 2

Соединения двухвалентного железа

О ксид железа (II ) FeO

Физические свойства: твердое вещество черного цвета, нерастворимое в воде. Химические свойства: FeО – основной оксид 6 FeО + O 2 2Fe 3 О 4
    Восстанавливается водородом, углеродом, оксидом углерода(II) до железа:
Получение. Fe 3 О 4 + H 2 - 3 FeО + H 2 O

Гидроксид железа (II ) Fe (OH ) 2

Физические свойства: порошок белого цвета, нерастворимый в воде. Химические свойства: Fe(OH) 2 – слабое основание. Получение.
    Образуется при действии растворов щелочей на соли железа (II) без доступа воздуха:

FeCl 2 + 2KOH → 2KCl + Fе(OH) 2 ↓

Качественная реакция на Fe 2+

При действии гексацианоферрата (III) калия K 3 (красной кровяной соли) на растворы солей двухвалентного железа образуется синий осадок (турнбулева синь):

3FeSO 4 + 2K 3  Fe 3 2  + 3K 2 SO 4

Соединения трёхвалентного железа

Оксид железа (III ) Fe 2 O 3

Физические свойства: твердое вещество красно-коричневого цвета. Химические свойства: Fe 2 O 3 – амфотерный оксид. феррит натрия Fe 2 О 3 + 3H 2 - 2 Fe + 3H 2 O Получение.

Гидроксид железа (III ) Fe (OH ) 3

Физические свойства: твердое вещество красно-бурого цвета. Химические свойства: Fe(OH) 3 – амфотерный гидроксид.
    Взаимодействует с кислотами, как нерастворимое основание:

2Fe(OH) 3 + 3H 2 SO 4 →Fe 2 (SO 4) 3 + 6H 2 O

    Взаимодействует со щелочами, как нерастворимая кислота:

Fe(OH) 3 + KOH (тв) → KFeO 2 + 2H 2 O

Fе(ОН) 3 + 3КОН (конц) → К 3

Получение.
    Образуется при действии растворов щелочей на соли трёхвалентного железа: выпадает в виде красно–бурого осадка:

Fe(NO 3) 3 + 3KOH  Fe(OH) 3  + 3KNO 3

Качественные реакции на Fe 3+

    При действии гексацианоферрата (II) калия K 4 (жёлтой кровяной соли) на растворы солей трёхвалентного железа образуется синий осадок (берлинская лазурь):

4FeCl 3 +3K 4  Fe 4 3  + 12KCl

    При добавлении к раствору, содержащему ионы Fe 3+ роданистого калия или аммония появляется интенсивная кроваво-красная окраска роданида железа(III):

FeCl 3 + 3KCNS  3КCl + Fe(CNS) 3

Медь и её соединения

Медь - довольно мягкий металл красно-желтого цвета, ковкий, пластичный, обладает высокой тепло- и электропроводностью. T плавл = 1083 0 С. ρ = 8,96г/см 3 . СО: 0,+1,+2

Химические свойства.

    Взаимодействие с простыми веществами.
    Взаимодействие со сложными веществами.

Медь стоит в ряду напряжений правее водорода, поэтому не реагирует с разбавленными соляной и серной кислотами, но растворяется в кислотах – окислителях:

3Cu + 8HNO 3 (разб.) → 3Cu(NO 3) 2 + 2NO- + 2H 2 O

Cu + 4HNO 3 (конц.) → Cu(NO 3) 2 + 2NO 2 -+ 2H 2 O

Cu + 2H 2 SO 4 (конц.) → CuSO 4 + SO 2 -+2H 2 O

Получение .

CuO + CO Cu + CO 2

    При электролизе солей меди: 2CuSO 4 + 2H 2 O → 2 Cu + O 2 - + 2H 2 SO 4

Соединения одновалентной меди

Оксид меди(I ) С u 2 O Физические свойства: твердое вещество красного цвета, нерастворимое в воде. Химические свойства: Сu 2 O – основной оксид. Получение.
    Получают восстановлением соединений меди (II), например, глюкозой в щелочной среде:
2CuSO 4 + C 6 H 12 O 6 + 5NaOH → Cu 2 O↓ + 2Na 2 SO 4 + C 6 H 11 O 7 Na + 3H 2 O Гидроксид меди(I ) CuOH Физические свойства: неустойчивое, плохо растворимое в воде вещество желтого цвета, в свободном состоянии не выделен. Химические свойства: CuOH – слабое основание.
    Взаимодействует с кислотами: CuOH + HCl → CuCl + H 2 O На воздухе легко окисляется до Cu(OH) 2: 4CuOH + О 2 + 2H 2 O → 4 Cu(OH) 2
Получение.

Соединения двухвалентной меди

Железо (символ Fe) − химический элемент восьмой группы, четвертого периода. Железо в периодической системе химических элементов расположено под номером 26.

В подгруппе Железа содержится 4 элемента: Fe железо, рутений Ru, осмий Os, Hs хасмий.

Характеристика химического элемента Железо

Ferrum - латинское слово, оно означает не только железо, а также твёрдость и оружие. От него произошли названия железа и в некоторых европейских языках: французском fer, итальянском ferro, испанском hierro и такие термины, как ферриты, ферромагнетизм. Похожие названия этого металла в славянских и балтийских языка: литовском gelezis, польском zelazo, болгарском желязо, украинском залiзо и белорусском жалеза. Английское название Iron, немецкое Eisen, голландское ijzer имеют происхождение от санскритского isira (крепкий, сильный).

Распространение Железа в природе

Железо 26 элемент таблицы Менделеева

Железо - первый на земном шаре и второй по распространённости металл в земной коре, очень важный металл для человека. Ещё с незапамятных времён люди встречали железо в виде железных метеоритов. Обычно в метеоритном железе содержится от 5 до 30 % никеля, почти 0,5 % кобальта и до 1 % других элементов. На территории Африки 80 тысяч лет назад упал самый крупный метеорит Гоба, он весил 66 тонн. Он содержит 84 % железа и 16 % никеля. В метеоритном музее Российской академии наук, хранятся два осколка железного метеорита, которые весят 256 кг, упавшего на Дальнем Востоке. В 1947 г. в Приморском крае на площади 35 км 2 «железным дождём» выпали тысячи осколков (массой от 60 до 100 тонн) железного метеорита. Очень редкий минерал - самородное железо земного происхождения, встречается в виде мелких зёрен и содержит 2% никеля и десятые доли процента других металлов. На Луне было найдено самородное железо в раздробленном состоянии.

В 13- 12 веках до н.э. происходит распад и смена культур на всём пространстве Евразии от Атлантики до Тихого океана, и в течение нескольких веков - до 10-8 веков до н.э. происходят переселения народов. Этот период получил название катастрофы бронзового века и начало перехода к железному веку.

Железа в земной коре очень много, но добывать его тяжело. Этот металл прочно связан в рудах с кислородом, а иногда с серой. Древние печи не могли дать нужной температуры, при которой плавится чистое железо и получалось железо в виде губки с примесями из руды, называемой крицей. При ковке крицы, железо частично отделялось от руды.

Во многих минералах содержится железо. Магнитный железняк, содержащий 72,3% железа - самый богатый железом минерал. Древнегреческий философ Фалес Милетский более 2500 лет назад изучил образцы чёрного металла, которые притягивают железо. Дал ему название magnetis lithos - камень из Магнесии, так произошло название магнита. Теперь известно, что это был магнитный железняк - чёрный оксид железа.

Роль Железа в живом организме

Важнейшей рудой железа является гематит. Он содержит 69,9% железа. Гематит ещё называют красный железняк, а старинное название - кровавик. От греческого haima, что означает кровь. Появились и другие слова, связанные с кровью, такие как гемоглобин. Гемоглобин служит переносчиком кислорода от органов дыхания к тканям организма, а в обратном направлении переносит диоксид углерода. Недостаток железа в организме приводит к тяжёлому заболеванию - железодефицитной анемии . При этом заболевании происходят нарушения скелета, функции центральной нервной и сосудистой систем , наблюдается недостаток кислорода в тканях. Железо необходимо живым организмам. Оно содержится также в мышцах, селезёнке и печени. У взрослого человека железа около 4 г, оно присутствует в каждой клетке организма. Человек каждый день с пищей должен получать 15 миллиграммов железа. При недостатке железа врачи назначают специальные препараты, в которых железо находится в легко усвояемом виде.

Применение Железа

Если в выплавляемом железе больше 2% углерода, то получается чугун, его плавят на сотни градусов ниже, чем чистое железо. Так как чугун хрупкий, из него можно только отливать различные изделия, ковать его нельзя. Из железной руды в доменных печах выплавляют большое количество чугуна, который используют для отливки памятников, решёток и тяжёлых станин для станков. Основную массу чугуна перерабатывают в сталь. Для этого в конвертерах или в мартеновских печах из чугуна «выжигают» часть углерода и других примесей.

Из стали с разным содержанием углерода сделаны все предметы от рельсов до гвоздей. Если в железе мало углерода, получается мягкая низкоуглеродистая сталь, а вводя в сталь легирующие примеси других элементов, получаются разные сорта специальных сталей. Известно огромное множество сталей и каждая имеет своё применение.

Самая известная - нержавеющая сталь, которая содержит никель и хром. Из этой стали делают аппаратуру для химических заводов и столовую посуду. А если в сталь ввести 18% вольфрама, 1% ванадия и 4% хрома, получится быстрорежущая сталь, из неё делают свёрла и наконечники резцов. Если сплавить железо с 1,5% углерода и 15% марганца, получается такая твёрдая сталь, из которой делают ножи бульдозеров и зубья экскаваторов. Сталь содержащая 36% никеля, 0,5 % углерода и 0,5% марганца называется инваром, из неё делают точные приборы и некоторые детали для часов. Сталь, которую называют платинитом, содержит 46% никеля и 15% углерода расширяется при нагревании так же как и стекло. Спай платинита со стеклом не растрескивается и поэтому его используют при изготовлении электрических ламп.

Нержавеющая сталь не намагничивается и к магниту не притягивается. Намагнитить можно только углеродистую сталь. Чистое железо само не намагничивается, а притягивается магнитом, такое железо подходит для изготовления сердечников электромагнитов.

В мире ежегодно выплавляется более миллиарда тонн железа. Но коррозия, которая является страшным врагом металла, не только уничтожает сам металл, на выплавку которого были затрачены огромные усилия, ещё и выводит из строя готовые изделия, которые стоят дороже самого металла. Она ежегодно уничтожает десятки миллионов тонн выплавляемого металла. Железо при коррозии реагирует с кислородом и водой, превращаясь в ржавчину.

Железо, его положение в периодической системе химических элементов Д. И. Менделеева, взаимодействие с серой, хлороводородной кислотой, растворами солей.

ПЛАН ОТВЕТА:

положение в п. с. и строение атома физические свойства химические свойства Химический элемент железо находится в 4-ом периоде 8-ой группе побочной подгруппе. В атоме железа четыре электронных слоя. Электронами заполняется d–подуровень третьего слоя, на нём находится 6 электронов, а на четвёртом слое s–подуровне находится 2 электрона. В соединениях железо проявляет степени окисления +2 и +3.

IV период VIII группа побочная подгруппа Fe)))) +2 +3
+26 2 8 8+6 2 4s ??
3d ?? ? ? ? ?

Простое вещество железо – серебристо-белый металл с температурой плавления 15390С, плотностью 7,87 г/см3, обладает магнитными свойствами. Железо – химически активный металл. При нагревании оно взаимодействует с серой с образованием сульфида железа(II): Fe0 + S0 = Fe+2S-2. Железо вытесняет водород из растворов кислот, при этом образуются соли железа(II), например, при действии на железо соляной кислоты образуется хлорид железа(II): Fe0 + 2H+1Cl-1 = Fe+2Cl2-1 + H20. Железо может вытеснять менее активные металлы из растворов их солей, например, при действии железа на раствор сульфата меди(II) образуются металлическая медь и сульфат железа(II): Fe0 + Cu+2SO4 = Cu0 + Fe+2SO4.

Во всех реакциях железо проявляет свойства восстановителя. Более сильные окислители – хлор, кислород, концентрированные кислоты – окисляют железо до степени окисления +3.

Если домашнее задание на тему: » Железо, его положение в периодической системе химических элементов Д И Менделеева, взаимодействие оказалось вам полезным, то мы будем вам признательны, если вы разместите ссылку на эту сообщение у себя на страничке в вашей социальной сети.

Железо – химический элемент

1. Положение железа в периодической таблице химических элементов и строение его атома

Железо - это d- элемент VIII группы; порядковый номер – 26; атомная масса Ar (Fe ) = 56; состав атома: 26-протонов; 30 – нейтронов; 26 – электронов.

Схема строения атома:

Электронная формула: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2

Металл средней активности, восстановитель:

Fe 0 -2 e - → Fe +2 , окисляется восстановитель

Fe 0 -3 e - → Fe +3 , окисляется восстановитель

Основные степени окисления: +2, +3

2. Распространённость железа

Железо – один из самых распространенных элементов в природе . В земной коре его массовая доля составляет 5,1%, по этому показателю оно уступает только кислороду, кремнию и алюминию . Много железа находится и в небесных телах, что установлено по данным спектрального анализа. В образцах лунного грунта, которые доставила автоматическая станция “Луна”, обнаружено железо в неокисленном состоянии.

Железные руды довольно широко распространены на Земле. Названия гор на Урале говорят сами за себя: Высокая, Магнитная, Железная. Агрохимики в почвах находят соединения железа.

Железо входит в состав большинства горных пород. Для получения железа используют железные руды с содержанием железа 30-70% и более.

Основными железными рудами являются :

магнетит (магнитный железняк) – Fe 3 O 4 содержит 72% железа, месторождения встречаются на Южном Урале, Курской магнитной аномалии:


гематит (железный блеск, кровавик)– Fe 2 O 3 содержит до 65% железа, такие месторождения встречаются в Криворожском районе:

лимонит (бурый железняк) – Fe 2 O 3* nH 2 O содержит до 60% железа, месторождения встречаются в Крыму:


пирит (серный колчедан, железный колчедан, кошачье золото) – FeS 2 содержит примерно 47% железа, месторождения встречаются на Урале.


3. Роль железа в жизни человека и растений

Биохимики открыли важную роль железа в жизни растений, животных и человека. Входя в состав чрезвычайно сложно построенного органического соединения, называемого гемоглобином, железо обусловливает красную окраску этого вещества, от которого в свою очередь, зависит цвет крови человека и животных. В организме взрослого человека содержится 3 г чистого железа, 75% которого входит в состав гемоглобина. Основная роль гемоглобина – перенос кислорода из легких к тканям, а в обратном направлении – CO 2 .

Железо необходимо и растениям. Оно входит в состав цитоплазмы, участвует в процессе фотосинтеза. Растения, выращенные на субстрате, не содержащем железа, имеют белые листья. Маленькая добавка железа к субстрату – и они приобретают зеленый цвет. Больше того, стоит белый лист смазать раствором соли, содержащей железо, и вскоре смазанное место зеленеет.

Так от одной и той же причины – наличия железа в соках и тканях – весело зеленеют листья растений и ярко румянятся щеки человека.

4. Физические свойства железа.

Железо – это серебристо-белый металл с температурой плавления 1539 о С. Очень пластичный, поэтому легко обрабатывается, куется, прокатывается, штампуется. Железо обладает способностью намагничиваться и размагничиваться, поэтому применяется в качестве сердечников электромагнитов в различных электрических машинах и аппаратах. Ему можно придать большую прочность и твердость методами термического и механического воздействия, например, с помощью закалки и прокатки.

Различают химически чистое и технически чистое железо. Технически чистое железо, по сути, представляет собой низкоуглеродистую сталь, оно содержит 0,02 -0,04% углерода, а кислорода, серы, азота и фосфора – еще меньше. Химически чистое железо содержит менее 0,01% примесей. Химически чистое железо – серебристо-серый, блестящий, по внешнему виду очень похожий на платину металл. Химически чистое железо устойчиво к коррозиии хорошо сопротивляется действию кислот. Однако ничтожные доли примесей лишают его этих драгоценный свойств.

5. Получение железа

Восстановлением из оксидов углём или оксидом углерода (II), а также водородом:

FeO + C = Fe + CO

Fe 2 O 3 + 3CO = 2Fe + 3CO 2

Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O

Опыт "Получение железа алюминотермией"

6. Химические свойства железа

Как элемент побочной подгруппы железо может проявлять несколько степеней окисления. Мы рассмотрим только соеди­нения, в которых железо проявляет степени окисления +2 и +3. Таким образом, можно говорить, что у железа имеется два ряда соединений, в которых оно двух- и трехвалентно.

1) На воздухе железо легко окисляется в присутствии влаги (ржавление):

4Fe + 3O 2 + 6H 2 O = 4Fe(OH) 3

2) Накалённая железная проволока горит в кислороде, образуя окалину - оксид железа (II,III) - вещество чёрного цвета:

3Fe + 2O 2 = Fe 3 O 4

C кислородом во влажном воздухе образуется Fe 2 O 3 * nH 2 O

Опыт "Взаимодействие железа с кислородом"

3) При высокой температуре (700–900°C) железо реагирует с парами воды:

3Fe + 4H 2 O t˚C → Fe 3 O 4 + 4H 2 ­

4) Железо реагирует с неметаллами при нагревании:

Fe + S t˚C → FeS

5) Железо легко растворяется в соляной и разбавленной серной кислотах при обычных условиях:

Fe + 2HCl = FeCl 2 + H 2 ­

Fe + H 2 SO 4 (разб .) = FeSO 4 + H 2 ­

6) В концентрированных кислотах – окислителях железо растворяется только при нагревании

2Fe + 6H 2 SO 4 (конц .) t˚C → Fe 2 (SO 4) 3 + 3SO 2 ­ + 6H 2 O

Fe + 6HNO 3 (конц .) t˚C → Fe(NO 3) 3 + 3NO 2 ­ + 3H 2 O Железо (III)

7. Применение железа.

Основная часть получаемого в мире железа используется для получения чугуна и стали - сплавов железа с углеродом и другими металлами. Чугуны содержат около 4% углерода. Стали содержат углерода менее 1,4%.

Чугуны необходимы для производства различных отли­вок - станин тяжелых машин и т.п.

Изделия из чугуна

Стали используются для изготовления машин, различных строительных материалов, балок, листов, проката, рельсов, инструмента и множества других изделий. Для производства различных сортов сталей применяют так называемые легиру­ющие добавки, которыми служат различные металлы: М

Тренажёр №2 - Генетический ряд Fe 3+

Тренажёр №3 - Уравнения реакций железа с простыми и сложными веществами

Задания для закрепления

№1. Составьте уравнения реакций получения железа из его оксидов Fe 2 O 3 и Fe 3 O 4 , используя в качестве восстановителя:
а) водород;
б) алюминий;
в) оксид углерода (II).
Для каждой реакции составьте электронный баланс.

№2. Осуществите превращения по схеме:
Fe 2 O 3 -> Fe - +H2O, t -> X - +CO, t -> Y - +HCl ->Z
Назовите продукты X, Y, Z?

В таблице элементов Менделеева трудно найти какой-либо другой элемент, с которым так неразрывно связывалась бы жизнь человечества.

Железо - важнейший строительный материал мироздания. Железо есть всюду. Астрономы при помощи спектрального анализа находят железо в раскаленных атмосферах бесчисленных далеких и близких звезд. Геофизики утверждают, что ядро земного шара состоит из железа с примесью похожих на него металлов - никеля и кобальта; земная же кора не больше как легкая окалина, которая, как подсчитали геохимики, на 4,5 % состоит из железа. На поверхности Земли железо распространено повсеместно. Оно находится почти во всех глинах, песках, горных породах. В некоторых местностях оно образует мощное скопление руд, из которых, например, на Урале, состоят целые горы - Бакан, Высокая, Магнитная и др. Агрономы повсеместно находят железо в почвах. Биохимики раскрывают огромную роль железа в жизни растений, животных и человека.

Входя в состав гемоглобина, железо обусловливает красный цвет этого вещества, от которого, в свою очередь, зависит цвет крови. В организме взрослого человека содержится 3 г железа, из них 75 % входят в состав гемоглобина, благодаря которому осуществляется важнейший биологический процесс - дыхание. В организмах животных и человека железо распространено "повсеместно": даже в тканях глазного хрусталика и роговицы, совершенно лишенных кровеносных сосудов, содержится железо. Наиболее богаты железом печень и селезенка.

Существует много живых организмов без гемоглобина, однако и в них содержится железо. Оно входит в состав протоплазмы, в которой при участии железа осуществляется необходимый процесс внутриклеточного дыхания.

Железо необходимо и для растений. Оно участвует в окислительных процессах протоплазмы, при дыхании растений и в построении хлорофилла, хотя само и не входит в его состав.

Растения, искусственно лишенные железа, имеют бесцветные листья, при добавлении незначительного количества железной соли к воде, питающей растения, листья вскоре становятся зелеными. Больше того, достаточно бесцветный лист смазать очень слабым раствором железной соли, как смазанное место вскоре зазеленеет.

Издавна железо применяется в медицине при лечении малокровия, при истощении, упадке сил.

Знакомство человека с железом произошло в давние времена. Есть основания полагать, что образцы железа, которые держали в руках первобытные люди, были неземного происхождения. Входя в состав некоторых метеоритов - вечных странников океана Вселенной, случайно нашедших приют на нашей планете,- метеоритное железо было тем материалом, из которого человек изготовил впервые железные изделия. Прошли многие сотни и тысячи лет, прежде чем человек научился добывать железо из руды. С того момента началась эпоха железа, которая длится и до настоящего времени.

При падении (18 октября 1916 г. вблизи с. Богуславки , Дальневосточного края) метеорит разбился. Два осколка, найденные специальной экспедицией, весят 256 кг. Однако в метеоритах железо не является абсолютно чистым. В большинстве случаев в них содержатся никель , кобальт и некоторые другие элементы. В среднем железные метеориты содержат в себе 90% железа, 8,5% никеля, 0,5 % кобальта и 1 % других элементов. Метеоритное железо, в отличие от земного , хорошо куется только в холодном состоянии. Метеоритное железо отличается от чистого земного, весьма редко встречающегося в некоторых базальтовых породах, внутренним строением. При действии кислоты наполированную поверхность железного метеорита появляется характерный узор, несколько напоминающий ледяной рисунок на оконных стеклах.

Знаменитое "палласово железо", названное так по имени нашедшего его путешественника и естествоиспытателя П. С. Палласа, представляет один из крупнейших в мире железокаменных метеоритов. По своему строению он напоминает железную губку, поры которой заполнены стекловидным минералом - оливином.

Самым крупным из железных метеоритов, падения которого в историческое время не наблюдали, является найденный в 1920 г. в Юго-Западной Африке метеорит "Гоба " весом около 60 т. Несколько меньший по весу железный метеорит был обнаружен в 1896 г. во льдах Гренландии известным американским полярным путешественником Робертом Пири . Этот метеорит весил 33 т. С величайшим трудом он был доставлен в Нью-Йорк, где и хранится до сих пор.

Ежегодно на поверхность Земли из глубины мирового пространства выпадает до 3000 т метеоритного вещества, железо которого пополняет Землю этим элементом. Так, например, в 1891 г. в Аризонской пустыне была обнаружена огромная воронка неизвестного происхождения. Поперечник ее был равен 1200 м, глубина - около 175 м. Изучение воронки показало, что она образована исполинским железным метеоритом, когда-то упавшим здесь. Любитель астрономии, инженер по профессии Баррингер с большим трудом сумел организовать акционерное общество по использованию железного метеорита для промышленных целей. Американские бизнесмены были соблазнены жаждой наживы: был пущен слух, что в осколках Аризонского метеорита обнаружена платина . Однако основная масса метеорита лежала глубоко под землей. Алмазный бур, дойдя до основной массы метеорита, лежащей на глубине 420 м, сломался, и промышленники, не найдя в образцах пробуренной породы платины, прекратили работы. Аризонский метеорит, по расчетам ученых, весил несколько десятков тысяч тонн. Он упал в доисторическое время.

30 июня 1908 г. упал знаменитый Тунгусский метеорит, огромную работу по отысканию которого провел неутомимый путешественник, ученый и герой Великой Отечественной войны Л. А. Кулик. По размерам разрушений, которые произвел этот метеорит при падении в тайге, известный советский астроном И. А. Астапович рассчитал его массу. Она оказалась колоссальной. Метеорит весил 50 тыс. т.

В годы двух последних мировых войн, во время некоторых сражений железо расходовалось в огромных количествах. Во время первой мировой войны одна только Германия выбрасывала в снарядах, торпедах, бомбах, минах, гранатах до 10 млн. т металла в год. Это в два с половиной раза превосходило годовую выплавку чугуна царской России. Сотни тысяч тонн железа, добытых из недр земли и превращенных в артиллерийские снаряды, были рассеяны смертоносными осколками на полях войны. О величине этого "посева" могут дать представление следующие количества снарядов, выброшенных в течение войны основными воюющими государствами: Россия - 50 млн., Англия - 170 млн., Германия - 272 млн., Франция - 200 млн. (по двум калибрам - 76 и 150 мм).

В ходе войны были дни и даже часы, в течение которых выбрасывались сотни тысяч и даже миллионы снарядов. Так, например, англичане за 4 дня боев при Аррасе израсходовали в 1917 г. 10 млн. снарядов. Один миллион снарядов выбросили американцы в сражении при Сан-Мишель за... 4 часа! Только под стенами французской крепости Верден было распылено в железный прах не менее 3 млн. т железа.

Не менее расточительна была трата железа и во время Великой Отечественной войны 1941-1945 гг. Чтобы судить о масштабах расхода железа в сражениях минувшей войны, достаточно указать одну цифру - миллион бомб, сброшенных фашистской авиацией во время битвы на Волге.

Но железо - не только борьба, война, разрушения; железо - металл созидания. Железо - основа всей металлургии, машиностроения, железнодорожного транспорта, судостроения, грандиозных инженерных сооружений - от башни Эйфеля до ажура железнодорожных мостов.

Все, все - начиная от швейной иглы, гвоздя, топора и кончая паутиной железных дорог, плавающими крепостями - авианосцами и линкорами - и огнедышащими домнами, где рождается само железо,- состоит из железа.

Химически чистое железо - серебристо-серый, блестящий, пластичный, по внешнему виду очень похожий на платину металл. Оно устойчиво против коррозии и хорошо сопротивляется действию кислот. Однако ничтожные примеси лишают железо этих драгоценных свойств, и на земном шаре ежегодно теряется такое количество железа, которое равняется почти четверти его годовой добычи. Плотность железа 7,87. При температуре 1539°С железо плавится, а при 2740° С - кипит. Чистое железо легко намагничивается и размагничивается.

Название железа происходит от санскритского слова "жалжа ", что означало "металл, руда". Научное название элемента произошло от латинского слова "феррум " - железо.