Кто такой пржевальский и что он открыл. Неутомимый путешественник николай михайлович пржевальский

Съёмка – комплекс геодезических работс целью создания топокарты или топоплана.

I. – Горизонтальная – на плане контуры и местные предметы.

Вертикальная – на плане только рельеф, высоты точек местности (показаны горизонталями)

Топографическая – и контуры, рельеф местности, предметы.

II. 1) Теодолитная съемка, которая состоит из полевых угловых и линейных измерений, по которым в камеральных условиях опре­деляют положение предметов местности относительно вершин и сторон теодолитного хода, т.е. создают контурный план местно­сти, на котором изображают предметы местности (ситуацию) без рельефа.

2) Тахеометрическая съемка - метод создания топографиче­ских планов местности по результатам угловых и линейных из­мерений на местности относительно вершин и сторон тахеомет­рического хода. При тахеометрической съемке плановое и вы­сотное положение точек в основном определяют методом про­странственных полярных координат, т.е. путем наведения пере­крестия нитей на рейку, поставленную на определенную точку, и измерения горизонтальных углов свершиной в точке тахеомет­рического хода относительно опорной линии (стороны тахео­метрического хода), вертикальных углов относительно горизон­тальной плоскости, проходящей через вершину угла, и расстоя­ния до снимаемой точки.

3) Мензульная съемка - способ создания топографических карт и планов в полевых условиях на мензуле, состоящей из штатива, подставки и планшета, путем определения положения и высоты точки полярным методом. Измерения выполняют ки­прегелем, состоящим из зрительной трубы, вертикального кру­га, смонтированных на колонке, которая закреплена на линейке, скошенный край которой параллелен визирной оси трубы. Пере­крестие сетки нитей наводят на определяемую точку (рейку), при этом скошенный край линейки должен проходить через изобра­жение на планшете точки стояния мензулы; нитяным дальноме­ром измеряют расстояние, приводят его к горизонтальному проложению и откладывают в масштабе плана от точки-станции на планшете по направлению скошенного края линейки и таким образом получают определяемую точку на планшете.

Высоты точек находят путем измерения вертикального угла, высоты прибора и высоты визирной цели по формуле (255).

4) Фототопографическая – по снимкам местности создаются топографические карты.

а) Аэрофототопографическая – снимки местности получают с самолёта или другого носителя съёмочной аппаратуры.



б) Космическая – Снимки получают с космических кораблей и искусственных спутников.

Масштаб. L=3м на местности; l =3мм. М=l /L=1/1000.

Выбор масштаба определяется характеристиками местности, техническим заданием, рекомендациями.

Высота сечения; h=0.2*N

Масштаб h (м)
1:10000 5, 2, 1
1:5000 5, 2, 1, 0,5
1:2000 2, 1, 0,5
1:1000 1, 0,5
1:500 1, 0,5

На равнине h=0.25 м или 0,1 м.

30. Тахеометрическая съемка – топографическая съемка, выполняемая с помощью теодолита или тахеометра и дальномерной рейки (вехи с призмой), в результате которой получают план местности с изображением ситуации и рельефа.

Тахеометрическая съемка выполняется самостоятельно для создания планов или цифровых моделей небольших участков местности в крупных масштабах (1: 500 – 1: 5000) либо в сочетании с другими видами работ, когда выполнение стереотопографической или мензульной съемок экономически нецелесообразно или технически затруднительно. Ее результаты используют при ведении земельного или городского кадастра, для планировки населенных пунктов, проектирования отводов земель, мелиоративных мероприятий и т.д. Особенно выгодно ее применение для съемки узких полос местности при изысканиях трасс каналов, железных и автомобильных дорог, линий электропередач, трубопроводов и других протяженных линейных объектов.

Слово «тахеометрия» в переводе с греческого означает «быстрое измерение». Быстрота измерений при тахеометрической съемке достигается тем, что положение снимаемой точки местности в плане и по высоте определяется одним наведением трубы прибора на рейку, установленную в этой точке. Тахеометрическая съемка выполняется обычно с помощью технических теодолитов или тахеометров.

При использовании технических теодолитов сущность тахеометрической съемки сводится к определению пространственных полярных координат точек местности и последующему нанесению этих точек на план. При этом горизонтальный угол B между начальным направлением и направлением на снимаемую точку измеряется с помощью горизонтального круга, вертикальный угол v – вертикального круга теодолита, а расстояние до точки D – дальномером. Таким образом, плановое положение снимаемых точек определяется полярным способом (координатами в, d), а превышения точек – методом тригонометрического нивелирования.



Преимущества тахеометрической съемки по сравнению с другими видами топографических съемок заключаются в том, что она может выполняться при неблагоприятных погодных условиях, а камеральные работы могут выполняться другим исполнителем вслед за производством полевых измерений, что позволяет сократить сроки составления плана снимаемой местности. Кроме того, сам процесс съемки может быть автоматизирован путем использования электронных тахеометров, а составление плана или ЦММ – производить на базе ЭВМ и графопостроителей. Основным недостатком тахеометрической съемки является то, что составление плана местности выполняется в камеральных условиях на основании только результатов полевых измерений и зарисовок. При этом нельзя своевременно выявить допущенные промахи путем сличения плана с местностью.

29. Сущность теодолитной съемки местности. Полевые измерения, способы съемки, составление плана

Теодолитная (горизонтальная) съемка является съемкой ситуационной, при которой горизонтальные углы измеряют теодолитом, а горизонтальные проекции расстояний различными мерными приборами. Превышения между точками местности при этом не определяют, поэтому теодолитная съемка является частным случаем тахеометрической

1) Рекогносцировка

2) Прокладка теодолитных ходов

3) Съемка подробностей ситуации

1) Прямоугольных координат

2) Полярных координат

3) Угловых засечек

4) Линейных засечек

5) Метод обхода

6) Метод створов

7) Наземно - космический метод

30. Сущность тахеометрической съемки местности. Полевые измерения. Составление плана

Тахеометрическая съемка является самым распространенным видом топографических съемок. При тахеометрической съемке плюс к теодолитной измеряют превышения между точками.

31. Понятие и виды изысканий. Состав инженерно-геодезических изысканий.

Проектирование и строительство сооружений выполняют на основе инженерных изысканий, в результате которых изучают экономические и природные условия района строительства, про­гнозируют взаимодействие строительных объектов с окружаю­щей средой, обосновывают их инженерную защиту и безопасные условия жизни населения .

Изыскания делятся на: 1) предварительные на стадии техни­ко-экономического обоснования (ТЭО) или технико-экономи­ческого расчета (ТЭР); 2) на стадии проекта; 3) на стадии рабо­чей документации. Кроме того, изыскания делят на экономиче­ские и технические. Экономические изыскания предшествуют техническим, определяют экономическую целесообразность строительства сооружения в данном месте с учетом обеспечения сырьем, строительными материалами, транспортом, энергией, рабочей силой и т.п. Технические изыскания дают сведения о природных условиях участка для их учета при проектировании и строительстве.

Основные изыскания, выполняемые на всех типах сооруже­ний, включают: инженерно-геодезические; инженерно-геологи­ческие и гидрогеологические; гидрометеорологические, клима­тические, метеорологические, почвенно-геоботанические и др.

Инженерно-геодезические изыскания дают информацию о ситуации и рельефе местности и являются основой для проекти­рования и проведения других видов изысканий. Они состоят из работ по созданию геодезического обоснования и топографиче­ской съемке участка строительства, трассированию линейных сооружений, привязке геологических выработок, гидрологиче­ских створов и т.п.

Инженерно-геологические и гидрогеологические изыскания дают информацию о геологическом строении участка работ, прочности грунтов, подземных водах и т.п., позволяющую оце­нить условия строительства. Гидрометеорологические изыскания дают сведения о реках и водоемах, их глубинах, изменении уровней воды, уклонах, направлениях и скоростях течений, рас­ходах воды и т.д.

При инженерных изысканиях выполняют также геотехниче­ский контроль для оценки опасности и риска от природных и техногенных процессов, дают обоснование инженерной защиты территории, выполняют кадастровые и другие работы и исследо­вания в процессе строительства, эксплуатации и ликвидации объектов.

32. . Понятие и виды генпланов. Проект производства геодезических работ. (ППГР)

ГП – проект размещения на карте или плане крупного масштаба(1:500 1: 1000)

Виды ГП:

1)Схематический – служит для предварит. Экономич. Расщетов, необходимых для проектирования

2) Основной – на нем наносят все проектируемые сооружения

3) Строит. ГП – наносят только вспомогательные сооружения(действующие АД, склады…)

4) Совмещенный ГП – наносят содержание основного и строительного ГП

5) Исполнит. ГП – наносят сооружения, сдаваемые в эксплуатацию

ППГР состоит:

1)Указ. Общие принципы организации геод. Работ на стройплощадке

2) Указ. Сведения о выполнении осн. Видов работ

3) Указывают. Вопросы геодезического обеспечения трассы

4)Предусматривают работы, связанные выполнением разбивочных работ на трассе

33. Понятие трассы, трассы автомобильной дороги. Элементы трассы, главные точки трассы и их закрепление.

Трассой является пространственная линия, разместившаяся на местности по оси проектируемого или строящегося инженерного сооружения.

Трасса автомобильной дороги как в плане, так и в профиле содержит прямолинейные и криволинейные участки, сопрягаемые в главных точках кривых. Если она в плане состоит из плавно вписывающихся в местность переходных и круговых кривых, почти не имеющих между собой прямых, то её называют клотоидной трассой. Дорожные закругления трассы бывают разные. Они могут состоять из дуг окружностей с разными радиусами, называемых Коробовыми кривыми. Если прямые участки трассы сопрягаются с круговой кривой через кривые переменного радиуса (переходные кривые), то их называют закруглениями с переходными кривыми, а если состоят из 2-х переходных кривых – клотоид, то биклотоидами.

Трасса лин. Сооружения – ось проектируемого сооружения нанес. на план, карту, цифровую модель местности или обозначенную и закреплённую на местности.

Трасса АД – пространственная линия, совпадающая с осью дороги

Гл. точки трассы АД:

НТ, ВУ, КТ

Элементы трассы:

1) проекция трассы на гориз. Плоскость

2) продольный профиль трассы

3) прямолинейные участки закругления

34. Автомобильная дорога и её элементы. Дорожные сооружения.

Автомобильные дороги имеют земляное полотно (рис. 148), состоящее из дорожного полотна, боко­вых канав и обрезов. Дорожное полотно имеет про­езжую часть и обочины. В пределах обрезов земляного полотна устраивают или декоративные и снего­защитные лесопосадочные полосы и ре­зервы грунта при переходе земляного полотна в на­сыпь (рис. 149), или кавальеры (рис. 150) - при устрой­стве вые м о к. Границей земляного полотна является линия отчуждения, устанавливаемая землеустроителями при отводе земли под автомобильную дорогу.

Трасса автомобильной дороги - это пространственная линия, совпадающая с осью дороги. Если возвышение дорожного по­лотна над поверхностью достигается за счет грунта, вынутого из кювета, то поперечный профиль земляного полотна такого типа называют профилем в нулевых отметках.

Глубина боковых канав назначается в зависимости от климати­ческих и грунтовых условий и конструкции песчаного основания.

При сложном пересеченном рельефе земляное полотно обычно располагается выше поверхности земли - в насыпи или ниже - в выемке (см. рис. 149 и 150).

Высотой насыпи (глубиной выемки) называется возвышение (понижение) бровки полотна над поверхностью земли, взятой по оси земляного полотна (см. рис. 149 и 150). На равнинной местности для облегчения съезда с полотна дороги на обрез и уменьшения снежных заносов поперечному профилю дороги придают обтека­емую форму. На косогорах земляное полотно устраивают в по­лунасыпи-полувыемке (рис. 151).

На крутых косогорах основание насыпи разделывают уступами. На скальных косогорах для поддержания насыпи устраиваются подпорные стенки.

Городские улицы имеют проезжую часть, тротуары и газоны. Под ними расположены подземные сети: трубопроводы, кабели, дренажные устройства. Глубина их заложения принимается не менее 0,7 м (рис. 152).

Между тротуаром и проезжей частью устанавливают п о-ребрик (бортовой камень) или подзор (укре­пленный крутой откос). К тротуарам и газонам примыкает пониженная полоса проезжей части (лото к). По ней стекает вода к приемникам подземной ливневой канализации (водостока).

Отдельные полосы движения на магистральных дорогах и ули­цах отделяются друг от друга линиями разметки или полосами газона и зеленых насаждений. Они обеспечивают безопасность движения и декоративное оформ­ление дороги или улицы.

Дорожные сооружения

Автомобильные дороги имеют разнообразные искусственные сооружения, устраиваемые для преодоления различных препят­ствий или для придания ее полотну устойчивости. Дорожные сооружения разделяются на:

1) м о с т ы (рис. 153, а), предназначенные для прохода доро­гой через водные препятствия, реки, заливы, водохранилища, каналы и ручьи;

2) виадуки, пропускающие дороги через глубокие долины, балки, овраги и суходолы;

3) путепроводы, предназначенные для прохода одной дороги над пересекающей ее другой;

4) эстакады (рис. 153, б), мостовые сооружения, заменя­ющие насыпи при проходе дороги над поверхностью земли при пере­сечении застроенных или заболоченных территорий, при подходах к крупным мостам или при пересечении мелких озер и водоемов;

5) т р у б ы (рис. 154), устанавливаемые под дорогой (в ее на­сыпи) для пропуска через нее небольших водотоков, ливневых и снеговых вод или для пропуска через дорогу местного транс­порта, пешеходов или скота;

6) акведуки и быстротоки - сооружения, пред­назначенные для пропуска над дорогой различных водотоков и каналов;

7) тоннели - подземные сооружения, устраиваемые для прокладки дорог через высокие хребты и перевалы, под толщей неустойчивых горных пород, под крупными каналами или зали­вами;

8) г а л е р е и, устанавливаемые над дорогой для защиты ее от снежных лавин, обвалов, камнепадов и селей;

9) п о д п о р н ы е стенки - сооружения, пред­назначенные для удержания земляного откоса или склона от сползания или обрушения;

10) одевающие стенки - сооружения, защищающие откосы или неустойчивые склоны от размыва или обрушения;

11) фильтрующие сооружения в виде филь­трующих насыпей и прослоек, состоящие из каменных набросок на участках логов (тальвегов), взамен мостов и труб небольших отверстий.

Мосты имеют пролетное строение и опоры. Пролетное строение может быть одно- и многопро­летным. Крайние опоры в сопряжении моста с берегом или на­сыпью обычно называют устоями, а средние опоры - б ы к а м и.

Мосты делятся на деревянные, каменные, бетонные, железо­бетонные и металлические. По условиям работы различают ба­лочные, арочные, рамные и висячие системы мостов, а по харак­теру расположения у них проезжей части - мосты с ездой по­верху, понизу и посредине.

36. Понятие полевого трассирования. Порядок трассирования. Закрепление точек трассы.

Трассирование – комплекс изыскательных работ по выбору трассы согласно техническим и экономическим условиям.

Полевое трассирование – процесс перенесения спроектированной трассы на местность с уточнением её положения и закр.на местности.

1) вынос и закрепление на местности главных точек трассы (НТ, ВУ, КТ)

От местных предметов

От пунктов геодезич. Сети

2) задание направления трассы

3) рассчитывают для каждой вершины угла поворота длину кривой, Б, и Д.

4) разбивка пикетажа и плюсовых точек

5) нивелирование трассы

6) Закрепление на местности точек: НТ, ВУ, КТ,плюсовые точки, точки поперечника

7) Сост. Схему «Кроки»

37. Назначение пикетажного журнала. Введение его при трассировании.

Одновременно с разбивкой пикетажа производится съёмка ситуации и ведётся пикетажный журнал, который обычно создаётся на мм бумаге. В нём зарисовывают ситуацию, показывают расположение снимаемых поперечных профилей и поставленных в стороне от трассы реперов, схемы их привязки к постоянным предметам местности. Ось сооружения в пикетажном журнале показывают прямой, выпрямленной в углах, с условным обозначением углов поворота стрелками. Вместо условных знаков угодий в пикетажном журнале записывают их наименование, а скаты местности обознач. стрелками. Пикетажный журнал ведётся в приближенном масштабе, примерно в масштабе 1:2000, при этом масштаб не всегда выдерживается постоянным. При съёмки ситуации вблизи угловой точки с обилием контуров, кроме пикетажного журнала ведут абрис съёмки при вершине данного угла.

39. Виды закруглений автомобильной дороги. Понятие переходных кривых.

При трассировании автомобильных дорог для дорожных закруглений с радиусами, меньшими рекомендуемых нормативами, применяют круговые кривые, сопрягаемые с прямолинейными участками, переходными кривыми, имеющими постепенно изменяющийся радиус кривизны от бесконечности до величины, равной радиусу круговой кривой. Переходные кривые необходимы для плавного перехода движущегося автомобиля от прямолинейного направления на круговую кривую и наоборот. В качестве переходных кривых используют различные кривые. Наиболее удобной для этого считают клотоиду (радиоиду), которая близка по своей форме к кривой, описываемой движущимся автомобилем на дорожных закруглениях. Главными точками таких закруглений являются: начало закругления НЗ (начало первой переходной кривой НПК 1), конец первой переходной кривой КПК 1 (начало круговой кривой НКК), конец второй переходной кривой КПК 2 (конец круговой кривой ККК) и конец закругления КЗ (начало второй переходной кривой НПК 2).

В целях более гармоничного сочетания автомобильной дороги с ландшафтом местности и придания ее кривым лучшей плавности проектирование дорог стали выполнять сплошными клотоидными закруглениями. Каждое такое клотоидиое закругление состоит из двух взаимно сопрягаемых клотоид - биклотоид с возможной вставкой круговой кривой между ними. Иногда биклотоидные кривые имеют сложные клотоиды, соста­вленные из клотоид разных параметров. Такое сочетание кривых используется при плавном вписывании дорожного полотна в сло­жившиеся природные условия местности.

Если обе клотоиды закругления одинаковы, то такое закругление называют симметричным. Если же клотоиды закругления имеют разные элементы, то закругление называют несимметричным

40. Определение пикетажного положения главных точек круговой кривой.

Пикетажное положение – расстояние ближайших пикетов до главных прямой. Пикетажное положение НК, СК, КК – рассчитывают по формулам.

ПК НК = ПК ВУ – Т;

ПК СК = ПК НК + ½ К; = ПК КК – К/2

ПК КК = ПК СК + ½ К; = ПК НК + К

Контроль: ПК КК = ПК ВУ + Т – Д

На местности при малых Т для нахождения НК и КК от вершины угла по обе стороны по трассе откладывают tg Т. СК находят, отложив от вершины угол по его биссектрисе величину Б. При больших Т НК и КК находят, отложив от ближайших к ним пикетов расстояния равные разностям пикетажа выносимой в натуру точки и ближайшего пикета.

ПК НК = 7 + 24, 17 то от ПК7 откладывают по трассе 24,17м и получают НК

41. Понятие, назначение и содержание камерального трассирования.

Трассирование – комплекс изыскательных работ по выбору трассы согласно техническим и экономическим условиям

Камеральное трассирование – проектирование трассы по картам и планам, аэроснимку или цифровой модели местности

Последовательность:

1) В соответствии с проектным уклоном рассчитывается заложение d=h/i

2) Намечают начальную и конечную точки трассы

3) Раствором циркуля, равным заложению d, засекаем на соседних горизонталях, таким образом получается ломаная линия трассы

4) Спрямляют трассу

5) Строят угол поворота трассы

6) Назначают R и вписывают круговую кривую

7) Рассчитывают: Т, К, Б, Д

Разбивают пикетаж, плюсовые точки, опр. их высоты….

43. Нивелирование трассы. Полевые измерения на станции, допуски. Вычисление превышений, постраничный контроль.

Нивелирование трассы выполняют сразу после троссироваия

Перед нивелированием трассы вдоль неё закладывают фундаментальные реперы через 20-30 км

Временные реперы через 2-3 км

Высоты всех точек привязывают к этим реперам

Выполняют способом геометрического нив-я

Последов-ть:

1) Нив-е вып. Прямо и обратно

2) В прямом ходе нивелируют все точки хода, в обратном только пикеты

Вычисление превышений

1) вычисляют превыш по черной стороне рейки h ч = a-b

2) по красной стороне h к = a-b

3) контроль h ч - h к <5 мм

4) h cp = h ч + h к /2

44. Передача отметок через водные преграды при ширине водоёма до 300 м.

На 10-20м от А и В выбирают J­ 1 ­ и J­ 2 ­ постановки прибора, чтобы J­ 1­ А = J­ 2­ В, J­ 1­ В= J­ 2­ А.

Установить нивелир на J­ 1­ , берём подсчёт по обеим сторонам реек, устанавливаем в А и В визирую на А, а потом на В. Не меняю фокусировки трубы, нивелир ставят на А­ 2­ и делают отсчёт по обеим сторонам рейки на точки А трубы, берут отсчёт по рейки на В. Перед отсчётами приводят пузырёк уровня на середину трубки. Пусть а’ и b’ – отсчёты на первой станции а’’ и b’’ – на 2-ой, тогда искомая прев. т. В над А получим дважды.

h’ = a’ – b’ h’’= a’’ – b’’

Расхождение h’ и h’’ не должно превышать 10мм на каждые 100м расстояния.

Оконч. h = (h’ + h’’) / 2.

45. Передача отметок через водные преграды при ширине водоёма более 300 м.

Задача как предыдущая, на отсчёт соответсв. горизонту положения внутри оси опред. путём вычислений, т.к. из-за дальности получить непосредственно его нельзя. На рейку наклев 2 чёрные узкие полоски – марки, чтобы отсчёт соответствовал горизонту положению оси был между ними. Ширина полозки зависит от l между точками, при l=600м, d=2-5см.

Установить нивелир, визировать на середину верхней полоски a’ и замечают на какое число делений отклонился пузырёк уровня от середины трубки, потом на середину нижней полоски a’’ и определённое число точек делений на которое отклонился в другую сторону пузырёк уровня от середины трубки. Расстояние l между серединой полосок известно, чтобы получить точный расчёт по рейке, надо к отсчёту сделанному на середине a’’ прибавить х из пропорции х/(l-x)=m/n → x = lm/m+n, m=1, n=2, l=60см, х=20мм

m и n – число делений уровня.

48. Вынос пикета на кривую.

y=R-ô = R - cosj = R(1- cosj)

j/360 = k/2pR j = k*R/r R = 57.3 градуса

49. Сущность проекции Гаусса. Проекцию Гаусса - Крюгера получают, проецируя земной шар на поверхность цилиндра, касающегося Земли, по какому-либо меридиану. Чтобы искажения длины линий не превышали пределов точности масштаба карты, проецируемую часть земной поверхности ограничивают меридианами с разностью долгот 6 0 , а при составлении планов в масштабах 1:5000 и крупнее – 3 0 . Такой участок называется зоной. Средний меридиан 3 каждой зоны называется осевым. Счёт зон ведётся от Гринвичского меридиана на восток.

После развертывания цилиндра в плоскость осевой меридиан зоны и экватор 5 изобразятся взаимно перпендикулярными прямыми линиями 6 (проекция осевого меридиана) и 7 (проекция экватора). Изображение осевого меридиана и экватора принимают за оси зональной системы прямоугольных координат (рис.17 б) с началом в точке их пересечения. С изображением осевого меридиана совмещают ось абсцисс Х, а экватора – ось ординат У.

50. Вертикальные кривые, её основные элементы и их расчёт.

В местах перелома рельефа местности устраивают вертикальные кривые.

Т= Rôi/2 K= Rôi Б= Т 2 /2R

Последовательность:

1)расчит. Осн. Элементы вертикальной кривой(Т, …)

2)рассчитывают проектные отметки главных точек вертикальной кривой

3)рассчитывают пикетажное положение НВК, СВК,КВК

4)расчит. Отметку Н пр нвк

6)Н пр свк

53. Сущность нивелирования поверхности по квадратам.

Нивелир устанавливают в любую точку, располож внутри площадки. За точку съёмочного обоснования принимается точка с известной абсол. отметкой. Нивелирование на току съёмочного обоснования и вершиной квадрата, производятся с одной станции, методом геометрического нивелирования (отсчёты снимаются только по чёрной стороне рейки). Отсчёты, произведённые по рейке записываются на схеме сети квадратов. По полученным результатам вычисляют горизонт инструмента по формуле: ГИ = H 16 + B 16 , где H 16 – абсолютная отметка точки 16; B 16 отсчёт по рейке в точке 16. Затем через горизонт инструмента вычисляются абсолютные отметки точек вершин квадратов: Н i = ГИ – C i , где Н i – абсолютная отметка вершины квадрата, C i – отсчёт по рейке для соответствующей вершины. Полученные отметки записываются на схеме сети квадратов к соответствующим вершинам. Построение сетки квадратов выполняют при помощи теодолита и ленты. Для этой цели по границе участка строят прямоугольник, на сторонах которого закрепляют вершины квадрата, через заданные интервалы. Основное квадрат, разбивают на заполняющие со сторонами 10м. Вершины основного квадрата закрепляют колышками со сторожками, а заполняющие – колышками без сторожков.

Нивелирование поверхности по квадратам выполняется путём разбивки на местности с помощью теодолита и мерной ленты сетки квадратов со стороной 20м при съёмки в масштабах 1:500 и 1:1000, 40м и 100м при съёмки в масштабах 1:2000 и 1:5000. Одновременно с разбивкой сетки квадратов производится съёмка ситуации местности и составляется абрис. Для съёмки ситуации применяются теже способы, что в теодолитной съёмки. Кроме вершин квадратов на местности закрепляются характерные точки рельефа. Плюсовые точки: бровки, дно, ямы.

55. Порядок составления абрис-журнала нивелирования по квадратам. Сущность способа нанесения горизонталей на план по палетке.

Палетка – изготавливается из прозрачного листа восковки, кальки или целлулонда т т.п. На который наносят сеть квадратов со сторонами, длины которых с учётом масштаба, плана создают круглое значение цены деления палетки. Так, для плана в масштабе 1:10000 квадрат со стороной в 1 см соответствует 1га и тд. Для определения площади накладывают палетку на опред. контур и считают число целых квадратов, поместившихся внутри контура. Устанавливают общую сумму квадратов n и зная цену деления каждого квадрата μ, находят полную площадь, опред фигуры. S = μn.

Абрис. Палетка.

2) дир. угол направления α i

3) исходный репер

4) отсчёт по рейке а pn устанавливается на репере

5) отсчёты b i установленные в вершинах квадратов

6) абсолютные отметки вершин квадрата

– отметка горизонта нивелира H ги = H pn +а pn

– отметка вершин квадратов H i = H ги – B i

Знач. H pn а pn , отметку H ги вписывают на абрис.

57. Понятие осадки, просадки сооружения. Определения осадки сооружения.

Осадка – из-за уплотнения грунта под фундаментным и внутри него → постоянного давления массы сооружения; вертик. смещения. Просадка – быстро протекающая о., определяют о. методом нивелирования геом. способ из середины или вперёд.

Нужно измерить превышение между репером деформ. знаком на сооруж.

l 1­ ­ ­ =­ ­ l­ 2­

h­ i­ =a­ i­ -b­ i­

h­ 2­ =a­ 2­ -b­ 2­

∆h=h­ 2­ -h­ 1­ – осадка.

Причны осадки: подземные русла, грунтовые воды

58. Понятие о деформациях сооружений. Виды деформаций, причины их появления. Основные типы деформационных знаков и их размещение.

В геодезии под термином деформация понимают изменение положения объекта относительно его первоначального состоя­ния. Постоянное давление массы сооружения приводит к уплот­нению грунта под фундаментом и вблизи него и вертикальному смещению, или осадке, сооружения. Кроме давления, массы со­оружения осадка может происходить от изменения уровня грун­товых вод, карстовых, оползневых и сейсмических явлений, от работы тяжелых механизмов и т.д. При уплотнении пористых и рыхлых грунтов происходит быстрая во времени деформация, называемая просадкой.

Если грунты под фундаментом сооружения сжимаются не­одинаково или нагрузка на грунт различная, то осадка является неравномерной и приводит к горизонтальным смещениям, сдви­гам, перекосам, прогибам, в результате появляются трещины и даже разломы.

Смещение сооружений в горизонтальной плоскости может происходить вследствие бокового давления грунта, воды, ветра и т.п. Высокие сооружения башенного типа (телебашни, дымовые трубы и т.п.) из-за неравномерного нагрева солнцем, давления ветра и других причин испытывают кручение и изгиб.

Абсолютные, или полные, осадки S марок определяют как разность отметок, полученных относительно репера, располо­женного за воронкой осадок сооружения и принимаемого за неподвижный, в текущий момент времени (Н тек) и в начале наблю­дений (Н нам), т.е. S - Н тек - Н нач.

Крен, или наклон, сооружения равен разности осадок (S 2 -Si) двух точек вдоль выбранной оси или на противоположных краях здания. Наклон вдоль продольной оси называют завалом, а вдоль поперечной оси - перекосом.

Кручение равно изменению углового положения радиуса точки с началом в центре исследуемого горизонтального сече­ния. Кручение относительно вертикальной оси в основном име­ют сооружения башенного типа.

Средняя скорость v cp деформации равна отношению вели­чины деформации к промежутку времени t, за который эта де­формация происходит. Средняя скорость осадки

59. Способы измерения горизонтальных смещений сооружений.

Горизонтальные сме­щения определяются створным или тригонометрическим методом.

Створный способ применяют для наблюдений за смещения­ми точек сооружений, принадлежащих вертикальной плоскости с приблизительно одинаковыми высотами. На них располагают специ­альные марки. Точки створа легко намечаются на прямолинейных плотинах, мостах, подпорных стенках, подкрановых путях, в тонне­лях и др. Смещение створных марок определяется либо измерением малых углов, либо перемещением визирной марки.

Надежное определение величин горизонтальных сдвигов во мно­гом зависит от правильного выбора опорных пунктов, создаваемых вне сооружения на устойчивом грунте. Для контроля их неподвиж­ности может использоваться другая система пунктов, устойчивость которых имеет более высокую степень надежности.

При перемещениях визирной марки измеряют непосредственно ее линейное смещение с помощью наводящего винта с микрометром. Марка центрируется над точкой и затем перемещается наводящим винтом до совмещения ее вертикальной оси с коллимационной плоскостью теодолита. Отсчет по шкале микрометра характеризует смещение точки от створа.

Тригонометрический способ применяют для определения горизонтальных смещений точек, когда невозможно создать створы, например, на криволинейных плотинах, в криволинейных железно­дорожных тоннелях и других сооружениях, особенно если они рас­положены в горах. Однако тригонометрический способ более тру­доемок, чем створный.

При определении сдвигов крупных сооружений иногда комби­нируют створный и тригонометрический методы. Положение опор­ных пунктов определяют тригонометрически, а смещения точек со­оружения- с помощью створа.

Для облегчения измерений горизонтальных сдвигов оснований плотин используют обратные отвесы, которые устанавливают в вер­тикальных шахтах плотины.

60. Сущность определения крена сооружения.

Крен – измерение наклонения сооружения относительно вертик. оси.

Н = Вb – высота сооружения.

а – пр-я. t = arctg a/H

Крен (или наклон) равен разности осадок двух точек вдоль выбранной оси и на противоположном краю здания. Наклон вдоль продол. оси – завал, вдоль поперечной – перекос. Относительный крен – К = S 2 – S 1 /l . S 2, S 1 – осадки в точка 1 и 2; l – расстояние между ними.

Что такое топографическая съемка земельного участка? Это часть кадастровых работ, выполняемых при межевании ЗУ.

Узнать что такое межевание можно в .

Проводится непосредственно на местности, на основании предварительно составленного кадастровым инженером, технического задания, при использовании сведений об участке, полученных из государственного кадастра недвижимости (ГКН).

Требует последующей обработки и проведения расчётов, на основании которых составляется непосредственно топографический документ с пояснениями.

В каком виде предоставляется?

Подготовка межевого проекта

Проектирование зоны застройки производится на основании наличия топографического документа , который выступает в роли геоподосновы. Здесь на имеющийся план межевания (см. ) наносятся планируемые к возведению строения. Или устанавливается внутреннее межевание участка, прошедшего регистрацию под единым кадастровым номером и не подлежащим разделению. В итоге на появляются планируемые:

  • здания или сооружения;
  • условные границы зон застройки;
  • условные межевые линии.

Иногда такой документ применяется при установлении обременений на часть ЗУ.

Проведение коммуникаций


Эта процедура требует составления или надела . Здесь помимо имеющихся строений в пределах участка и за его пределами, указываются транспортные линии, а так же – точное расположение:

  • электрической проводки;
  • газовых труб или иного, в соответствии с заявкой.

Такие работы проводятся при строгом соответствии изготавливаемой схемы – реальному положению дел, требуя предельной тщательности измерений и расчётов. В итоге заказчик получает , в котором указано расположение электрической или газовой инфраструктуры в зоне расположения ЗУ.

Оформление прирезок


Этот вид съёмки допускает безвозмездное до 10% общей площади (ст.60 ЗК). Либо – выкуп прилегающих бесхозных земель у администрации.

С текстом статьи 60 ЗК РФ вы можете ознакомиться ниже.

При проведении геодезических работ новый участок захватывает старую территорию. На топографическом плане видны изначальная и последующая структура земель.

ЗК РФ, Статья 60. Восстановление положения, существовавшего до нарушения права на земельный участок, и пресечение действий, нарушающих право на земельный участок или создающих угрозу его нарушения

  1. Нарушенное право на земельный участок подлежит восстановлению в случаях:
    • признания судом недействительным акта исполнительного органа государственной власти или акта органа местного самоуправления, повлекших за собой нарушение права на земельный участок;
    • самовольного занятия земельного участка;
    • в иных предусмотренных федеральными законами случаях.
  2. Действия, нарушающие права на землю граждан и юридических лиц или создающие угрозу их нарушения, могут быть пресечены путем:
    • признания недействительными в судебном порядке в соответствии со статьей 61 настоящего Кодекса не соответствующих законодательству актов исполнительных органов государственной власти или актов органов местного самоуправления;
    • приостановления исполнения не соответствующих законодательству актов исполнительных органов государственной власти или актов органов местного самоуправления;
    • приостановления промышленного, гражданско-жилищного и другого строительства, разработки месторождений полезных ископаемых и торфа, эксплуатации объектов, проведения агрохимических, лесомелиоративных, геолого-разведочных, поисковых, геодезических и иных работ в порядке, установленном Правительством Российской Федерации;
    • восстановления положения, существовавшего до нарушения права, и пресечения действий, нарушающих право или создающих угрозу его нарушения.

Реорганизация ЗУ


Данная процедура проводится только межеванием. Геодезисты замеряют общую площадь сливающихся участков в один, выделяя его границы по периметру. Или разделяют один участок на указанное количество таковых, с учётом установленных для данной процедуры норм.

Заказчикам передаётся топографическая документация , содержащая сведения о старом и вновь образованном участке.

  • Камеральный этап – применение полученных данных в составлении готового топографического документа, соответствующего целям заказчика. Подготовка кадастрового отчёта, с передачей электронного варианта в Росреестр.
  • Каждый этап работ обеспечивается соответствующими методиками проведения и расчётов, а так же необходимыми инструментами. Ответственность за их проведение возлагается на кадастрового инженера, имеющего лицензию на проведение.

    Оформление заказа

    Заявка подаётся в геодезическую компанию по месту расположения ЗУ. К ней прилагаются , подтверждающие право владения участком и паспорта заказчиков.

    Сколько стоит топографическая съемка земельного участка?

    Цены на обозначенные работы устанавливаются в зависимости от региональных расценок, с учётом рентабельности компании и перечня предоставляемых услуг.

    В частности, самые высокие расценки стоимости топографической съемки земельного участка – в Москве и Санкт-Петербурге, ориентировочно на разные виды услуг они составляют:

    1. Кадастровые работы на участках до 10 соток – от 10-20 тысяч рублей , в зависимости от места расположения ЗУ. С увеличением площади цены повышаются.
    2. Составление межевого проекта на строение до 200 м. – от 8-10 тысяч .
    3. Установление поворотных точек, если участок имеет их не более четырёх – от 8-14 тысяч , в зависимости от места расположения.
    4. Составление СПОЗУ для электрификации или газификации ЗУ – от 6 тысяч .

    Упрощенная топографическая съемка местности. Производится с помощью планшета, визирной линейки и компаса на глаз, с небольшой степенью точности и применением самых простых приборов. Краеведу надо уметь составлять такие планы местности.

    Возьмите планшет - квадратную доску или папку. К нему прикрепите лист плотной бумаги размером 24×36 см, компас ; необходимо также иметь трехгранную визирную линейку длиной около 30 см, простой карандаш и резинку. Тонкими карандашными линиями лист бумаги расчертите на одно- или двухсантиметровые квадраты. Линия север‑юг на компасе должна быть параллельна длинному ребру планшета. Внизу справа на листе отметьте линейный масштаб в шагах или в метрах. На планшет нанесите исходную точку. Если снимаемая местность лежит от нее на север, то точку поставьте на южной, нижней части планшета. Теперь надо ориентировать планшет по странам света, поворачивая его до тех пор, пока буква «С» на компасе не совпадет с направлением темного конца магнитной стрелки, указывающего на север.

    Отметив карандашом исходную точку, следует осмотреть местность, замечая отдельный холм, высокое дерево, строение, водоем, мост, насыпь и т. д. Это ориентиры . От исходной точки карандашом прочертите, например, направление дороги до поворота. Для этого планшет поднимите на уровень глаз, нацельте визирную линейку по линии дороги и прочертите её направление на планшете.

    Удобнее работать вдвоем: один следит за положением планшета, другой визирует. Еще лучше - установить планшет на треногу, колышек, пень, камень. Далее, не меняя положения планшета, визировать и прочерчивать направления на характерные местные предметы.

    Так появляются ряд линий и условные обозначения ориентиров. Но где на линии они находятся? Их местоположение определяется двумя способами: первый - измерение расстояния на глаз или шагами; второй - метод засечки: визирование на тот же ориентир с другой точки (в месте пересечения линий и будет находиться снимаемый предмет). Размер шага высчитывается на заранее отмеренном 100‑метровом отрезке по среднему арифметическому из нескольких промеров.

    Значительно проще и удобнее метод засечки . Провизировав и прочертив на планшете направление на предмет с исходной точки, надо двигаться по ходовой линии, измеряя расстояние шагами. Отметив остановку точкой, снова взять направление на тот же ориентир и прочертить линию. В месте пересечений и будет находиться предмет, помечаемый условным топографическим знаком. Во второй точке стояния (ТС 2) работа производится в том же порядке: засечкой определяется положение предметов, визируются и прочерчиваются направления на ориентиры. Закончив работу в ТС 2, следуют по дороге в ТС 3, и так до конца снимаемого участка.

    Когда на план нанесены ориентиры, он дополняется деталями местности. Топографическими знаками изображаются кустарники, огороды, сады, болота, канавы, реки и др. Они покрывают пространство между ориентирами. В нашем случае участок снимался с дороги. Её может заменить тропа, а если и её нет, то можно идти и без дорог - от одного ориентира к другому.

    Если имеется карта данного района, то можно скопировать нужный узкий участок, по которому пролегает маршрут похода, и затем, уже в походе, наметить на карте этот путь и прилегающие к нему дополнительные ориентиры. Такая узкая полоска карты называется маршрутной лентой . На ней обозначают страны света и надписывают, куда идут все отходящие от маршрута дороги, какое расстояние до ближайшего населенного пункта, и размечают путь в километрах. На основании наблюдений и сведений, полученных от местных жителей, карта дополняется и уточняется; на нее наносятся места стоянок, вновь появившиеся дороги, поселки, карьеры, лесные насаждения и т. п. Для удобства маршрутные ленты наклеивают на куски картона, покрытые полотняными полосками; тогда карту можно складывать.

    В полевой работе часто приходится измерять высоту холмов, определять крутизну склонов. Есть несколько способов их измерения.

    1. Измерение с помощью двух реек и ватерпаса. Длина рейки - 2 м; на нее наносятся сантиметровые деления. Вешками или колышками обозначается направление, по которому ведется измерение. У подножия холма ставится первая рейка, вторая кладется горизонтально между рейкой и склоном. Вертикальность и горизонтальность реек выверяются ватерпасом. По первой рейке отсчитывается высота, на которую поднялась горизонтальная рейка, а по второй - расстояние от верха первой рейки до склона холма. Записав эти данные, надо перенести вертикальную рейку на точку, где горизонтальная рейка касалась склона холма. Вторую рейку опять устанавливают горизонтально… Так производятся измерения по склону холма, шаг за шагом, до его вершины. Сложив все отсчеты вертикальной рейки, получаем высоту холма. Зная отсчеты и по горизонтальной рейке, нетрудно изобразить поперечный профиль склона, отложив в масштабе вертикальные и горизонтальные расстояния, как это показано на рисунке.

    2. Измерение способом «горизонтального визирования». У подножия холма или обрыва поднимают к уровню глаз на вытянутой руке полевую книжку, держа её строго горизонтально. Визируют на какую‑либо приметную точку (камень, цветок, пучок травы). Поднимаются по склону до этой точки и снова визируют. Высота вашего роста известна. По числу отсчетов определяют высоту склона берега, холма, оврага. Для большей точности рекомендуется пользоваться простейшим нивелиром, который держат рукой за кольцо, как показано на рисунке.

    3. Измерение отвесного или почти отвесного обрыва веревкой, размеченной на метры (мерной лентой).

    4. Измерение крутизны склона самодельным эклиметром - прибором для измерения углов наклона на местности. Сделать его можно из картона размером 15×20 см, на который с помощью транспортира нанести полуокружность, разметив её на градусы; в центре полуокружности подвесить на нитке грузик. Как им пользоваться - видно из рисунков. Отсчет градусов производят, прижимая пальцем нить отвеса.

    5. Определение крутизны склона по величине отклонения отвеса от транспортира, как показано на рисунке.

    Высоту отдельных предметов (для записи в маршрутной книжке), например дерева, можно измерить несколькими способами.

    1. При помощи точно измеренного шеста и при известном росте производящего измерение, а также, когда известно расстояние от него до дерева; высоту дерева определяют из вычисления пропорции подобных треугольников AED и ACB.

    2. При помощи транспортира наблюдатель занимает положение, при котором отвес транспортира показывает угол в 45°. Строится прямоугольный треугольник ABC, в котором угол BAC 45°, а следовательно, и угол ABC также равен 45°; поэтому катеты треугольника АС и ВС равны. Измерив расстояние от наблюдателя до дерева, узнают величину AC и BC. Значит, высота дерева равна расстоянию от него до наблюдателя плюс высота роста наблюдателя.

    После съемки местности «в поле» чертеж оформляют начисто в «домашних условиях», обычно тушью, реки и озера закрашивают акварельными красками, тщательно делают надписи.

    Во всех сферах деятельности материального производства и отношений между человеком и обществом. Эта популярность формируется широким спросом при оформлении земельных участков, организации любого нового строительства, изучении природных ресурсов, их разработкой, эксплуатацией и другими изменениями фактического их положения и юридическими взаимоотношениями.
    Топографические съемки можно считать одновременно технологическим инструментом, производственным процессом и методом в получении точного отображения поверхности местности в необходимом масштабе. Такое изображение имеет название топографический план и содержит всю информацию, полученную в результате съемочных работ, в пространственной привязке к действующей системе координат . Основой для проведения топографических съемок служат пункты государственной геодезической опорной и съемочной сетей.

    Основные этапы топографической съемки

    В состав топографических съемок могут входить различные технологические процессы в зависимости от измерительного геодезического оборудования , применяемого для этого. Но структура действий и та последовательность операций, которая просматривается в проведении съемок, позволяет выделить общие основные этапы.
    Первым из них считается подготовительный этап. В него входят все работы, выполняемые до начала непосредственно измерительного процесса. В нем, как правило, происходят организационные работы. В этот период происходят:
    . получение технического задания;
    . изучение местности;
    . проектирования схемы и выбора методов съемки;
    . организация и сбор архивных топографических планов, схем подземных сетей и инженерных коммуникаций;
    . установление сметной стоимости;
    . выполнение метрологических проверок приборов;
    . подготовка выезда в район геодезических измерений.
    Вторым этапом топографических съемок считаются полевые работы с привязкой к пунктам опорной сети , контрольными измерениями, предварительными вычислениями и оценкой точности в полевых условиях. К этому, пожалуй, основному этапу следует отнести все плановые и высотные, линейные и угловые геодезические измерения контуров всех капитальных строений, временных сооружений, рельефа местности и других физических параметров, предусмотренных технологией измерений.
    Третий этап, под названием камеральные работы, включает окончательную вычислительную обработку и оформление топографической съемки в графическом или электронном виде с соблюдением требований по вычерчиванию условных знаков в выбранном масштабе. К этому этапу работ можно еще определить составление экспликаций по инженерным сетям, подземным коммуникациям, принадлежащих предприятиям водоканала, энерго поставляющих, телекоммуникационных, газо- и теплоснабжающих компаний. Согласования с ними на топографическом плане всех линейных сооружений, которые находятся на их балансе.
    Четвертым, заключительным этапом работ можно считать этап завершения работ, составления технического отчета в нескольких экземплярах, каждый из которых сдается в соответствующие управления градостроительства и архитектуры, геодезического контроля и заказчику.

    Сутью съемочных процессов в топографических работах , безусловно, является получение данных (координат) пространственного положения всех снимаемых точек относительно той геодезической основы, которая и формирует всю систему координат страны. И на основании этих работ вычерчивание топографических планов. При этом следует отметить два направления измерений съемочных элементов:
    . съемку ситуации, представляющую собой определение координат всех точек контурных объектов;
    . съемку рельефа, заключающуюся во множественном получении сведений (координат точек) о форме и содержании рельефа местности.
    Съемка ситуации имеет своей задачей нахождение оптимального числа характерных точек для измерений и естественно строительства всего контура изображения.
    Основными предметами съемок ситуации являются:
    . все городские и сельские населенные пункты;
    . отдельные строения в них;
    . все виды наземных сооружений;
    . водоемы и водные объекты;
    . земельные участки всех видов и назначений;
    . всевозможные границы городских районов, контуров и отводов для автомобильных, железнодорожных дорог, аэропортов и других замкнутых контуров промышленного, сельскохозяйственного, культурного и спортивного назначения.
    Для съемки ситуации критериями оценки контуров всех элементов ее изображения на топографических планах считаются материалы, из которых они возведены. Они разделены на два вида контуров:
    . твердые контуры, построенные из прочных материалов (железобетон, кирпич);
    . нетвердые, созданные из непрочных материалов, и естественные контуры.
    При определении контуров зданий правильной конфигурации производят измерения необходимого количества угловых точек, а линейными промерами рулеткой недостающие до замкнутого контура. При съемке строений неправильной геометрической формы выполняют измерения всех углов.
    При съемке рельефа выполняется измерения высотных координат совместно с контурной съемкой на незастроенной территории. На плотно застроенных территориях обычно горизонтальные и вертикальные съемки выполняют отдельно друг от друга. С использованием современных технологий в топографических съемках эти процессы объединены.
    Рельеф на топографических планах отображается изолиниями с одинаковыми высотными отметками (горизонталями). Как правило, для наилучшего отображения рельефа местности выбирается оптимальное количество съемочных точек. Для сплошных съемок разных масштабов расстояния между съемочными точками имеют различные значения и рекомендуются в соответствующих нормативных документах.
    Для съемок и прорисовок рельефа используют такие характерные точки:
    . вершины холмов и курганов;
    . головки рельсовых путей;
    . точки вдоль осей дорог;
    . места сопряжений и откосов около мостов;
    . вдоль контуров насыпей и выемок;
    . у оснований сооружений и зданий;
    . у колодцев подземных коммуникаций;
    . многих других точек, характерных для описания рельефа местности.

    Виды топографических съемок

    В зависимости от используемого геодезического оборудования в различные периоды применяли, а некоторые из них до сегодняшнего времени и применяют, следующие топографические съемки:
    . тахеометрическим способом, с использованием современных электронных тахеометров ;
    . горизонтальные (теодолитные) и вертикальные (нивелирования) на застроенных участках местности;
    . фототеодолитные;
    . нивелирование поверхности по квадратам, различных размеров (200×200, 100×100) в зависимости от местности и масштабов съемки.
    . съемки городских проездов и внутренниих кварталов в населенных пунктах с густой застройкой. В них ранее использовались высокоточные рулеточные измерения способом линейной засечки от характерных угловых точек зданий с привязкой к съемочному обоснованию. Могут также применяться и другие инструментальные способы измерений такие, как способ перпендикуляров, полярный способ, створов и комбинированный. Наиболее эффективным в городской черте можно считать самый современный способ лазерного сканирования. Особенно при создании цифровых моделей съемки местности.
    . с использованием глобальной навигационной спутниковой системы и GPS-приемников в RTK режиме кинематики реального времени;
    . мензульный способ может представлять в настоящее время разве, что только исторический интерес.
    Каждый из этих видов имеет свою специфику измерительного процесса, различное геодезическое оборудование, дополнительные инструменты и принадлежности. Но все они служат главной задаче выполнения точных геодезических измерений для построения топографических планов земной поверхности и объектов, находящихся на ней. Они регламентируются соответствующими инструкциями, в которых установлены требования, определенные методологические принципы и технологические схемы их проведения.

    Топографические съёмки

    5.1 Технология топографических съемок. Виды съемок .

    Съёмке и изображению на планах подлежат все элементы ситуации местности, существующей застройки и т.д. Точки, определяющие положение контуров на плане, условно делят на чёткие и нечёткие. К твёрдым относят чётко определённые контуры сооружений, построенных из долговременных материалов. К нетвёрдым относятся границы лугов, лесов и т.д. На топографические планы наносят пункты высотных и плановых геодезических сетей, а также точки, с которых производилась съёмка ситуации и рельефа. Топографическую съёмку производят только с точек с известными либо легко определимыми координатами (съёмочное обоснование ). Съёмочное обоснование развивается от пунктов опорных сетей. На небольших участках съёмочное обоснование может быть создано как самостоятельная сеть. При построении обоснования определяют положение точек в плане и по высоте. Наиболее распространённый вид планового обоснования – полигонометрические (теодолитные) ходы. Точки съёмочного обоснования закрепляются на местности, как правило, вре менными знаками – кольями, столбами и т.д.; при необходимости долговременной их фиксации устанавливают постоянные знаки. Для составления топографических планов применяют аналитический, мензульный, тахеометрический, аэрофототопографический, фототеодолитный методы съёмок. Применение того или иного метода обусловлено, в первую очередь, масштабом и условиями съёмки.

    5.2 Горизонтальная и высотная съемки . Горизонтальную съёмку ситуации выполняют в масштабах 1:2000, 1:1000 и 1:500. Результаты съёмки отображают на абрисе – схематическом чертеже, выполняемом в произвольном масштабе, с соблюдением приятых условных знаков. Съёмку выполняют различными способами. Способ перпендикуляров применяется для съёмки проездов. Измерению подлежат длина перпендикуляра, опущенного из точки на линию съёмочного хода, и расстояние от вершины хода до основания перпендикуляра. При способе линейных засечек измеряются расстояния от фиксированных точек до точки определяемой. Способ прямой угловой засечки часто применяется при съёмке недоступных точек. Для определения положения точки измеряются углы между линиями хода и направлениями на точку (не менее трёх). Полярный способ применяется при съёмке удалённых от хода точек (внутриквартальная застройка, нечёткие контуры). При этом измеряются угол между направлением на точку и линией хода и расстояние от точки хода до определяемой точки. Створный способ применяю при съёмке внутриквартальной ситуации. Створы задаются, как правило, продолжением линии здания, линией, соединяющей два твёрдых контура и т.д. От линии створа производят съёмку методом перпендикуляров или линейных засечек.

    Способ обратной угловой засечки (после периода забвения с появлением электронных тахеометров ставший одним из наиболее перспективных в настоящее время) требует измерения не мене трёх углов (с вершинами в определяемой точке) между направлениями на известные точки (рис. 24). Определение положения точки M по координатам известных точек l, p, s и измеренным углам α и β (задача Потенота) может быть выполнено графически или аналитически. При графическом методе положение точек определяется как пересечение окружности lpz (точка z – пересечение линий, проведённых под углами β и α к линии lp в точках l и p соответственно) и прямой линии sz (рис. 25). При аналитическом методе пользуются различными формулами, например, формулами Кнейссля: 1) a = ctgγ 1 , b = ctg γ 2 ; 2) x" B = x B – x A , y" B = y B – y A , x" C = x C – x A , y" B = y C – y A ; 3) k 1 = ay" B – x" B , k 2 = ax" B + y" B , k 3 = by" C – x" C , k 4 = bx" B + y" C ; 4) c = (k 2 – k 4)/(k 1 – k 3) = ctg (AP); 5) y" = Δy = (k 2 – ck 1)/(c 2 +1) = (k 4 – ck 3)/(c 2 +1), x" = Δx = cΔy; 6) y = y A + Δy, x = x A + Δx (рис.).

    Рис. 24. Обратная угловая засечка.

    Рис. 25. Графическое решение задачи Потенота.

    Как правило, нивелирование выполняют методом геометрического нивелирования после снятия и нанесения на планшет ситуации. Нивелирование начинают с точек высотного съёмочного обоснования; на характерных точках (расположенных не реже чем через 50 м) определяют высоты съёмочных точек (пикетов).

    5.3 Тахеометрическая съемка. Из наземных съёмок наибольшее применение находит тахеометрическая съёмка. Съёмка местных предметов ведётся, как правило, способом полярных координат. Съёмке подлежат все элементы ситуации городской территории, выражающиеся в заданном масштабе. К этим элементам относятся пункты опорной геодезической сети, границы кварталов, все здания и сооружения (как жилые, так и нежилые) с указанием этажности, назначения, материала стен, со всеми уступами и выступами, особенно с архитектурными выступами, если их величина более 0,5 мм в плане; сады, огороды, памятники, трамвайные и рельсовые пути, трамвайные и троллейбусные мачты, фонари освещения, электрические провода, выходы подземных сетей, люки смотровых колодцев водопровода, канализации, теплосети, газа, водостока, телефонной сети, пути сообщения (железные, шоссейные, грунтовые дороги), линии электропередач и связи, водная сеть и т.д.

    Рельеф территории снимается тщательно, затем изображается горизонталями на плане. На территориях городов не подлежат съёмке временные и переносные сооружения, а также заборы на стройплощадках. Наиболее сложными являются съёмки застроенных территорий, поэтому съёмку застроенной части подразделяют на съёмку фасадов и проездов и внутриквартальную съёмку.

    5.4 Особенности съемки застроенных территорий. Проезды снимаются аналитическим методом с линий и точек ходов съёмочного обоснования. Для съёмки фасадов применяется способ перпендикуляров, засечек и полярный. Планы проездов составляются в масштабе 1:2000 или 1:500. Помимо съёмки всех точек ситуации производятся обмеры по фасадам и измеряются габариты всех снятых строений, сооружений и расстояния между зданиями. Зарисовку при съёмке фасада и запись всех результатов выполняют в абрисных тетрадях. Внутриквартальная съёмка выполняется обычно после съёмки проездов. При съёмке внутриквартальной ситуации особое внимание уделяется съёмке опорных зданий, т.е. таких зданий, которые будут приняты в качестве исходных для проектирования красных линий. Список опорных зданий выдаётся планировочными организациями. В масштабе 1:2000 снимаются по два угла всех основных зданий, а в масштабе 1:500 – все углы основных и капитальных зданий непосредственно с ходов съёмочного обоснования. Помимо съёмок точек внутриквартальной ситуации необходим тщательный обмер всех строений с архитектурными выступами, уступами, крыльцами, террасами, приямниками и т.п. Обмеры производят также по всем заборам и границам между точками изломов.



    Поскольку на городских территориях проводится большое количество строительных работ, составленные планы быстро стареют. Для городских территорий характерно, что в результате строительства изменяется как ситуация, так и рельеф при выполнении работ по вертикальной планировке территорий. Непрерывно выполняемые проектные и строительные работы нуждаются в планах, отображающих положение ситуации и рельефа на момент проектирования, поэтому ранее составленные планы городских территорий подвергают полевому обследованию, в процессе которого производят съёмку текущих изменений и обновление планов.

    Съёмку текущих изменений и обновление планов в масштабах 1:5000 и 1:2000 целесообразнее производить методами аэрофотосъёмки. Сличением повторы аэроснимков с ранее произведёнными выявляются изменения в ситуации и рельефе, происшедшие за период между съёмками. Эти изменения наносятся на фотопланы. Планы в масштабе 1:500 обследуются и сопоставляются с ситуацией и рельефом непосредственно на местности. Мелкие текущие изменения доснимают в процессе полевого обследования от сохранившихся на местности точек ситуации, а при больших изменениях ситуации и рельефа, обнаруженных при обследовании, производят специальные съёмки текущих изменений. При съёмке мелких текущих изменений с большей эффективностью может быть использован метод створов, при котором в качестве съемочных линий используют продолжения створов зданий и сооружений, а также линия, соединяющая две характерные точки ситуации, имеющиеся на местности и на плане. Вновь появившиеся каменные строения, а также изменения, охватывающие большие территории, снимают инструментально с точек и линий полигонометрических ходов и съёмочного обоснования. Все текущие изменения ситуации и рельефа отображают на планшетах городских съёмок. На обороте планшетов указывают дату обследования и съёмки текущих изменений.

    5.5 Нивелирование поверхности. Высотную съёмку равнинной местности с небольшим количеством контуров выполняют нивелированием поверхности. Нивелирование может вестись по квадратам, по параллелям, по характерным линиям рельефа, но в любом случае высоты пикетов определяют геометрическим способом. При нивелировании по квадратам на местности при помощи теодолита и мерного прибора разбивается и закрепляется колышками сетка квадратов (со сторонами 40 м для масштаба 1:2000 и 20 для масштабов крупнее). При нивелировании небольших квадратов (стороны менее 100 м) с одной постановки прибора возможно нивелировать вершины нескольких квадратов: прибор ставится посередине, а рейка – последовательно на всех вершинах; результаты измерений подписываются на схеме квадратов. При нивелировании по параллельным линиям прокладывают один или несколько параллельных магистральных ходов, по обеим сторонам которых разбивают поперечники. По ходам и поперечникам через равные промежутки закрепляют точки; вместе с разбивкой пикетажа производят съёмку ситуации. Магистральные ходы можно прокладывать по характерным линиям: тальвегам, водоразделам и т.п.

    Глава VI

    Геодезические работы при инженерных изысканиях. Перенесение проектов планировки и застройки на местность

    6.1 Общие сведения об этапах строительства . В ходе строительства необходимо анализировать и учитывать целый ряд природных, экономических и технических факторов. Это достигается последовательным решением задач и разделением строительства на три этапа – изыскания, проектирование, возведение объектов.Изыскания – комплекс проблемных, экономических и технических исследований района предполагаемого строительства. Технические изыскания – комплексное изучение природных условий района строительства. Проектирование – разработка комплекса графических, технических и экономических документов, обосновывающих возможность и целесообразность строительства в заданном районе, методы возведения и стоимостные показатели. Проектирование объектов осуществляют в одну стадию – для типовых зданий и сооружений и технически несложных объектов, в две стадии – для крупных и сложных объектов. Возведение зданий и сооружений целесообразно проводить в строгом соответствии с проектом; оно представляет собой процесс воссоздания на местности проектного решения при помощи выполнения различных строительных работ.

    6.2 Инженерно-геодезические изыскания. Их планирование и организация. Программа инженерно-геодезических изысканий. Инженерные изыскания выполняют в три периода: подготовительный, полевой и камеральный. В подготовительный период изучают имеющуюся информацию по объекту изысканий и намечают мероприятия по производству изыскательских работ. В полевой период параллельно с полевыми работами выполняют и часть камеральных. В камеральный период осуществляют обработку всех материалов.

    В зависимости от назначения и вида сооружения, стадии проектирования в состав инженерно-геодезических изысканий входят:

    – изучение физико-географических и экономических условий участка;

    – сбор и анализ имеющихся материалов;

    – построение и развитие опорных геодезических сетей;

    – создание планово-высотной съёмочной сети;

    – топографическая съёмка в масштабах 1:10000 – 1:500;

    – трассирование линейных сооружений;

    – геодезическое обеспечение других видов инженерных изысканий;

    – исполнительная съёмка.

    Геодезические изыскания выполняют в соответствии с техническим заданием, в состав которого входят: наименование объекта и его характеристика, указания о стадиях проектирования, данные о местоположении участка работ, сведения о назначении, видах и объёмах работ, данные о площадях съёмок, высотах сечения рельефа, указания об очередности выполнения работ. Проект составляют при выполнении комплекса сложных работ, требующих предварительной разработки методов их выполнения. Программа производства геодезических изысканий составляется для производства несложного комплекса работ по типовым схемам. Проект (программа) на геодезические изыскания составляется на полный комплекс работ и является документом, определяющим состав, методы и сроки работ, смету и стоимость.

    Проект (программа) состоит из текстовой части и приложений. Текстовая часть содержит: общие сведения, проектируемые опорные и съёмочные сети, топографические съёмки, съёмки подземных коммуникаций, привязка выработок и т.д., в том числе объёмы, сроки и стоимость работ. В приложениях приводятся: копия технического задания, схема проектируемых сетей, картограмма расположения участков с разграфкой листов планов и т.д. Порядок, методика и точность работ определяются нормативными документами и инструкциями (см., например, СНиП 11-02-96 и СНиП 11-04-97 и «Инструкция по топографическим съёмкам в масштабах 1:5000, 1:2000, 1:1000 и 1:500» ГКИНП-02-033-82 ).

    При изысканиях для площадных сооружений намеченную площадку и часть прилегающей территории снимают в масштабе 1:2000 с сечением рельефа 1 м. Составляют ситуационный план в масштабе 1:10000 – 1:25000. На план наносят контуры площадок промышленного предприятия, жилого посёлка, водозаборных и очистных сооружений, дороги, реки, лесные массивы и т.д. На топографическую съёмку застроенных территорий необходимо обращать особое внимание. В существующих городах обязательно использование геодезического фонда города; в случае отсутствия необходимых материалов – производится съёмка. На полученном из геодезического фонда материале (геоподоснове) указываются изменения границ проезжих частей, тротуаров и т.д., обнаруженные при съёмках территории. Коррекция геоподосновы проводится не только в плане, но и в высотном отношении. Помимо корректировки геоподосновы, в геодезические изыскания входит составление продольного профиля по оси или лоткам проезжей части. В состав изыскательских работ входит сбор данных для расчёта водосточной сети. На жилые нежилые строения в зоне строительства составляются ведомости, в которых указывается адрес, назначение, материал, этажность, площадь заселённость, владелец и т.п.

    6.3 Инженерно-геодезические изыскания для строительства линейных сооружений .Камеральное и полевое трассирование. Разбивка круговых кривых. Вертикальные кривые. Геодезические изыскания для линейных сооружений имеют свои особенности.

    Основными элементами являются план (проекция на горизонтальную плоскость) и профиль (вертикальный разрез). В плане трасса состоит из прямых участков, сопряженных дугами окружностей. В продольном профиле траса состоит из линий различного уклона, соединённых вертикальными кривыми. Комплекс изыскательских работ по выбору трассы называют трассированием. Проектирование трассы по картам и т.д. называют камеральным трассированием, перенос трасы на местность – полевым трассированием.

    Для камерального трассирования используются цифровая модель местности или карты масштаба 1:25000 или 1:50000. Трассу прокладывают между фиксированными точками, руководствуясь проектным уклоном. По проектному уклону вычисляют заложение, по которому определяют участки «вольного» (существующий уклон меньше предельно допустимого) и «напряжённого» (больше допустимого) ходов. На участках вольного хода трассу намечают, как правило, по кратчайшему пути; на «напряжённых» участках намечают линию нулевых работ – вариант расположения трассы с нулевым объёмом земляных работ при выдержанном проектном уклоне. Линию нулевых работ на карте получают, последовательно засекая горизонтали циркулем с раствором, равным заложению. Из полученных нескольких вариантов выбирают оптимальный. По выбору трассы разбивают пикетаж – отмечают по трассе точки через 100 м.

    Начинают проектирование от мест с заданными высотами (участки мостовых переходов, перевалы, пересечения с уже существующими магистралями и т.д.), при этом придерживаются следующих правил: проектные уклоны не должны превышать заданного допуска; проектируемые элементы с однообразным уклоном должны быть максимально длинными; переломы профиля не должны совпадать с плановыми кривыми (желательно, но не обязательно); на участках плановых кривых, при соблюдении минимума земляных работ, желательно назначать предельный уклон, уменьшенный на величину Δi = 700/R, где R – радиус плановой кривой; алгебраическая разность уклонов на соседних участках не должна быть больше заданного проектного уклона; в местах пересечений трасы с тальвегами должны быть запроектированы (и показаны на профиле) трубы диаметром 0,5 – 1 м и более и т.д.

    На местности трассу определяют её главные точки: начало, конец, вершины углов поворота, середины кривы, точки пересечения с осями сооружений. Способ закрепления их на местности (столбы, трубы, колья) зависит от необходимого срока сохранности. Перенос трассы с карты на местность осуществляют либо по координатам её главных точек, либо по данным привязки трассы к предметам местности. Координаты точек и элементы привязки определяют, как правило, по карте. После перенесения на местность главных точек прокладывают полигонометрические ходы, в которые включают все эти точки. В ходе этих работ производят вешение и измерение линий, разбивают пикетаж с отметкой плюсовых точек и поперечников. Кроме пикетов на закруглениях трасы должны быть обозначены главные точки кривой: начало, конец и середина кривой. Для разбивки пикетажа в пределах кривой производят предварительные расчёты. По измеренному значению угла поворота φ и принятому радиусу R рассчитывают элементы кривой: тангенс Т, длину кривой К, биссектрису Б и домер (разность длин ломаной и кривой между началом и концом кривой) Д. Формулы для расчета легко вывести по рис. 26.

    Рис. 26. Элементы круговой кривой

    Т = R tg φ /2; Д = 2Т – К; Б = R + Б – R = R/cos (φ /2) – R = R (sec (φ /2) – 1); К = πR(φ/180º).

    Предварительно установленные пикеты оказываются на тангенсах кривой и их требуется перенести на кривую. Этот перенос выполняют либо методом прямоугольных координат, либо методом полярных координат. Для составления продольного и поперечного профилей по пикетажу трассы и поперечникам производят техническое нивелирование.

    На железнодорожных трассах вертикальные кривые устраивают для плавного сопряжения участков, на автомобильных – для улучшения видимости. Вертикальные кривые проектируют только на тех переломах проектного профиля, где величина биссектрисы больше 5 см. Элементы вертикальных кривых Т, К, Б выбирают из специальных таблиц по аргументам, радиусу вертикальной кривой и разности уклонов смежных участков Δi . При отсутствии таблиц можно воспользоваться приближёнными формулами К = R Δi , Т = R Δi /2, Б = Т 2 /2R. На трассах железных дорог радиусы принимаются равными 5000 или 10000 м, на автодорогах – в зависимости от категории дороги и от характера уклонов – от 7000 до 2500 м на выпуклых кривых и от 8000 до 1500 м на вогнутых.

    Перенесение проектов планировки и застройки на местность

    6.4 Геодезическое обоснование на строительных площадках. Плановое обоснование . Для разбивки осей и выполнения работ по геодезическому обеспечению строительства необходимо иметь ряд пунктов с известными плановыми и высотными координатами. Систему таких пунктов называют обоснованием инженерно-геодезических работ (разбивочной основой). Опираясь на разбивочную основу, производят топографические съёмки при изысканиях, составляют исполнительную документацию, осуществляют разбивочные работы при строительстве зданий, выполняют наблюдения за деформациями. Такое широкое использование опорных геодезических сетей определяет различие схем и методов построения. Плановые и высотные сети представляют собой систему геометрических фигур, вершины которых закреплены на местности. Инженерно-геодезические сети обладают следующими особенностями: они часто создаются в условной системе координат; форма сети определяется формой территории; как правило, сети невелики по размерам; длины сторон не большие; условия для наблюдений неблагоприятные. Выбор метода построения зависит от многих причин – типа объекта, формы и размеров участка, требуемой точности и т.д. Так, например, наиболее распространённым видом основы на объектах массовой жилой застройки являются полигонометрические ходы как наиболее манёвренный вид построения. Такое обоснование позволяет легко осуществить разбивку осей зданий.

    6.5 Строительные сетки, способы создания, точность . При возведении крупных промышленных комплексов, где многие сооружения связаны технологическими линиями, требования к точности посадки зданий более высокие. Как правило, в качестве разбивочной сети в таких случаях пользуются строительными сетками – системами прямоугольников, вершины которых определены с высокой точностью. Стороны сетки располагают, как правило, параллельно осям зданий. Такое расположение осей задаёт на местности систему прямоугольных координат, что облегчает привязку осей сооружений. В отличие от остальных опорных сетей, точную конфигурацию и расположение пунктов в строительной сетке проектируют заранее. Строится сетка в виде квадратов; в зависимости от назначения строительной сетки сторону квадратов определяют от 100 до 400 м, в цеховых условиях для монтажа оборудования проектируют стороны длиной 10 – 20 м. При осевом способе разбивки с технической точностью выносят два взаимно перпендикулярных направления, пересекающихся приблизительно посередине. Угол между вынесенными направлениями несколько раз измеряют с целью редуцирования построенного угла. После исправления положения оси вдоль осей откладывают в створе по теодолиту отрезки, равные длинам сторон сетки. Закончив разбивку на конечных пунктах, в них строят прямые углы и продолжают построение. Построенная таким образом сетка не отличается большой точностью, поэтому на больших территориях или при работах, требующих высокой точности, применяют способ редуцироваиия. При построении сетки на генплане намечают положение пунктов сетки, определяют систему координат и вычисляют теоретические координаты X и Y пунктов сетки. От неё техническим теодолитом и стальной лентой строят прямоугольник и намечают предварительное положение пунктов, которые закрепляют постоянными знаками в виде металлической пластины. По периметру прокладывают полигонометрический ход и вычисляют фактические координаты пунктов. Для проведения редукции на миллиметровке по фактическим и теоретическим координатам в масштабе 1:1 наносят фактическое и теоретическое положении пункта, а также направления на смежные пункты сети. Совместив точку с фактическими координатами с построенной на местности точкой и направив изображённые направления на соответствующие пункты, отмечают керном на установленном знаке местоположение пункта с теоретическими координатами. После редуцирования пунктов по сторонам основного прямоугольника приступают к построению внутренних пунктов створами и промерами по створам. Такой метод неприемлем при реконструкции или расширении предприятия. В этом случае строительную сетку развивают как продолжение существующей; если знаки сетки не сохранились, то её следует восстановить от осей цехов, установок. Требования к точности построения сетки зависят от её назначения. Как показывает опыт, ошибки во взаимном положении смежных пунктов должны быть в среднем 1:10000 (2 см при расстоянии 200 м). Прямые углы сетки должны быть построены со средней квадратической погрешностью 20"".

    В качестве высотной основы для создания топографических планов, производства работ и т.д. используют систему знаков, абсолютные высоты которых определяют проложением нивелирных ходов II, III и IV классов. Высотные опорные сети опираются на не менее чем два репера государственного нивелирования более высокого класса (при наблюдениях за деформациями и некоторых других работах сеть является свободной и опирается на один репер только для привязки – висячий ход).

    6.6 Проект производства геодезических работ (ППГР) . Для обеспечения точности и своевременности выполнения геодезических работ на строительной площадке составляют специальный проект. В проекте производства геодезических работ (ППГР), который является составной частью общестроительного проекта, рассматриваются: построение исходной геодезической основы; организация и выполнение разбивочных работ, исполнительных съёмок; применение соответствующих приборов для обеспечения требуемой точности измерений и другие вопросы, зависящие от конкретного объекта и условий его строительства. Содержание ППГР согласуют с проектом организации строительства и проектом организации работ. В качестве исходных материалов используются материалы инженерно-геодезических изысканий, проектные и строительные генеральные планы, рабочие чертежи, технические решения по организации строительства. ППГР обычно состоит из пояснительной записки и графических документов. В пояснительной записке приводят: исходные данные и основные положения проекта; обоснование точности геодезических работ; методику и точность построения геодезической основы; методику геодезических работ при возведении подземной и наземной частей сооружения; технологию производства исполнительных съёмок; методику наблюдения за деформациями. Из-за многообразия строительных решений и конструктивных особенностей предрасчёт и обоснование точности создания внутренней и внешней разбивочных сетей являются наиболее важными задачами при разработке ППГР. Разработанную методику геодезических работ иллюстрируют чертежами и рисунками: схемами плановых и высотных сетей; схемами зон видимости; схемами производства разбивочных работ и т.п. Структурно ППГС соответствует последовательности строительных работ и процессов.

    Глава VII

    Геодезические разбивочные работы

    7.1 Построение в натуре проектных углов, отрезков, линий заданного уклона . При построении на местности проектного угла β заданы вершина A и сторона AB. Построение угла с технической точностью начинают с установки над вершиной A теодолита, визирования точки B и снятия соответствующего отсчёта b по горизонтальному кругу. Предвычисляют отсчёт c = b + β (если угол откладывают по часовой стрелке). Открепив алидаду, устанавливают отсчёт c и фиксируют точку C 1 по центру сетки нитей. Аналогично строят точку C 2 при другом положении вертикального круга. Отрезок C 1 C 2 делят пополам точкой C и угол BAC принимают за проектный.

    МУЛЬТФИЛЬМ 7

    Для построения на местности отрезка заданной длины используют, как правило, способ редукции. Для этого по заданному направлению откладывают расстояние d 1 , равное проектному, и временно фиксируют полученную точку. Измеряют превышение межу концами отрезка и температуру мерного прибора (если используется измерительный прибор конечной длины – рулетка или лента). Вычисляют поправки в длину линии за компарирование, за температуру, за наклон линии и вычисляют суммарную поправку, которую вводят с обратным знаком в линию (см. «Линейные измерения»).

    Проектные отметки, как правило, переносят в натуру геометрическим нивелированием. Для этого нивелир устанавливают посередине между репером и местом перенесения отметки; берут отсчёт a по черной стороне рейки и вычисляют горизонт прибора ГП = H рп + a и проектный отсчёт b = ГП – H пр. Рейку устанавливают у обноски и поднимают или опускают до тех пор, пока отсчёт по горизонтальной нити сетки не совпадёт с вычисленным отсчётом b; на обноске в этот момент прочерчивают черту по пятке рейки. Аналогично строят отметки по красной стороне рейки и, в случае несовпадения двух отметок, за окончательную отметку принимают среднюю из них.

    Построение линии заданного уклона заключается в построении как минимум двух точек. Если точка A с отметкой H A закреплена, то вычисляют отметку B по формуле H B = H A + i d, где d – расстояние между точками. Если отметка точки A не известна, то в этой точке устанавливают рейку и берут по ней отсчёт a и предвычисляют отсчёт b = a + i d, по которому и выносят точку B в натуру.

    7.2 Построение в натуре точек . Точки красных линий, зданий и т.д. – так называемые проектные точки – выносят на местность способами: полярным, прямоугольных координат, угловой засечки, линейной засечки, створной засечки. Выбор способа зависит от геодезической основы.

    При полярном способе из точки A геодезической основы теодолитом строится проектный угол и по полученному направлению откладывается проектное расстояние. На точность построения точки влияют погрешности построения угла, построения линии, центрирования теодолита, редукции визирной цели, исходных данных и фиксации точки.

    Способом прямоугольных координат проектные точки переносят в натуру от пунктов геодезической основы в виде строительной сетки. Для этого из точки опускается перпендикуляр на линию сетки и определяется длина перпендикуляра d 2 и расстояние от точки основы до основания перпендикуляра d 1 . В натуре по линии сетки откладывают расстояние d 1 и в полученной точке теодолитом строят прямой угол; по полученному направлению откладывают расстояние d 2 и фиксируют точку C. На точность построения влияют погрешности: построения отрезков, построения прямого угла, центрирования и редукции, исходных данных и фиксации точки. Для повышения точности построения необходимо, чтобы величина d 1 была больше d 2 .

    При разбивке мостовых переходов и гидротехнических сооружения распространено использование способа угловой засечки . Положение проектной точки в этом случае определяется построением в пунктах триангуляции A и B проектных углов β 1 и β 2 . Искомой точкой является точка пересечения направлений AC и BC.

    Способ линейной засечки целесообразно применять при достаточной густоте пунктов основы и при расстояниях, не превышающих длины мерного прибора. При использовании этого метода удобнее всего пользоваться двумя рулетками, перемещая их до совмещения соответствующих проектным длинам отметок. Если положение точки определяется пересечением двух створов, задаваемых одновременно двумя теодолитами, установленными в пунктах геодезической основы, то это способ створной засечки . При расстояниях между створными точками порядка 20-30 метров практикуют получение створов монтажными проволоками.

    7.3 Оси сооружений . При проектировании конструктивные элементы привязывают к линиям, называемым разбивочными осями . Разбивочные оси в совокупности представляют геометрическую схему здания или сооружения. Они являются геодезической основой, по которой ориентируют элементы строительных конструкций и технологического оборудования при установке их в проектное положение. Оси делятся на продольные и поперечные. Продольные обозначают прописными буквами русского алфавита (кроме З, И, О, Х, Ы, Ь, Ъ), поперечные – арабскими цифрами. Оси подразделяют на основные (задающие геометрию здания) и промежуточные (оси отдельных элементов, частей здания); для сложных в плане зданий иногда выделяют главные оси (оси симметрии). Возведение зданий начинают с перенесения проекта сооружения в натуру, т.е. с вынесения и закрепления разбивочных осей. Такие работы называют геодезической разбивкой здания. Разбивку проводят в два этапа. Сначала выносят основные оси, а затем производят детальную разбивку – выносят и закрепляют промежуточные оси.

    7.4 Разбивка основных и главных осей здания. Требование к точности . Геодезическую разбивку основных осей выполняют в соответствии с утверждённой проектно-технической документацией. Процессу перенесения в натуру основных осей предшествует геодезическая подготовка разбивочных данных. Эту подготовку осуществляют графическим, графоаналитическим и аналитическим способами. При графическом способе, когда к точности планового положения не предъявляют особых требований, линейные и угловые разбивочные элементы определяются графическим способом, т.е. непосредственно с плана. При графоаналитическом способе графически определяют координаты некоторых точек, а значения линейных и угловых разбивочных элементов рассчитывают. При аналитическом способе графических определений по плану не делают; координаты как минимум двух точек здания или сооружения уже должны быть известны, дальнейшие расчёты выполняются точно так же, как и при графоаналитическом методе. Точность перенесения габаритов сооружения должна быть не меньше точности плана, на котором оно запроектировано. Как правило, её определяют из соотношения Δ пр = 0,2 N, где N – основание масштаба. Точность перенесения габаритов может быть повышена, если это обусловлено проектом.

    7.5 Геодезическая подготовка данных для перенесения проекта сооружения на местность . Наиболее часто применяется графоаналитическая подготовка разбивочных элементов. Пусть известны координаты двух точек пересечения основных осей A 1 и A 5 и координаты точек полигонометрического хода. Тогда для определения разбивочного угла необходимо знать дирекционный угол α i направления с точки хода на точку пересечения осей (дирекционный угол линии хода α I- J известен); тогда разбивочный угол β = α I- J – α i (или β = α i – α I- J , в зависимости от их взаимного расположения). Угол α i и расстояние d i можно найти из решения обратной геодезической задачи:

    tg α i = ΔY/ΔX; d i = ΔY/sin α i = ΔX/cos α i .

    7.6 Закрепление осей . Для закрепления оси выносят на обноску, которая представляет собой доску, закреплённую горизонтально на столбах на высоте 400 – 600 мм. Сплошную обноску устанавливают строго параллельно основным осям на расстоянии, обеспечивающем её сохранность на весь период строительства. Сплошная обноска применяется крайне редко из-за её громоздкости и неудобств, создаваемых ею (особенно для землеройной техники). В основном используется створная обноска. Она устанавливается на местах закрепления осей на произвольном расстоянии от взводимого здания. Помимо обноски, оси (как правило, основные) могут быть закреплены постоянными или временными знаками. Выбор конструкции знаков зависит от условий строительства. Постоянные знаки чаще всего бывают грунтовые. Они выполняются из металлических труб или рельсов, опущенных в скважину (глубиной ниже зоны промерзания на 0,5 м) и забетонированных в ней. В верхней части приваривается пластина, на которой керном отмечается положение оси. В качестве временных знаков используют деревянные колья, металлические штыри и т.д. Также широко используют цветные откраски на постоянных и временных зданиях и сооружениях, представляющие собой цветные риски. На продолжении створов осей закрепляют не менее двух знаков с каждой стороны. Высотную разбивочную основу также закрепляют постоянными и временными знаками, к которым предъявляются те же требования, что и к знакам закрепления осей.