Что такое масса определение. Метрология

  • 13. Закон сохранения момента импульса материальной точки и системы материальных точек.
  • 14. Момент инерции относительно неподвижной оси вращения. Теорема Штейнера. Кинетическая энергия вращающегося тела. Момент инерции тонкого стержня. Работа и мощность при вращении твердого тела.
  • 15. Преобразования Галилея. Механический принцип относительности. Специальная и общая теория относительности. Принцип эквивалентности.
  • 16. Постулаты специальной теории относительности. Преобразования Лоренца.
  • 28. Волновая поверхность. Фронт волны. Сферическая волна. Затухающие волны. Плоская волна. Фазовая скорость и дисперсия волн.
  • 29. Энергия волны. Плотность энергии. Средний поток. Плотность потока. Вектор Умова.
  • 30. Принцип суперпозиции волн. Интерференция волн. Когерентность. Уравнение стоячей волны и его анализ.
  • 32. Опытное обоснование корпускулярно-волнового дуализма вещества. Формула де Бройля. Экспериментальное подтверждение гипотезы де Бройля.
  • 33. Волновая функция и ее физический смысл. Временное и стационарное уравнения Шредингера. Стационарные состояния. Собственные функции и собственные значения.
  • 34. Соотношение неопределенностей. Ограниченность механического детерминизма.
  • 35. Свободная частица. Частица в одномерной потенциальной яме. Квантование энергии и импульса частицы. Принцип соответствия Бора.
  • 36. Квантовый гармонический осциллятор. Влияние параметров потенциальной ямы на квантование энергии. Туннельный эффект.
  • 37. Статистический метод исследования. Вывод уравнения молекулярно-кинетической теории газов для давления. Средняя кинетическая энергия молекул.
  • 39. Закон Максвелла для распределения частиц идеального газа по скоростям и энергии теплового движения. Физический смысл функции распределения. Характеристические скорости.
  • 46. Применение первого начала термодинамики к изопроцессам и адиабатическому процессу в идеальном газе. Зависимость теплоемкости идеального газа от вида процесса.
  • 47. Обратимые и необратимые процессы. Круговой процесс. Цикл Карно и его к.П.Д. Для идеального газа. Тепловые машины.
  • 48. Второе начало термодинамики. Энтропия. Энтропия идеального газа.
  • 49. Статистическое толкование второго начала термодинамики.
  • 50. Реальные газы. Отступления законов реальных газов от законов для идеальных газов. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса.
  • 51. Изотермы реального газа. Опыт Эндрюса. Критические параметры.
  • 52. Внутренняя энергия реального газа. Эффект Джоуля-Томсона.
  • 53. Фазовые переходы первого и второго рода.
  • 54. Классические представления о теплоемкости твердых тел. Теория Эйнштейна. Теория Дебая.
  • 55. Понятие о фононах. Статистика фононного газа. Плотность состояний.
  • 57. Статистика Ферми-Дирака и Бозе-Эйнштейна. Фермионы и бозоны. Квантовые числа. Спин электрона. Принцип неразличимости тождественных частиц. Принцип Паули.
  • Основные вопросы учебной программы по физике (1 семестр)

    1. Моделирование в физике и технике. Физическая и математическая модели. Проблема точности в моделировании.

    Для описания движения тел в зависимости от условий конкретных задач используются разные физические модели. Ни одна физическая задача не может быть решена абсолютно точно. Всегда получают приближенное значение.

    2. Механическое движение. Виды механического движения. Материальная точка. Система отсчета. Средняя скорость. Мгновенная скорость. Среднее ускорение. Мгновенное ускорение. Скорость и ускорение материальной точки как производные радиус вектора по времени.

    Механическое движение – изменение положения тел (или частей тела) друг относительно друга в пространстве с течением времени.

    Виды механического движения: поступательное и вращательное.

    Материальная точка – тело, размерами которого можно пренебречь в данных условиях.

    Система отсчета - совокупность системы координат и часов.

    Средняя скорость -

    Мгновенная скорость -

    Среднее и мгновенное ускорения -

    3. Кривизна и радиус кривизны траектории. Нормальное и тангенциальное ускорения. Угловая скорость и угловое ускорение как вектор. Связь угловой скорости и углового ускорения с линейными скоростями и ускорениями точек вращающегося тела.

    Кривизна – степень искривленности плоской кривой. Величина, обратная кривизне – радиус кривизны.

    Нормальное ускорение:

    Тангенциальное ускорение:

    Угловая скорость:

    Угловое ускорение:

    Связь:

    4. Понятие массы и силы. Законы Ньютона. Инерциальные системы отсчета. Силы при движении материальной точки по криволинейной траектории.

    Масса – физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные и гравитационные свойства.

    Сила – векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел, а также полей.



    Законы Ньютона:

    1. Существуют такие системы отсчета, относительно которых поступательно движущиеся тела сохраняют свою скорость постоянной, если на них не действуют другие тела или действие этих тел скомпенсировано. Такие СО – инерциальные.

    2. Ускорение, которое приобретает тело, прямо пропорционально равнодействующей всех сил, действующих на тело, и обратно пропорционально массе тела:

    3. Силы, с которыми тела действуют друг на друга, одинаковой природы, равны по модулю и направлению вдоль одной прямой в противоположный стороны:

    5. Центр масс механической системы и закон его движения.

    Центр масс – воображаемая точка С, положение которой характеризует распределение массы этой системы.

    6. Импульс. Изолированная система. Внешние и внутренние силы. Закон сохранения импульса и его связь с однородностью пространства.

    Импульс – количество движения, которое равно

    Изолированная система - механическая система тел, на которую не действуют внешние силы.

    Силы взаимодействия между материальными точками механической системы называются внутренними.

    Силы, с которыми на материальны точки системы действуют внешние тела, называются внешними.

    Импульс не изменяется с течением времени:

    7. Движение тела с переменной массой. Реактивное движение. Уравнение Мещерского. Уравнение Циолковского.

    Движение некоторых тел сопровождается изменением их массы, например масса ракеты уменьшается вследствие истечения газов, образующихся при сгорании топлива.

    Реактивная сила – сила, которая возникает в результате действия на данное тело присоединяемой (или отделяемой) массы.

    Уравнение Мещерского:

    Уравнение Циолковского: ,гдеи - скорость истечения газов относительно ракеты.

    8. Энергия. Виды энергии. Работа силы и ее выражение через криволинейный интеграл. Кинетическая энергия механической системы и ее связь с работой внешних и внутренних сил, приложенных к системе. Мощность. Единицы работы и мощности.

    Энергия - универсальная мера различных форм движения и взаимодействия. С различными формами движения материи связывают различные формы энергии: механическую, тепловую, электромагнитную, ядерную и др.

    Работа силы :





    Мощность:

    Единица работы - джоуль (Дж): 1 Дж - работа, совершаемая силой 1 Н на пути 1 м (1 Дж = 1 Н м).

    Единица мощности - ватт (Вт): 1 Вт - мощность, при которой за время 1 с совершается работа 1 Дж (1 Вт = 1 Дж/с).

    9. Консервативные и неконсервативные силы. Потенциальная энергия в однородном и центральном гравитационном поле. Потенциальная энергия упругодеформированной пружины.

    Консервативные силы – все силы, которые действуют на частицу со стороны центрального поля: упругие, гравитационные и другие. Все силы, не являющиеся консервативными – неконсервативные : силы трения.

    10. Закон сохранения энергии и его связь с однородностью времени. Закон сохранения механической энергии. Диссипация энергии. Диссипативные силы.

    Закон сохранения механической энергии: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со временем.

    Закон сохранения механической энергии связан с однородностью времени. Однородность времени проявляется в том, что физические законы инвариантны относительно выбора начала отсчета времени.

    Диссипация энергии - механическая энергия постепенно уменьшается за счет преобразования в другие (немеханические) формы энергии.

    Диссипативные силы - силы, при действии которых на механическую систему её полная механическая энергия убывает.

    

    Попробуем внести некоторую ясность в туманный вопрос – что же такое масса тела?
    Отбросим древнюю и нередко имеющую место в наше время идентификацию массы тела и ее веса – все-таки мы уже люди умные и знаем, что вес – это всего лишь сила. Сила, с которой любое материальное тело притягивается к Земле-матушке или какой-нибудь другой планете, звезде и прочему мега телу, близ поверхности которого находится рассматриваемое тело.
    Начнем анализировать представление человечества о массе с давних времен.

    Термин «масса» придумали, по-видимому, древние домохозяйки, поскольку это слово с древнегреческого «μαζα» переводится, как «кусок теста». Античные ученые под массой подразумевали некоторое количество вещества, содержащегося в физическом теле, не уделяя ей излишнего внимания, считая, что и так все ясно – кусок себе, и кусок.
    Подобные определения массы в популярных источниках информации встречаются и по сей день. Особой ясности в вопрос о массе такая терминология не вносит, и только вызывает дополнительные вопросы, – какого-такого количества вещества, и что это за вещество такое?

    Первые научные труды, посвященные попытке дать определение понятию массы тел, принадлежат Ньютону, который установил связь между силовым взаимодействием тел и изменением характера движения этих тел, т. е. ускорением. На эти (по тем временам – гениальные) мысли Ньютона навели опыты любознательного итальянца Галилея, который с верхушки Пизанской башни бросал вниз разные предметы, пытаясь опровергнуть многовековое заблуждение человечества о том, что увесистое тело упадет на Землю быстрее, чем более легкое. К удивлению многочисленных зевак, все тела, которые сбрасывал Галилей, приземлялись одновременно.

    Ньютон, ознакомившись с опытами Галилея, пошел в размышлениях и выводах дальше – он, в одном из своих знаменитых законов указал, что ускорение, обусловленное действием на тело любой внешней силы, пропорционально величине этой силы.
    Т. е. одно и то же тело под действием разных по модулю сил будет ускоряться пропорционально величине (модулю) этих сил: F = ma , где m – и есть коэффициент этой пропорциональности для каждого конкретного тела, называемый его массой.

    Ньютон, как и многие его предшественники, не осмелился окончательно разорвать связь между «куском теста» и массой тела, считая массу некоторой мерой количества вещества. Тем не менее, он сделал первые робкие шаги к разрыву между классическими понятиями о массе и материи, указав на нематериальную сторону массы – ее связь с инертностью тел, т. е. их вечным стремлением к покою. А это был уже прогресс в науке.

    Итак, Ньютон первым использовал в своих размышлениях два понятия массы: как меры инерции и как источника тяготения, т. е. – гравитации, не отрывая, впрочем, массу от количества вещества в теле. Однако толкование массы как меры «количества материи» все чаще подвергалось критике со стороны физиков, и уже в XIX веке было признано ненаучным, нефизическим и бессодержательным.

    Забегая вперед, скажем, что окончательный разрыв между понятиями массы и количеством вещества «юридически» был оформлен в прошлом веке, когда в Международную систему единиц СИ, наряду с семеркой основных и двух дополнительных единиц измерения, ввели единицу измерения количества вещества – моль.

    

    Ошеломляющий переворот в представлении человечества об окружающем мире вызвали открытия очередного гения – Альберта Эйнштейна. Своей теорией относительности он выпустил в понятие массы очередную порцию тумана, опровергнув бытующие догмы о постоянстве массы тел.
    Вдруг выяснилось, что масса зависит от скорости тела, при этом материальное тело никогда не может передвигаться с предельной скоростью – скоростью света, иначе его масса станет бесконечно большой. Выводы Эйнштейна наталкивали на мысль о тесной связи массы с энергией тела, и получалось, что весь окружающий нас мир – не что иное, как некоторая форма существования энергии, которая, как известно на сегодняшний день, штука постоянная по величине.

    Физикам осталось разобраться лишь с некоторыми неувязками по массе частиц, передвигающихся со скоростью света – фотонов, а также гипотетических глюонов и гравитонов. Ведь, согласно приведенным выше выводам, масса таких частиц должна быть бесконечной, а это уж – ни в какие ворота...


    Неподдающийся логике гордиев узел разрубили небрежным взмахом – признали фотоны, глюоны и гравитоны нематериальными частицами, не имеющими массы в обычном понимании.

    Дальнейшие размышления в ученой среде о массе привели даже к некоторой классификации этого понятия – различают гравитационную (или пассивную) массу, характеризующую взаимодействие тела с внешними силовыми полями и способность тел создавать такие поля, и инертную массу – характеризующую свойство тел сопротивляться увеличению кинетической энергии.
    Если проследить за логикой виднейших умов человечества, то напрашивается вывод о том, что все вокруг нас стремится избавиться от кинетической энергии, то бишь - энергии движения, а значит - и от излишков массы, поскольку со скоростью материальных тел растет и их масса.
    В общем - не такая уж простая это вещь - масса тела... По крайней мере - с куском теста ее уж точно не сравнить.

    В некоторых источниках информации встречаются термины масса покоя и релятивистская масса, увязывающие эту физическую величину со скоростью движения тела, а также понятие «нулевая масса», которой обладают частицы, перемещающиеся со скоростью света - фотоны, глюоны и гравитоны, объединенные общим названием - люксоны. Люксоны не обладают массой покоя – они могут существовать лишь во время движения.

    Можно смело догадываться, что размышления человечества о природе массы тел далеки до логического завершения, поскольку в последние годы появились гипотезы и теории, пытающиеся перечеркнуть все познания человечества о Вселенной. Некоторые из таких теорий полагают, что скорость света не является рубежной – существуют и сверхсветовые скорости. В рамках специальной теории относительности теоретически возможно существование частиц с мнимой массой, так называемых тахионов. Скорость таких частиц должна быть выше скорости света.

    Другие гипотезы вводят понятия отрицательной и положительной массы, утверждая, что возможно существование материальных тел или частиц, у которых импульс и энергия движения не совпадают с направлением перемещения в пространстве. Как видите, фантазии ученых безграничны, и какова будет формулировка понятия «масса тела» через десяток-другой лет предсказать невозможно.

    Подводя итог статье, можно уверенно указать лишь на неоднозначность таких понятий, как масса, вес и количество вещества в теле.
    Ну а окончательный ответ на вопрос – что же такое масса тела – за потомками.

    
    Зависит ли масса тел от их скорости?
    Аддитивна ли масса при объединении тел в систему (т.е. м12=м1+м2) ?
    Как измерить массу тела в космосе?

    Различные преподаватели физики отвечают на эти вопросы по-разному, поэтому, не удивительно что первое заповедью молодого специалиста приходящего на работу в НИИ становится - "забудьте всё чему учили в школе". На этой странице я познакомлю Вас с точкой зрения специалистов, соприкасающихся с этими вопросами в своей научной работе. Но давайте вначале подробнее остановимся на физическом смысле понятия масса.

    Я уже рассказывал оматематико-геометрическом толковании массы как искривления геодезических линий четырёхмерного пространства/времени, но в своей работе 1905-го года Эйнштейн придал массе и физический смысл, ввёдя в физику понятие энергии покоя.

    Сегодня , когда говорят о массе - физики имеют ввиду коэффициент определяемый по формуле:

    m 2 =E 2 /c 4 -p 2 /c 2 (1)

    Во всех формулах, используются следующие обозначения (если иное не оговорено):

    Такая масса не меняется при переходе от одной инерциальной системы отсчета к другой инерциальной системе. В этом легко убедиться, если использовать для Е и р преобразования Лоренца, гдеv - скорость одной системы относительно другой, и вектор v направлен по оси х:

    (2)

    Таким образом, в отличие от Е и р , которые являются компонентами 4-мерного вектора, масса является лоренцевым инвариантом.

    Информация к размышлению:

    Преобразование Лоренца подпирает собой весь мир эйнштейновских формул. Восходит оно к теории, предложенной физиком Хендриком Антоном Лоренцом. Суть, вкратце, сводится к следующему: продольные - в направлении движения - размеры быстро движущегося тела сокращаются. Еще в 1909 году известный австрийский физик Пауль Эренфест усомнился в этом выводе. Вот его возражение: допустим, движущиеся предметы, действительно, сплющиваются. Хорошо, проведем опыт с диском. Будем вращать его, постепенно увеличивая скорость. Размеры диска, как говорит г-н Эйнштейн, будут уменьшаться; кроме того, диск искривится. Когда же скорость вращения достигнет скорости света, диск попросту исчезнет.

    Эйнштейн оказался в шоке, потому что Эренфест был прав. Творец теории относительности опубликовал на страницах одного из специальных журналов пару своих контраргументов, а затем помог оппоненту получить должность профессора физики в Нидерландах, к чему тот давно уже стремился. Эренфест перебрался туда в 1912 году. В свою очередь, со страниц книг о частной теории относительности исчезает упомянутое нами открытие Эренфеста : так называемый парадокс Эренфеста.

    Лишь в 1973 году умозрительный эксперимент Эренфеста был воплощен на практике. Физик Томас Э. Фипс фотографировал диск, вращавшийся с огромной скоростью. Эти снимки (сделанные при использовании вспышки) должны были послужить доказательством формул Эйнштейна. Однако с этим вышла промашка. Размеры диска - вопреки теории - не изменились. «Продольное сжатие», возвещенное частной теорией относительности, оказалось предельной фикцией. Фипс направил отчет о своей работе в редакцию популярного журнала «Nature». Та ее отклонила. В конце концов, статья была помещена на страницах некоего специального журнала, выходившего небольшим тиражом в Италии. Однако никто так и не перепечатал ее. Сенсации не произошло. Статья оказалась незамеченной.

    Не менее примечательна ис удьба экспериментов, в которых пытались зафиксировать замедление времени при движении.

    Кстати, из соотношения (1) как раз и получается знаменитое Эйнштейновское выражение для энергии покоя E 0 =mc 2 , (если p=0) . . А если принять за единицу скорости скорость света, т.е. положить с = 1 , то масса тела равна его энергии покоя. А поскольку энергия сохраняется, то и масса является сохраняющейся величиной, не зависящей от скорости . Вот и ответ на первый вопрос И именно энергия покоя, "дремлющая" в массивных телах, частично освобождается в химических и особенно ядерных реакциях.

    Теперь, давайте рассмотрим вопрос об аддитивности:

    Для перехода к другой инерциальной системе отсчёта следует применить преобразования Лоренца к покоящемуся, в первоначальной системе, телу. При этом сразу же получается связь энергии и импульса тела с его скоростью:

    (3)

    Замечание: Частицы света фотоны - безмассовые. Поэтому из вышеизложенных уравнений следует, что для фотона v = с.

    Энергия и импульс аддитивны. Суммарная энергия двух свободных тел равна сумме их энергий (Е = E 1 + E 2 ) , с импульсом аналогично. Но если подставить эти суммы в формулу (1) мы увидим, что

    Суммарная масса оказывается зависящей от угла между импульсами p 1 и р 2 .

    Из этого следует, что масса системы двух фотонов, с энергиями Е , равна 2Е/с 2 , если они летят в противоположные стороны, и нулевая, если они летят в одну сторону. Что очень непривычно для человека, впервые сталкивающегося с теорией относительности, но таков факт! Механика Ньютона, где масса аддитивна, не работает при скоростях, сравнимых со скоростью света. Свойство аддитивности массы следует из формул лишь в пределе, когда v <

    Итак, для реализации принципа относительности и постоянства скорости света необходимы преобразования Лоренца, а из них следует, что связь между импульсом и скоростью дается формулой (3), а не формулой Ньютонаp = mv.

    Сто лет тому назад формулу Ньютона попытались по инерции мышления перенести в релятивистскую физику, и так возникло представление о релятивистской массе, которая растет с увеличением энергии и, следовательно, с возрастанием скорости. Формула m=E/c 2 , согласно сегодняшней точке зрения, является артефактом, создавая сумбур в головах: с одной стороны, фотон безмассов, а с другой - у него есть масса.

    Почему обозначение Е 0 разумно? Потому что энергия зависит от системы отсчета, и индекс нуль в этом случае указывает, что это энергия в системе покоя. Почему обозначение m 0 (масса покоя) неразумно? Потому что масса не зависит от системы отсчета.

    Вносит свою лепту в возникающую путаницу и утверждение об эквивалентности энергии и массы. Действительно, всегда, когда есть масса, есть и отвечающая ей энергия: энергия покоя E 0 =mc 2 . Однако не всегда, когда есть энергия, есть масса. Масса фотона равна нулю, а энергия его отлична от нуля. Энергии частиц в космических лучах или на современных ускорителях на много порядков превышают их массы (в единицах, где с = 1 ).

    Выдающуюся роль в формировании современного релятивистского языка сыграл Р . Фейнман, который в 1950-е годы создал релятивистски инвариантную теорию возмущений в квантовой теории поля вообще и в квантовой электродинамике в частности. Сохранение 4-вектора энергии - импульса лежит в основе знаменитой техники фейнмановских диаграмм, или, как их еще иначе называют, фейнмановских графиков. Во всех своих научных работах Фейнман использовал понятие массы, даваемое формулой (1). Физикам, которые знакомство с теорией относительности начали с Теории поля Ландау и Лифшица, или научных статей Фейнмана, уже не могла прийти в голову мысль называть массой тела энергию, деленную на с 2 , однако в популярном изложении (включая знаменитые Фейнмановские лекции по физике) этот артефакт остался. И это очень прискорбный факт, частичное объяснение которого, как мне кажется, надо искать в том, что даже величайшие физики, переходя от научной деятельности к просветительской, пытаются приспособиться к сознанию широкого круга читателей, воспитанного на m=E/c 2

    Именно для того, чтобы избавиться от подобных "ляпов", необходимо, чтобы в учебной литературе по теории относительности была принята единая современная научная терминология. Параллельное использование современных и давно устаревших обозначений и терминов напоминает о марсианском зонде, который разбился в 1999 г. из-за того, что одна из фирм, участвовавших в его создании, использовала дюймы, в то время как остальные - метрическую систему

    Сегодня физика вплотную подошла к вопросу о природе массы как истинно элементарных частиц, таких как лептоны и кварки, так и частиц типа протона и нейтрона, называемых адронами. Этот вопрос тесно связан с поисками так называемых хиггсовых бозонов и со структурой и эволюцией вакуума. И здесь слова о природе массы относятся, разумеется, к инвариантной массе т, определенной в формуле (1), а не к релятивистской массе, которая просто представляет собой полную энергию свободной частицы

    В теории относительности масса не является мерой инерции . (формула F -ma). Мерой инерции является полная энергия тела или системы тел. Никаких ярлыков, тем более соответствующих ньютоновскому представлению о массе, физики к частицам не прикрепляют. Ведь частицами физики считают и безмассовые частицы. Учитывая только что сказанное, нет ничего удивительного в том, что излучение переносит от одного тела к другому энергию, а следовательно, и инерцию

    И краткое резюме:

    Масса имеет одну и ту же величину во всех системах отсчета, она инвариантна независимо от того, как движется частица
    - Вопрос "Имеет ли энергия массу покоя?" не имеет смысла. Массу имеет не энергия, а тело (частица) или система частиц. Авторы учебников, заключающие, из E 0 = mc 2 , что "энергия имеет массу", пишут просто бессмысленную фразу . Отождествить массу и энергию можно, только нарушив логику, поскольку масса - релятивистский скаляр, а энергия - компонента 4-вектора. В разумной терминологии, может звучать только: "Эквивалентность энергии покоя и массы".

    Как измерить массу тела в космосе?

    Итак мы знаем, что Масса это фундаментальная физическая величина, определяющая инерционные и гравитационные физические свойства тела. С точки зрения теории относительности масса тела m характеризует его энергию покоя , которая согласно соотношению Эйнштейна: , где -- скорость света.

    В ньютоновской теории гравитации масса служит источником силы всемирного тяготения, притягивающей все тела друг к другу. Сила , с которой тело массы притягивает тело с массой , определяется законом тяготения Ньютона:

    или если быть более точным. , где -- вектор

    Инерционные свойства массы в нерелятивистской (ньютоновской) механике определяются соотношением . Из сказанного выше, можно получить по крайней мере три способа определения массы тела в невесомости.


      Да, если вам доведется побывать в невесомости, то помните, что отсутствие веса, это не значит отсутствие массы и в случае удара о борт вашего космического корабля синяки и шишки будут самыми настоящими.