Туннельный эффект физика. Процесс квантового туннелирования

ТУННЕЛЬНЫЙ ЭФФЕКТ , квантовый эффект, состоящий в проникновении квантовой частицы сквозь область пространства, в к-рой согласно законам классич. физики нахождение частицы запрещено. Классич. частица, обладающая полной энергией E и находящаяся в потенц. поле, может пребывать лишь в тех областях пространства, в к-рых ее полная энергия не превышает потенц. энергию U взаимодействия с полем. Поскольку волновая ф-ция квантовой частицы отлична от нуля во всем пространстве и вероятность нахождения частицы в определенной области пространства задается квадратом модуля волновой ф-ции, то и в запрещенных (с точки зрения классич. механики) областях волновая ф-ция отлична от нуля.

Т уннельный эффект удобно иллюстрировать на модельной задаче об одномерной частице в поле потенциала U(x) (x - координата частицы). В случае симметричного двухъямного потенциала (рис. а)волновая ф-ция должна "умещаться" внутри ям, т. е. она представляет собой стоячую волну. Дискретные энерге-тич. уровни, к-рые расположены ниже барьера, разделяющего минимумы потенциала, образуют близко расположенные (почти вырожденные) . Разность энергетич. уровней, составляющих , наз. туннельным расщеплени-е м, эта разность обусловлена тем, что точное решение задачи (волновая ф-ция) для каждого из дело-кализовано в обоих минимумах потенциала и все точные решения отвечают невырожденным уровням (см. ). Вероятность туннельного эффекта определяется коэффициентом прохождения сквозь барьер волнового пакета, к-рый описывает нестационарное состояние частицы, локализованной в одном из минимумов потенциала.





Кривые потенц. энергии U (х)частицы в случае, когда на нее действует сила притяжения (а - две потенц. ямы, б - одна потенц. яма), и в случае, когда на частицу действует сила отталкивания (отталкивательный потенциал, в). E -полная энергия частицы, х - координата. Тонкими линиями изображены волновые ф-ции.

В потенц. поле с одним локальным минимумом (рис. б)для частицы с энергией E, большей потенциала взаимодействия при c =, дискретные энергетич. состояния отсутствуют, но существует набор квазистационарных состояний, в к-рых велика относит. вероятность нахождения частицы вблизи минимума. Волновые пакеты, отвечающие таким квазистационарным состояниям, описывают метастабильные ; волновые пакеты расплываются и исчезают вслед-ствие туннельного эффекта. Эти состояния характеризуются временем жизни (вероятностью распада) и шириной энергетич. уровня.

Для частицы в отталкивательном потенциале (рис. в)волновой пакет, описывающий нестационарное состояние по одну сторону от потенц. барьера, даже если энергия частицы в этом состоянии меньше высоты барьера, может с определенной вероятностью (наз. вероятностью проникновения или вероятностью туннелирования) проходить по др. сторону барьера.

Наиб. важные для проявления туннельного эффекта: 1) туннельные расщепления дискретных колебат., вращат. и электронно-ко-лебат. уровней. Расщепления колебат. уровней в с неск. эквивалентными равновесными ядерными конфигурациями - это инверсионное удвоение (в типа ), расщепление уровней в с заторможенным внутр. вращением ( , ) или в , для к-рых допустимы внутримол. перегруппировки, приводящие к эквивалентным равновесным конфигурациям (напр., PF 5). Если разл. эквивалентные минимумы на оказываются разделенными потенц. барьерами (напр., равновесные конфигурации для право- и левовращающих сложных ), то адекватное · описание реальных мол. систем достигается с помощью, локализованных волновых пакетов. В этом случае дело-кализованных в двух минимумах стационарных состояний неустойчива: под действием очень малых возмущений возможно образование двух состояний, локализованных в том или ином минимуме.

Расщепление квазивырожденных групп вращат. состояний (т. наз. вращательных к л а с т е r о в) также обусловлено туннелированием мол. системы между окрестностями неск. эквивалентных стационарных осей вращения. Расщепление электронно-колебат. (вибронных) состояний происходит в случае сильных Яна - Теллера эффектов. С туннельным расщеплением связано и существование зон, образуемых электронными состояниями отдельных или мол. фрагментов в с периодич. структурой.

2) Явления переноса частиц и элементарных возбуждений. Данная совокупность явлений включает нестационарные процессы, описывающие переходы между дискретными состояниями и распад квазистационарных состояний. Переходы между дискретными состояниями с волновыми ф-циями, локализованными в разл. минимумах одного адиабатич. потенциала, соответствуют разнообразным хим. р-циям. Туннельный эффект всегда вносит нек-рый вклад в скорость р-ции, однако этот вклад существен только при низких т-рах, когда надбарьер-ный переход из исходного состояния в конечное маловероятен из-за низкой заселенности соответствующих уровней энергии. Туннельный эффект проявляется в неаррениусовском поведении скорости r -ции; характерный пример - рост цепи при ради-ационно-инициированной твердого . Скорость этого процесса при т-ре ок. 140 К удовлетворительно описывается законом Аррениуса с

  • Физика
    • Перевод

    Начну с двух простых вопросов с достаточно интуитивными ответами. Возьмём чашу и шарик (рис. 1). Если мне нужно, чтобы:

    Шарик оставался неподвижным после того, как я помещу его в чашу, и
    он оставался примерно в том же положении при перемещении чаши,

    То куда мне его положить?

    Рис. 1

    Конечно, мне нужно положить его в центр, на самое дно. Почему? Интуитивно ясно, что если я положу его куда-то ещё, он скатится до дна, и будет болтаться туда и сюда. В итоге трение уменьшит высоту болтаний и затормозит его внизу.

    В принципе можно попробовать уравновесить шарик на краю чаши. Но если я немного потрясу её, шарик потеряет равновесие у падёт. Так что это место не удовлетворяет второму критерию в моём вопросе.

    Назовём положение, в котором шарик остаётся неподвижным, и от которого он не сильно отклоняется при небольших движениях чаши или шарика, «стабильным положением шарика». Дно чаши - такое стабильное положение.

    Другой вопрос. Если у меня есть две чаши, как на рис. 2, где будут стабильные положения для шарика? Это тоже просто: таких мест два, а именно, на дне каждой из чаш.


    Рис. 2

    Наконец, ещё один вопрос с интуитивно понятным ответом. Если я размещу шарик на дне чаши 1, а потом выйду из комнаты, закрою её, гарантирую, что никто туда не зайдёт, проверю, что в этом месте не было землетрясений и других потрясений, то каковы шансы, что через десять лет, когда я вновь открою комнату, я обнаружу шарик на дне чаши 2? Конечно, нулевые. Чтобы шарик переместился со дна чаши 1 на дно чаши 2, кто-то или что-то должны взять шарик и переместить его с места на место, над краем чаши 1, в сторону чаши 2 и затем над краем чаши 2. Очевидно, что шарик останется на дне чаши 1.

    Очевидно и по сути верно. И всё же, в квантовом мире, в котором мы живём, ни один объект не остаётся по-настоящему неподвижным, и его положение точно неизвестно. Так что ни один из этих ответов не верен на 100%.

    Туннелирование



    Рис. 3

    Если я размещу элементарную частицу вроде электрона в магнитной ловушке (рис. 3) работающей, как чаша, стремящейся подтолкнуть электрон к центру точно так же, как гравитация и стены чаши толкают шарик к центру чаши на рис. 1, тогда каково будет стабильное положение электрона? Как и следовало интуитивно ожидать, среднее положение электрона будет стационарным, только если разместить его в центре ловушки.

    Но квантовая механика добавляет один нюанс. Электрон не может оставаться неподвижным; его положение подвержено «квантовому дрожанию». Из-за этого его положение и движение постоянно меняется, или даже обладает некоей долей неопределённости (это работает знаменитый «принцип неопределённости»). Только среднее положение электрона находится в центре ловушки; если посмотреть на электрон, то он окажется где-нибудь в другом месте ловушки, рядом с центром, но не совсем там. Электрон неподвижен только в таком смысле: он обычно двигается, но его движение случайное, и поскольку он находится в ловушке, в среднем он никуда не сдвигается.

    Это немного странно, но всего лишь отражает тот факт, что электрон представляет собой не то, что вы думаете, и не ведёт себя так, как любой из виденных вами объектов.

    Это, кстати, также гарантирует, что электрон нельзя уравновесить на краю ловушки, в отличие от шарика на краю чаши (как внизу на рис. 1). Положение электрона не определено точно, поэтому его нельзя точно уравновесить; поэтому, даже без встряхиваний ловушки, электрон потеряет равновесие и почти сразу сорвётся.

    Но что более странно, так это тот случай, когда у меня будет две ловушки, отделённые друг от друга, и я размещу электрон в одной из них. Да, центр одной из ловушек - хорошее, стабильное положение для электрона. Это так - в том смысле, что электрон может оставаться там и не убежит, если потрясти ловушку.

    Однако, если разместить электрон в ловушке №1, и уйти, закрыть комнату и т.п., существует определённая вероятность того (рис. 4), что, когда я вернусь электрон будет находиться в ловушке №2.


    Рис. 4

    Как он это сделал? Если представлять себе электроны в виде шариков, вы этого не поймёте. Но электроны не похожи на шарики (или, по крайней мере, на ваше интуитивное представление о шариках), и их квантовое дрожание даёт им крайне небольшой, но ненулевой шанс «прохода сквозь стены» - кажущаяся невероятной возможность переместиться на другую сторону. Это называется туннелированием - но не надо думать, что электрон прокапывает дырку в стене. И вы никогда не сможете поймать его в стене - так сказать, с поличным. Просто стена не полностью непроницаема для таких вещей, как электрон; электроны нельзя так легко поймать в ловушку.

    На самом деле, всё ещё безумнее: поскольку это правда для электрона, это правда и для шарика в вазе. Шарик может оказаться в вазе 2, если подождать достаточно долго. Но вероятность этого чрезвычайно мала. Так мала, что даже если подождать миллиард лет, или даже миллиарды миллиардов миллиардов лет, этого будет недостаточно. С практической точки зрения этого «никогда» не произойдёт.

    Наш мир - квантовый, и все объекты состоят из элементарных частиц и подчиняются правилам квантовой физики. Квантовое дрожание присутствует постоянно. Но большая часть объектов, масса которых велика по сравнению с массой элементарных частиц - шарик, к примеру, или даже пылинка - это квантовое дрожание слишком мелкое, чтобы его обнаружить, за исключением особо разработанных экспериментов. И следующая из этого возможность туннелировать сквозь стены тоже не наблюдается в обычной жизни.

    Иначе говоря: любой объект может туннелировать сквозь стену, но вероятность этого обычно резко уменьшается, если:

    У объекта большая масса,
    стена толстая (большое расстояние между двумя сторонами),
    стену трудно преодолеть (чтобы пробить стену, нужно много энергии).

    В принципе шарик может преодолеть край чаши, но на практике это может оказаться невозможным. Электрону может быть легко сбежать из ловушки, если ловушки расположены близко и не очень глубокие, но может быть и очень сложно, если они расположены далеко и очень глубокие.

    А точно туннелирование происходит?



    Рис. 5

    А может, это туннелирование - просто теория? Точно нет. Оно фундаментально для химии, происходит во многих материалах, играет роль в биологии, и это принцип, используемый в наших самых хитрых и мощных микроскопах.

    Для краткости давайте я остановлюсь на микроскопе. На рис. 5 представлено изображение атомов, сделанное при помощи сканирующего туннельного микроскопа . У такого микроскопа есть узкая игла, чей кончик двигается в непосредственной близости к изучаемому материалу (см. рис. 6). Материал и иголка, разумеется, состоят из атомов; а на задворках атомов находятся электроны. Грубо говоря, электроны находятся в ловушке внутри изучаемого материала или на кончике микроскопа. Но чем ближе кончик к поверхности, тем более вероятен туннельный переход электронов между ними. Простое устройство (между материалом и иглой поддерживается разница потенциалов) гарантирует, что электроны предпочтут перескакивать с поверхности на иглу, и этот поток - электрический ток, поддающийся измерению. Игла двигается над поверхностью, и поверхность оказывается то ближе, то дальше от кончика, и ток меняется - становится сильнее с уменьшением расстояния и слабее с увеличением. Отслеживая ток (или, наоборот, двигая иглу вверх и вниз для поддержания постоянного тока) при сканировании поверхности, микроскоп делает вывод о форме этой поверхности, и часто детализации хватает для того, чтобы разглядеть отдельные атомы.


    Рис. 6

    Туннелирование играет и множество других ролей в природе и современных технологиях.

    Туннелирование между ловушками разной глубины

    На рис. 4 я подразумевал, что у обеих ловушек одинаковая глубина - точно так же, как у обеих чаш на рис. 2 одинаковая форма. Это означает, что электрон, находясь в любой из ловушек, с одинаковой вероятностью перескочит в другую.

    Теперь допустим, что одна ловушка для электрона на рис. 4 глубже другой - точно так же, как если бы одна чаша на рис. 2 была глубже другой (см. рис. 7). Хотя электрон может туннелировать в любом направлении, ему будет гораздо проще туннелировать из более мелкой в более глубокую ловушку, чем наоборот. Соответственно, если мы подождём достаточно долго, чтобы у электрона было достаточно времени туннелировать в любом направлении и вернуться, а затем начнём проводить измерения с целью определить его местонахождение, мы чаще всего будем находить его в глубокой ловушке. (На самом деле и тут есть свои нюансы, всё зависит ещё и от формы ловушки). При этом разница глубин не обязательно должна быть крупной для того, чтобы туннелирование из более глубокой в более мелкую ловушку стало чрезвычайно редким.

    Короче, туннелирование в целом будет происходить в обоих направлениях, но вероятность перехода из мелкой ловушки в глубокую гораздо больше.


    Рис. 7

    Именно эта особенность используется в сканирующем туннельном микроскопе, чтобы гарантировать, что электроны будут переходить только в одном направлении. По сути кончик иглы микроскопа оказывается более глубокой ловушкой, чем изучаемая поверхность, поэтому электроны предпочитают туннелировать из поверхности на иглу, а не наоборот. Но микроскоп будет работать и в противоположном случае. Ловушки делаются глубже или мельче при помощи источника питания, создающего разность потенциалов между иглой и поверхностью, что создаёт разницу в энергиях у электронов на игле и электронов на поверхности. Поскольку заставить электроны чаще туннелировать в одном направлении, чем в другом, оказывается довольно просто, это туннелирование становится практически полезным для использования в электронике.

  • 1.9. 1S– состояние электрона в атоме водорода
  • 1.10. Спин электрона. Принцип Паули
  • 1.11. Спектр атома водорода
  • 1.12. Поглощение света, спонтанное и вынужденное излучения
  • 1.13. Лазеры
  • 1.13.1. Инверсия населенностей
  • 1.13.2. Способы создания инверсии населенностей
  • 1.13.3. Положительная обратная связь. Резонатор
  • 1.13.4. Принципиальная схема лазера.
  • 1.14. Уравнение Дирака. Спин.
  • 2. Зонная теория твердых тел.
  • 2.1. Понятие о квантовых статистиках. Фазовое пространство
  • 2.2. Энергетические зоны кристаллов. Металлы. Полупроводники. Диэлектрики
  • Удельное сопротивление твердых тел
  • 2.3. Метод эффективной массы
  • 3. Металлы
  • 3.1. Модель свободных электронов
  • При переходе из вакуума в металл
  • 3.2. Распределение электронов проводимости в металле по энергиям. Уровень и энергия Ферми. Вырождение электронного газа в металлах
  • Энергия Ферми и температура вырождения
  • 3.3. Понятие о квантовой теории электропроводности металлов
  • 3.4. Явление сверхпроводимости. Свойства сверхпроводников. Применение сверхпроводимости
  • 3.5. Понятие об эффектах Джозефсона
  • 4. Полупроводники
  • 4.1. Основные сведения о полупроводниках. Классификация полупроводников
  • 4.2. Собственные полупроводники
  • 4.3.Примесные полупроводники
  • 4.3.1.Электронный полупроводник (полупроводник n-типа)
  • 4.3.2. Дырочный полупроводник (полупроводник р-типа)
  • 4.3.3.Компенсированный полупроводник. Частично компенсированный полупроводник
  • 4.3.4.Элементарная теория примесных состояний. Водородоподобная модель примесного центра
  • 4.4. Температурная зависимость удельной проводимости примесных полупроводников
  • 4.4.1.Температурная зависимость концентрации носителей заряда
  • 4.4.2.Температурная зависимость подвижности носителей заряда
  • 4.4.3. Температурная зависимость удельной проводимости полупроводникаn-типа
  • 4.4.5. Термисторы и болометры
  • 4.5. Рекомбинация неравновесных носителей заряда в полупроводниках
  • 4.6. Диффузия носителей заряда.
  • 4.6.1. Диффузионная длина
  • 4.6.2. Соотношение Эйнштейна между подвижностью и коэффициентом диффузии носителей заряда
  • 4.7. Эффект Холла в полупроводниках
  • 4.7.1. Возникновение поперечного электрического поля
  • 4.7.2. Применение эффекта Холла для исследования полупроводниковых материалов
  • 4.7.3. Преобразователи Холла
  • 4.8. Магниторезистивный эффект
  • 5. Электронно-дырочный переход
  • 5.1.Образование электронно-дырочного перехода
  • 5.1.1. Электронно-дырочный переход в условиях равновесия (при отсутствии внешнего напряжения)
  • 5.1.2.Прямое включение
  • 5.1.3.Обратное включение
  • 5.2.КласСификация полупроводниковых диодов
  • 5.3. Вольт-амперная характеристика электроннно-дырочного перехода. Выпрямительные, детекторные и преобразовательные диоды
  • 5.3.1.Уравнение вольт-амперной характеристики
  • Классификация полупроводниковых диодов
  • 5.3.2.Принцип действия и назначение выпрямительных, детекторных и преобразовательных диодов
  • 5.4. Барьерная емкость. Варикапы
  • 5.5.Пробой электронно-дырочного перехода
  • 5.6. Туннельный эффект в вырожденном электронно-дырочном переходе. Туннельные и обращенные диоды
  • 6.Внутренний фотоэффект в полупроводниках.
  • 6.1.Фоторезистивный эффект. Фоторезисторы
  • 6.1.1.Воздействие излучения на полупроводник
  • 5.1.2.Устройство и характеристики фоторезисторов
  • 6.2.Фотоэффект в электронно-дырочном переходе. Полупроводниковые фотодиоды и фотоэлементы.
  • 6.2.1.Воздействие света наp-n-переход
  • 7.Люминесценция твердых тел
  • 7.1.Виды люминесценции
  • 7.2.Электролюминесценция кристаллофосфоров
  • 7.2.1. Механизм свечения кристаллофосфоров
  • 7.2.2. Основные характеристики электролюминесценции кристаллофосфоров
  • 7.3.Инжекционная электролюминесценция. Устройство и характеристики светодиодных структур
  • 7.3.1.Возникновение излучения в диодной структуре
  • 7.3.2.Конструкция светодиода
  • 7.3.3.Основные характеристики светодиодов
  • 7.3.4.Некоторые применения светодиодов
  • 7.4 Понятие об инжекционных лазерах
  • 8. Транзисторы
  • 8.1.Назначение и виды транзисторов
  • 8.2.Биполярные транзисторы
  • 8.2.1 Структура и режимы работы биполярного транзистора
  • 8.2.2.Схемы включения биполярных транзисторов
  • 8.2.3.Физические процессы в транзисторе
  • 8.3.Полевые транзисторы
  • 8.3.1.Разновидности полевых транзисторов
  • 8.3.2.Полевые транзисторы с управляющим переходом
  • 8.3.3. Полевые транзисторы с изолированным затвором. Структуры мдп-транзисторов
  • 8.3.4.Принцип действия мдп-транзисторов с индуцированным каналом
  • 8.3.5. Мдп-транзисторы со встроенным каналом
  • 8.4. Сравнение полевых транзисторов с биполярными
  • Заключение
  • 1.Элементы квантовой механики 4
  • 2. Зонная теория твердых тел. 42
  • 3. Металлы 50
  • 4. Полупроводники 65
  • 5. Электронно-дырочный переход 97
  • 6.Внутренний фотоэффект в полупроводниках. 108
  • 7.Люминесценция твердых тел 113
  • 8. Транзисторы 123
  • 1.7. Понятие о туннельном эффекте.

    Туннельным эффектом называют прохождение частиц сквозь потенциальный барьер за счет волновых свойств частиц.

    Пусть частица, движущаяся слева направо, встречает на своем пути потенциальный барьер высотой U 0 и шириной l . По классическим представлениям частица беспрепятственно проходит над барьером, если ее энергия E больше высоты барьера (E > U 0 ). Если же энергия частицы меньше высоты барьера (E < U 0 ), то частица отражается от барьера и начинает двигаться в обратную сторону, сквозь барьер частица проникнуть не может.

    Вквантовой механике учитываются волновые свойства частиц. Для волны левая стенка барьера – это граница двух сред, на которой волна делится на две волны – отраженную и преломленную.Поэтому даже при E > U 0 возможно (хотя и с небольшой вероятностью) отражение частицы от барьера, а при E < U 0 имеется отличная от нуля вероятность того, что частица окажется по другую сторону потенциального барьера. В этом случае частица как бы «прошла сквозь туннель».

    Решим задачу о прохождении частицы сквозь потенциальный барьер для наиболее простого случая одномерного прямоугольного барьера, изображенного на рис.1.6. Форма барьера задается функцией

    . (1.7.1)

    Запишем уравнение Шредингера для каждой из областей: 1(x <0 ), 2(0< x < l ) и 3(x > l ):

    ; (1.7.2)

    ; (1.7.3)

    . (1.7.4)

    Обозначим

    (1.7.5)

    . (1.7.6)

    Общие решения уравнений (1), (2), (3) для каждой из областей имеют вид:

    Решение вида
    соответствует волне, распространяющейся в направлении оси x , а
     волне, распространяющейся в противоположном направлении. В области 1 слагаемое
    описывает волну, падающую на барьер, а слагаемое
     волну, отраженную от барьера. В области 3 (справа от барьера) имеется только волна, распространяющаяся в направлении x, поэтому
    .

    Волновая функция должна удовлетворять условию непрерывности, поэтому решения (6),(7),(8) на границах потенциального барьера необходимо «сшить». Для этого приравниваем волновые функции и их производные при x =0 и x = l :

    ;
    ;

    ;
    . (1.7.10)

    Используя (1.7.7) - (1.7.10), получимчетыре уравнения для определенияпяти коэффициентовА 1 , А 2 , А 3 , В 1 и В 2 :

    А 1 1 2 2 ;

    А 2 е xp ( l ) + В 2 е xp (- l )= А 3 е xp (ikl ) ;

    ik 1 – В 1 ) = 2 –В 2 ) ; (1.7.11)

    2 е xp (l )–В 2 е xp (- l ) = ik А 3 е xp (ikl ) .

    Чтобы получить пятое соотношение, введем понятия коэффициентов отражения и прозрачности барьера.

    Коэффициентом отражения назовем отношение

    , (1.7.12)

    которое определяет вероятность отражения частицы от барьера.

    Коэффициент прозрачности


    (1.7.13)

    дает вероятность того, что частица пройдет через барьер. Так как частица либо отразится, либо пройдет через барьер, то сумма этих вероятностей равна единице. Тогда

    R + D =1; (1.7.14)

    . (1.7.15)

    Это и есть пятое соотношение, замыкающее систему (1.7.11), из которой находятся всепять коэффициентов.

    Наибольший интерес представляет коэффициент прозрачности D . После преобразований получим

    , (7.1.16)

    где D 0 – величина, близкая к единице.

    Из (1.7.16) видно, что прозрачность барьера сильно зависит от его ширины l , от того, на сколько высота барьераU 0 превышает энергию частицыE , а также от массы частицыm .

    Склассической точки зрения прохождение частицы сквозь потенциальный барьер приE < U 0 противоречит закону сохранения энергии. Дело в том, что если классическая частица находилась бы в какой-то точке в области барьера (область 2 на рис. 1.7), то ее полная энергия оказалась бы меньше потенциальной энергии (а кинетическая – отрицательной!?). С квантовой точки зрения такого противоречия нет. Если частица движется к барьеру, то до столкновения с ним она имеет вполне определенную энергию. Пусть взаимодействие с барьером длится время t , тогда, согласно соотношению неопределенностей, энергия частицы уже не будет определенной; неопределенность энергии
    . Когда эта неопределенность оказывается порядка высоты барьера, он перестает быть для частица непреодолимым препятствием, и частица пройдет сквозь него.

    Прозрачность барьера резко убывает с его шириной (см. табл. 1.1.). Поэтому частицы могут проходить за счет туннельного механизма лишь очень узкие потенциальные барьеры.

    Таблица 1.1

    Значения коэффициента прозрачности для электрона при ( U 0 E ) = 5 эВ = const

    l , нм

    Мы рассмотрели барьер прямоугольной формы. В случае потенциального барьера произвольной формы, например такой, как показано на рис.1.7, коэффициент прозрачности имеет вид

    . (1.7.17)

    Туннельный эффект проявляется в ряде физических явлений и имеет важные практические приложения. Приведем некоторые примеры.

    1. Автоэлектронная (холодная) эмиссия электронов .

    В1922 г. было открыто явление холодной электронной эмиссии из металлов под действием сильного внешнего электрического поля. График зависимости потенциальной энергииU электрона от координатыx изображен на рис. Приx < 0 – область металла, в котором электроны могут двигаться почти свободно. Здесь потенциальную энергию можно считать постоянной. На границе металла возникает потенциальная стенка, не позволяющая электрону покинуть металл, он может это сделать, лишь приобретя добавочную энергию, равную работе выходаA . За пределами металла (приx > 0) энергия свободных электронов не меняется, поэтому приx> 0 графикU (x ) идет горизонтально. Создадим теперь вблизи металла сильное электрическое поле. Для этого возьмем металлический образец в форме острой иглы и подсоединим его к отрицательному полюсу источни Рис. 1.9 Принцип действия туннельного микроскопа

    ка напряжения, (он будет катодом); поблизости расположим другой электрод (анод), к которому присоединим положительный полюс источника. При достаточно большой разности потенциалов между анодом и катодом можно создать вблизи катода электрическое поле с напряженностью порядка 10 8 В/м. Потенциальный барьер на границе металл – вакуум становится узким, электроны просачиваются сквозь него и выходят из металла.

    Автоэлектронная эмиссия использовалась для создания электронных ламп с холодными катодами (сейчас они практически вышли из употребления), в настоящее время она нашла применение в туннельных микроскопах, изобретенных в 1985 г. Дж. Биннингом, Г. Рорером и Э. Руска.

    В туннельном микроскопе вдоль исследуемой поверхности перемещается зонд - тонкая игла. Игла сканирует исследуемую поверхность, находясь так близко от нее, что электроны из электронных оболочек (электронных облаков) поверхностных атомов за счет волновых свойств могут попасть на иглу. Для этого на иглу подаем “плюс” от источника, а на исследуемый образец - “минус”. Туннельный ток пропорционален коэффициенту прозрачности потенциального барьера между иглой и поверхностью, который согласно формуле (1.7.16) зависит от ширины барьера l . При сканировании иглой поверхности образца туннельный ток изменяется в зависимости от расстоянияl , повторяя профиль поверхности. Прецизионные перемещения иглы на малые расстояния осуществляют с помощью пьезоэффекта, для этого закрепляют иглу на кварцевой пластине, которая расширяется или сжимается, когда к ней прикладывается электрическое напряжение. Современные технологии позволяют изготовить иглу столь тонкую, что на ее конце располагается один единственный атом.

    Изображение формируется на экране дисплея ЭВМ. Разрешение туннельного микроскопа так высоко, что позволяет “увидеть” расположение отдельных атомов. На рис.1.10 приведено в качестве примера изображение атомной поверхности кремния.

    2. Альфа-радиоактивность (– распад ). В этом явлении происходит спонтанное превращение радиоактивных ядер, в результате которого одно ядро (его называют материнским) испускает– частицу и превращается в новое (дочернее) ядро с зарядом, меньшим на 2 единицы. Напомним, что– частица (ядро атома гелия) состоит из двух протонов и двух нейтронов.

    Если считать, что- частица существует как единое образование внутри ядра, то график зависимости ее потенциальной энергии от координаты в поле радиоактивного ядра имеет вид, показанный на рис.1.11. Он определяется энергией сильного (ядерного) взаимодействия, обусловленного притяжением нуклонов друг к другу, и энергией кулоновского взаимодействия (электростатического отталкивания протонов).

    В результате - частица в ядре, имеющая энергиюЕ  , находится за потенциальным барьером. Вследствие ее волновых свойств есть некоторая вероятность того, что- частица окажется за пределами ядра.

    3. Туннельный эффект в p - n - переходе используется в двух классах полупроводниковых приборов:туннельных иобращенных диодах . Особенностью туннельных диодов является наличие падающего участка на прямой ветви вольт-амперной характеристики - участка с отрицательным дифференциальным сопротивлением. В обращенных диодах наиболее интересным является то,что при обратном включении сопротивление оказывается меньше, чем при обратном включении. Подробнее о туннельных и обращенных диодах см. раздел 5.6.

    Имеется вероятность, что квантовая частица проникнет за барьер, который непреодолим для классической элементарной частицы.

    Представьте шарик, катающийся внутри сферической ямки, вырытой в земле. В любой момент времени энергия шарика распределена между его кинетической энергией и потенциальной энергией силы тяжести в пропорции, зависящей от того, насколько высоко шарик находится относительно дна ямки (согласно первому началу термодинамики). При достижении шариком борта ямки возможны два варианта развития событий. Если его совокупная энергия превышает потенциальную энергию гравитационного поля, определяемую высотой точки нахождения шарика, он выпрыгнет из ямки. Если же совокупная энергия шарика меньше потенциальной энергии силы тяжести на уровне борта лунки, шарик покатится вниз, обратно в ямку, в сторону противоположного борта; в тот момент, когда потенциальная энергия будет равна совокупной энергии шарика, он остановится и покатится назад. Во втором случае шарик никогда не выкатится из ямки, если не придать ему дополнительную кинетическую энергию — например, подтолкнув. Согласно законам механики Ньютона , шарик никогда не покинет ямку без придания ему дополнительного импульса, если у него недостаточно собственной энергии для того, чтобы выкатиться за борт.

    А теперь представьте, что борта ямы возвышаются над поверхностью земли (наподобие лунных кратеров). Если шарику удастся перевалить за приподнятый борт такой ямы, он покатится дальше. Важно помнить, что в ньютоновском мире шарика и ямки сам факт, что, перевалив за борт ямки, шарик покатится дальше, не имеет смысла, если у шарика недостаточно кинетической энергии для достижения верхнего края. Если он не достигнет края, он из ямы просто не выберется и, соответственно, ни при каких условиях, ни с какой скоростью и никуда не покатится дальше, на какой бы высоте над поверхностью снаружи ни находился край борта.

    В мире квантовой механики дело обстоит иначе. Представим себе, что в чем-то вроде такой ямы находится квантовая частица. В этом случае речь идет уже не о реальной физической яме, а об условной ситуации, когда частице требуется определенный запас энергии, необходимый для преодоления барьера, мешающего ей вырваться наружу из того, что физики условились называть «потенциальной ямой» . У этой ямы есть и энергетической аналог борта — так называемый «потенциальный барьер» . Так вот, если снаружи от потенциального барьера уровень напряженности энергетического поля ниже, чем энергия, которой обладает частица, у нее имеется шанс оказаться «за бортом», даже если реальной кинетической энергии этой частицы недостаточно, чтобы «перевалить» через край борта в ньютоновском понимании. Этот механизм прохождения частицы через потенциальный барьер и назвали квантовым туннельным эффектом.

    Работает он так: в квантовой механике частица описывается через волновую функцию, которая связана с вероятностью местонахождения частицы в данном месте в данный момент времени. Если частица сталкивается с потенциальным барьером, уравнение Шрёдингера позволяет рассчитать вероятность проникновения частицы через него, поскольку волновая функция не просто энергетически поглощается барьером, но очень быстро гасится — по экспоненте. Иными словами, потенциальный барьер в мире квантовой механики размыт. Он, конечно, препятствует движению частицы, но не является твердой, непроницаемой границей, как это имеет место в классической механике Ньютона.

    Если барьер достаточно низок или если суммарная энергия частицы близка к пороговой, волновая функция, хотя и убывает стремительно при приближении частицы к краю барьера, оставляет ей шанс преодолеть его. То есть имеется определенная вероятность, что частица будет обнаружена по другую сторону потенциального барьера — в мире механики Ньютона это было бы невозможно. А раз уж частица перевалила через край барьера (пусть он имеет форму лунного кратера), она свободно покатится вниз по его внешнему склону прочь от ямы, из которой выбралась.

    Квантовый туннельный переход можно рассматривать как своего рода «утечку» или «просачивание» частицы через потенциальный барьер, после чего частица движется прочь от барьера. В природе достаточно примеров такого рода явлений, равно как и в современных технологиях. Возьмем типичный радиоактивный распад : тяжелое ядро излучает альфа-частицу, состоящую из двух протонов и двух нейтронов. С одной стороны, можно представить себе этот процесс таким образом, что тяжелое ядро удерживает внутри себя альфа-частицу посредством сил внутриядерной связи, подобно тому как шарик удерживался в ямке в нашем примере. Однако даже если у альфа-частицы недостаточно свободной энергии для преодоления барьера внутриядерных связей, всё равно имеется вероятность ее отрыва от ядра. И, наблюдая спонтанное альфа-излучение, мы получаем экспериментальное подтверждение реальности туннельного эффекта.

    Другой важный пример туннельного эффекта — процесс термоядерного синтеза, питающий энергией звезды (см. Эволюция звезд). Один из этапов термоядерного синтеза — столкновение двух ядер дейтерия (по одному протону и одному нейтрону в каждом), в результате чего образуется ядро гелия-3 (два протона и один нейтрон) и испускается один нейтрон. Согласно закону Кулона , между двумя частицами с одинаковым зарядомданном случае протонами, входящими в состав ядер дейтерия) действует мощнейшая сила взаимного отталкивания — то есть налицо мощнейший потенциальный барьер. В мире по Ньютону ядра дейтерия попросту не могли бы сблизиться на достаточное расстояние и синтезировать ядро гелия. Однако в недрах звезд температура и давление столь высоки, что энергия ядер приближается к порогу их синтеза (в нашем смысле, ядра находятся почти на краю барьера), в результате чего начинает действовать туннельный эффект, происходит термоядерный синтез — и звезды светят.

    Наконец, туннельный эффект уже на практике применяется в технологии электронных микроскопов. Действие этого инструмента основано на том, что металлическое острие щупа приближается к исследуемой поверхности на сверхмалое расстояние. При этом потенциальный барьер не дает электронам из атомов металла перетечь на исследуемую поверхность. При перемещении щупа на предельно близком расстоянии вдоль исследуемой поверхности он как бы перебирает атом за атомом. Когда щуп оказывается в непосредственной близости от атомов, барьер ниже, чем когда щуп проходит в промежутках между ними. Соответственно, когда прибор «нащупывает» атом, ток возрастает за счет усиления утечки электронов в результате туннельного эффекта, а в промежутках между атомами ток падает. Это позволяет подробнейшим образом исследовать атомные структуры поверхностей, буквально «картографируя» их. Кстати, электронные микроскопы как раз и дают окончательное подтверждение атомарной теории строения материи.

    Туннельный эффект
    Tunneling effect

    Туннельный эффект (туннелирование) – прохождение частицы (или системы) сквозь область пространства, пребывание в которой запрещено классической механикой. Наиболее известный пример такого процесса – прохождение частицы сквозь потенциальный барьер, когда её энергия Е меньше высоты барьера U 0 . В классической физике частица не может оказаться в области такого барьера и тем более пройти сквозь неё, так как это нарушает закон сохранения энергии. Однако в квантовой физике ситуация принципиально другая. Квантовая частица не движется по какой-либо определенной траектории. Поэтому можно лишь говорить о вероятности нахождения частицы в определенной области пространства ΔрΔх > ћ. При этом ни потенциальная, ни кинетическая энергии не имеют определенных значений в соответствии с принципом неопределенности. Допускается отклонение от классической энергии Е на величину ΔЕ в течение интервалов времени t, даваемых соотношением неопределённостей ΔЕΔt > ћ (ћ = h/2π, где h – постоянная Планка).

    Возможность прохождения частицы сквозь потенциальный барьер обусловлена требованием непрерывной волновой функции на стенках потенциального барьера. Вероятность обнаружения частицы справа и слева связаны между собой соотношением, зависящим от разности E - U(x) в области потенциального барьера и от ширины барьера x 1 - x 2 при данной энергии.

    С увеличением высоты и ширины барьера вероятность туннельного эффекта экспоненциально спадает. Вероятность туннельного эффекта также быстро убывает с увеличением массы частицы.
    Проникновение сквозь барьер носит вероятностный характер. Частица с Е < U 0 , натолкнувшись на барьер, может либо пройти сквозь него, либо отразиться. Суммарная вероятность этих двух возможностей равна 1. Если на барьер падает поток частиц с Е < U 0 , то часть этого потока будет просачиваться сквозь барьер, а часть – отражаться. Туннельное прохождение частицы через потенциальный барьер лежит в основе многих явлений ядерной и атомной физики: альфа-распад, холодная эмиссия электронов из металлов, явления в контактном слое двух полупроводников и т.д.