Пирамида основные элементы. Пирамида

Четырехугольной пирамидой называется многогранник, в основании которого лежит квадрат, а все боковые грани являются одинаковыми равнобедренными треугольниками.

У данного многогранника есть множество различных свойств:

  • Его боковые ребра и прилегающие к ним двугранные углы равны между собой;
  • Площади боковых граней одинаковы;
  • В основании правильной четырехугольной пирамиды лежит квадрат;
  • Высота, опущенная из вершины пирамиды, пересекается с точкой пересечения диагоналей основания.

Все эти свойства помогают легко находить . Однако довольно часто помимо нее требуется рассчитать объем многогранника. Для этого применяется формула объема четырехугольной пирамиды:

То есть объем пирамиды равен одной третьей произведения высоты пирамиды на площадь основания. Так как равна произведению его равных сторон, то мы сразу вписываем в выражение объема формулу площади квадрата.
Рассмотрим пример расчета объема четырехугольной пирамиды.

Пусть дана четырехугольная пирамида, в основании которой лежит квадрат со стороной a = 6 см. Боковая грань пирамиды равна b = 8 см. Найдите объем пирамиды.

Чтобы найти объем заданного многогранника, нам потребуется длина его высоты. Поэтому мы найдем ее, применив теорему Пифагора. Для начала рассчитаем длину диагонали. В синем треугольнике она будет гипотенузой. Стоит также помнить, что диагонали квадрата равны между собой и в точке пересечения делятся пополам:


Теперь из красного треугольника найдем необходимую нам высоту h . Она будет равна:

Подставим необходимые значения и найдем высоту пирамиды:

Теперь, зная высоту, можем подставлять все значения в формулу объема пирамиды и рассчитывать необходимую величину:

Вот таким образом, зная несколько простых формул, мы смогли рассчитать объем правильной четырехугольной пирамиды. Не забывайте, что данная величина измеряется в кубических единицах.

Если в её основании лежит правильный многоугольник, а высота, опущенная из вершины пирамиды на основание, пересекает его в центре этого многоугольника (иначе говоря, вершина пирамиды проектируется в центр основания).
Заметим, что правильная пирамида не является, вообще говоря, правильным многогранником.
Отметим некоторые свойства правильной n-угольной пирамиды на примере треугольной пирамиды. Как известно центр правильного треугольника (пересечение медиан) совпадает с центром вписанной (пересечение биссектрис) и описанной около него окружности (пересечение серединных перпендикуляров). Т.е. отрезки АО, ВО и СО являются радиусами описанной окружности и равны.
Поэтому прямоугольные треугольники АОМ, ВОМ и СОМ равны по двум катетам (МО-общая). Из равенства этих треугольников следует равенство соответствующих сторон: АМ=ВМ=СМ
Теорема 1 . В правильной n-угольной пирамиде все боковые ребра равны между собой.
Из равенства ребер следует и равенство боковых граней. Треугольники АВМ, ВСМ и АСМ равны по трем сторонам.
Теорема 2 . Все боковые грани правильной n-угольной пирамиды суть равные равнобедренные треугольники (углы при основании рабнобедренного треугольника равны), поэтому:
Теорема 2.1 . В правильной n-угольной пирамиде все плоские углы при вершине равны;
Теорема 2.2 . В правильной n-угольной пирамиде все плоские углы при основании равны.
Как известно радиусы перпендикулярны касательной в точке касания. Проведем радиусы вписанной окружности ОТ, ОР и ОМ. Соединим соответственной точки Т, Р и М с вершиной К. Прямые КТ, КР и КМ соответственно перпендикулярны сторонам основания ВС, АВ и АС по теореме о трех перпендикулярах . Из равенства прямоугольных треугольников ОРК, ОТК и ОКМ по двум катетам (ОТ=ОР=ОМ как радиусы вписанной окружности; МО - общая) следует равенство всех двугранных углов при основании пирамиды Р ОРМ=Р ОТМ=Р ОКМ
Теорема 3 . В правильной n-угольной пирамиде все двугранные углы при основании равны.
Теорема 4 . В правильной n-угольной пирамиде все двугранные углы при боковых ребрах равны.

Нам хорошо известны великие египетские пирамиды, каждый может представить себе, как они выглядят. Это представление и поможет нам разобраться в особенностях такой геометрической фигуры, как пирамида.

Пирамида – это многогранник, состоящий из плоского многоугольника – основания пирамиды, точки, не лежащей в плоскости основания, – вершины пирамиды и всех отрезков, соединяющих вершину с точками основания. Отрезки, которые соединяют вершину пирамиды с вершинами основания, называются боковыми рёбрами. На рис. 1 изображена пирамида SABCD. Четырёхугольник ABCD – основание пирамиды, точка S – вершина пирамиды, отрезки SA, SB, SC и SD – рёбра пирамиды.

Высота пирамиды – перпендикуляр, опущенный из вершины пирамиды на плоскость основания. На рис. 1 SO – высота пирамиды.

Пирамида называется n-угольной, если её основанием является n-угольник. На рисунке 1 изображена четырёхугольная пирамида. Треугольная пирамида называется тетраэдром.

Пирамида называется правильной, если её основанием является правильный многоугольник, а основание высоты совпадает с центром этого многоугольника. Боковые рёбра у правильной пирамиды равны, а, следовательно, боковые грани являются равнобедренными треугольниками. В правильной пирамиде высота боковой грани, проведённая из вершины пирамиды, называется апофемой.

Пирамида обладает рядом свойств.

Все диагонали пирамиды принадлежат её граням.

Если все боковые ребра равны, то:

  • около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр;
  • боковые ребра образуют с плоскостью основания равные углы, и, наоборот, если боковые ребра образуют с плоскостью основания равные углы или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны.

Если боковые грани наклонены к плоскости основания под одним углом, то:

  • в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр;
  • высоты боковых граней равны;
  • площадь боковой поверхности равна половине произведения периметра основания на высоту боковой грани.

Рассмотрим формулы для нахождения объёма, площади поверхности пирамиды.

Объём пирамиды можно вычислить по следующей формуле:

где S – площадь основания, а h – высота.

Чтобы найти площадь полной поверхности пирамиды, необходимо воспользоваться формулой:

S p = S b + S o ,

где S p – площадь полной поверхности, S b – площадь боковой поверхности, S o – площадь основания.

Усечённой пирамида – это многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию. Грани усечённой пирамиды, лежащие в параллельных плоскостях, называются основаниями усечённой пирамиды, остальные грани называются боковыми гранями. Основаниями усечённой пирамиды являются подобные многоугольники, боковыми гранями – трапеции. Усечённая пирамида, которая получается из правильной пирамиды, называется правильной усечённой пирамидой. Боковые грани правильной усечённой трапеции представляют собой равные равнобокие трапеции, их высоты называются апофемами.

www.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Пирамида — это многогранник , у которого одна грань — основание пирамиды — произвольный многоугольник, а остальные — боковые грани — треугольники с общей вершиной, называемой вершиной пирамиды. Перпендикуляр опущенный из вершины пирамиды на ее основание, называется высотой пирамиды . Пирамида называется треугольной, четырехугольной, и т.д., если основанием пирамиды является треугольник, четырехугольник и т.д. Треугольная пирамида есть четырехгранник — тетраэдр. Четырехугольная — пятигранник и т.д.

Пирамида , Усеченная Пирамида

Правильная пирамида

Если основание пирамиды — правильный многоугольник , а высота опускается в центр основания, то — пирамида правильная. В правильной пирамиде все боковые ребра равны, все боковые грани равные равнобедренные треугольники. Высота треугольника боковой грани правильной пирамиды называется — апофема правильной пирамиды .

Усеченная пирамида

Сечение параллельное основанию пирамиды делит пирамиду на две части. Часть пирамиды между ее основанием и этим сечением — это усеченная пирамида . Это сечение для усеченной пирамиды является одним из её оснований. Расстояние между основаниями усеченной пирамиды называется высотой усеченной пирамиды. Усеченная пирамида называется правильной, если пирамида, из которой она была получена, была правильной. Все боковые грани правильной усеченной пирамиды — это равные равнобокие трапеции. Высота трапеции боковой грани правильной усеченной пирамиды называется — апофема правильной усеченной пирамиды .