Сила и масса в динамике. Динамика (Dynamics) - это

Масса в динамике.

Масса m в динамике может рассматриваться как мера инертности тела, то есть его способности сохранять скорость неизменной до тех пор, пока на него не действуют другие тела.

Первый закон Ньютона (закон инерции).

Всякое тело сохраняет своё первоначальное состояние относительно инерциальной системы отсчёта (т.е относительно покоя или равномерного прямолинейного движения) до тех пор, пока на него не подействуют другие тела.

Инерциальные системы отсчёта.

Система отсчёта, связанная с покоящимся или прямолинейно и равномерно движущимся телом, называется инерциальной. Также инерциальные системы отсчёта - это такие системы отсчёта, в которых выполняется закон инерции.

Второй закон Ньютона.

произведение массы тела на ускорение равно действующей на это тело силе, создающей это ускорение. Векторы силы и ускорения всегда имеют одинаковые направления.

Второй закон Ньютона справедлив только в инерциальных системах.

Ускорение, сообщаемое телу в результате одновременного действия нескольких сил, равно ускорению, которое сообщает ему их равнодействующая:

Третий закон Ньютона.

Силы, с которыми два взаимодействующих тела действуют друг на друга, направлены по одной прямой, равны по модулю и противоположны по направлению:

Центростремительныя сила.

Сила, с которой связь действует на тело при его движении по окружности, направленная к центру вращения, называется центростремительной силой:

Закон Гука.

Абсолютное удлинение Δl стержня при упругой деформации прямо пропорционально приложенной силе:

F упр - сила упругости, k - жёсткость материала стержня.

Силой упругости называют силу, возникающую в деформируемом теле. Она пропорциональна абсолютной величине деформации и направлена противоположно деформируемой силе.

Принцип относительности Галилея.

Все инерциальные системы отсчёта равноправны, поэтому законы механики записываются в них одинаково. В них неизменны время, масса тела, ускорение и сила. Траектория и скорость перемещения в различных инерциальных системах различны.

Закон всемирного тяготения.

Два тела притягиваются друг к другу по соединяющей их прямой с силой, прямо пропорциональной массам тел и обратно пропорциональной квадрату расстояния между ними:

G - гравитационная постоянная (фундаментальная физическая постоянная); G = 6,67·10 -11 Н·м 2 /кг 2 .

Равенство инертной и гравитационной масс.

Массу можно определить как скалярную величину, характеризующую одновременно как инертные, так и гравитационные свойства тел и являющуюся мерой обоих этих свойств.

Вес.

Силу P , с которой тело вследствие его притяжения к Земле действует на горизонтальную опору или подвес, препятствующие его свободному падению, называют весом. Вес - сила, приложенная к опоре, а не к телу:

m - масса тела, g - ускорение свободного падения.

Единица веса - 1 Н.

Первая космическая скорость.

Минимальная скорость υ 1 , которую нужно сообщить телу, чтобы ввести его на кмуговую орбиту вокруг Земли:

R З - радиус Земли.

Вторая космическая скорость.

Минисальная скорость υ 2 , которую нужно сообщить телу, чтобы вывести его из сферы притяжения Земли:

Сила трения.

Сила, которая возникает на поверхности двух соприкасающихся тел, если они перемещаются друг относительно друга, называется силой трения. Сила трения, проявляющаяся при отсутствии относительного движения тел, называется силой трения покоя:

μ - коэффициент трения, зависящий от материалов и состояний трущихся поверхностей, а также от видов движения (скольжение, качение, покой и т.п.), N - сила нормального давления.

Сила сопротивления среды.

Для малых скоростей:

Для больших скоростей:

υ - скорость движения, k - коэффициент сопротивления среды, зависящий от её свойств, а также формы, размеров и состояния поверхности движущегося тела.

1. Динамика в разных науках

В физике

В астрономии

В науках о Земле

В биологии

В технике

В музыке

2. Динамика в физике

3. Ряды динамики

4. Газовая динамика

Динамика - это состояние движения, ход развития, изменение какого-либо явления под влиянием действующих на него факторов.

Динамика в разных науках

В физике

Динамика

Аэрогазодинамика

Гидродинамика

Молекулярная динамика

Термодинамика

Нелинейная динамика

В астрономии

Звёздная динамика

В науках о Земле

Геодинамика

Динамика подземных вод

Динамика русловых потоков

В биологии

Популяционная динамика

Популяционная динамика старения

Динамика растительности (синдинамика) — процесс постепенной трансформации растительных сообществ под действием внешних и внутренних факторов.

В технике

Динамика машин и механизмов

Динамика сооружений

В музыке

Динамика в музыке — совокупность понятий и нотных обозначений, связанных с оттенками громкости звучания.

Динамика в физике

Динамика (греч. δύναμις — сила) — раздел механики, в котором изучаются причины возникновения механического движения. Динамика оперирует такими понятиями, как масса, сила, импульс, энергия.

Динамика, базирующаяся на законах Ньютона, называется классической динамикой. Классическая динамика описывает движения объектов со скоростями от долей миллиметров в секунду до километров в секунду.

Однако эти методы перестают быть справедливыми для движения объектов очень малых размеров (элементарные частицы) и при движениях со скоростями, близкими к скорости света. Такие движения подчиняются другим законам.

С помощью законов динамики изучается также движение сплошной среды, т. е. упруго и пластически деформируемых тел, жидкостей и газов.

В результате применения методов динамики к изучению движения конкретных объектов возник ряд специальных дисциплин: небесная механика, баллистика, динамика корабля, самолёта и т. п.

Основная задача динамики

Прямая задача динамики: по заданным силам определить характер движения тела.

Обратная задача динамики: по заданному характеру движения определить действующие на тело силы.

Законы Ньютона

Классическая динамика основана на трёх основных законах Ньютона:

1-й: Существуют такие системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела или их действие скомпенсировано.


2-й: В инерциальной системе отсчета сумма всех сил, действующих на тело, равна произведению массы этого тела на векторное ускорение этого же тела (действие на тело силы, проявляется в сообщении ему ускорения).

3-й: Тела действуют друг на друга силами равными по модулю и противоположными по направлению

Если при этом рассматриваются взаимодействующие материальные точки, то обе эти силы действуют вдоль прямой, их соединяющей. Это приводит к тому, что суммарный момент импульса системы состоящей из двух материальных точек в процессе взаимодействия остается неизменным. Таким образом, из второго и третьего законов Ньютона могут быть получены законы сохранения импульса и момента импульса

Законы Ньютона в неинерциальных системах отсчета


Существование инерциальных систем отсчета лишь постулируется первым законом Ньютона. Реальные системы отсчета, связанные, например, с Землей или с Солнцем, не обладают в полной мере свойством инерциальности в силу их кругового движения. Вообще говоря, экспериментально доказать существование ИСО невозможно, поскольку для этого необходимо наличие свободного тела (тела на которое не действуют никакие силы), а то, что тело является свободным, может быть показано лишь в ИСО. Описание же движения в неинерциальных системах отсчета, движущихся с ускорением относительно инерциальных, требует введения т. н. фиктивных сил таких как сила инерции, центробежная сила или сила Кориолиса.

Ряды динамики

Ряды динамики, статистические ряды, характеризующие изменение (развитие) социально-экономических явлений во времени. Например, данные о производстве электроэнергии в СССР за период 1928—73 представляют Ряды динамики

Производство электроэнергии в СССР, млрд. кет×ч

Последовательно расположенные во времени статистические данные называются уровнями Ряды динамики Они должны быть сопоставимы между собой, особенно в территориальном разрезе, по кругу охватываемых объектов, методике расчёта, критической дате, структуре. Уровни Ряды динамики могут характеризовать величину явлении за некоторые отрезки времени (интегральные Ряды динамики) или на определённую дату (моментные Ряды динамики). Анализ Ряды динамики состоит в определении скорости и интенсивности развития рассматриваемого явления, нахождении основные тенденции его развития (тренда), измерении колеблемости уровней, установлении связи с развитием др. явлений, проведении сравнительного анализа развития разных стран или районов. Для анализа Ряды динамики определяются статистические показатели: абсолютные приросты, темпы роста и прироста, средние уровни ряда, средние абсолютные приросты, средние темпы роста и прироста. Абсолютным приростом называют разность между последующим и предыдущим уровнями, а темпом роста — их отношение. Темп прироста составит разность между темпом роста и 1 (в коэффициенте) или 100%. Средний уровень ряда для интервальных рядов определяется как средняя арифметическая, а для моментных рядов — по формуле:


где — средний уровень, y1. — начальный, а уп — конечный, n — число уровней. Средний абсолютный прирост определяется как частное от деления абсолютного прироста за весь период на число единиц времени в периоде. Средний темп роста вычисляется как средняя геометрическая темпов роста за отдельные отрезки времени или как корень, степень которого определяется числом периодов, а под корнем берётся темп роста за весь период.

Определение тренда ведётся выравниванием статистическим. Колеблемость уровней Ряды динамики измеряется средней из квадратов отклонений фактических уровней от тренда. Для установления связи развития данного явления с другими пользуются методом корреляции Ряды динамики, отличающимся от обычного возможностью автокорреляции, авторегрессии, переменной корреляции и временного лага. Для сравнительного анализа разных стран (районов) часто используется приведение к одному основанию, состоящее в определении темпов роста для двух или более стран за одинаковые отрезки времени. Сравнительный анализ развития лучше вести с расчётом показателей на душу населения. Всесторонний анализ Ряды динамики позволяет выявить закономерности развития отражаемых в них явлений.

Газовая динамика

Газовая динамика, раздел гидро-аэромеханики, в котором изучается движение сжимаемых газообразных и жидких сред и их взаимодействие с твёрдыми телами. Как часть физики, Газовая динамика связана с термодинамикой и акустикой.

Свойство сжимаемости состоит в способности вещества изменять свой первоначальный объём под действием перепада давления или при изменении температуры. Поэтому сжимаемость становится существенной лишь при больших скоростях движения среды, соизмеримых со скоростью распространения звука в этой среде и превосходящих её, когда в среде возникают большие перепады давления и большие градиенты температуры. Современная газовая динамика изучает также течения газов при высоких температурах, сопровождающиеся химическими (диссоциация, горение и др. химические реакции) и физическими (ионизация, излучение) процессами. Изучение движения газов при таких условиях, когда газ нельзя считать сплошной средой, а необходимо рассматривать взаимодействие составляющих его молекул между собой и с твёрдыми телами, относится к области аэродинамики разреженных газов, основанной на молекулярно-кинетической теории газов. Динамика сжимаемого газа при малых скоростях движения больших воздушных масс в атмосфере составляет основу динамической метеорологии. Газовая динамика исторически возникла как дальнейшее развитие и обобщение аэродинамики, поэтому часто говорят о единой науке - аэрогазодинамике.

Теоретическую основу газовая динамика составляет применение основных законов механики и термодинамики к движущемуся объёму сжимаемого газа. Навье - Стокса уравнения, описывающие движение вязкого сжимаемого газа, были получены в 1-й половине 19 в. Немецкий учёный Б.Риман (1860), английский - У. Ранкин (1870), французский -А. Гюгоньо (1887) исследовали распространение в газе ударных волн, которые возникают только в сжимаемых средах и движутся со скоростью, превышающей скорость распространения в них звуковых волн. Риман создал также основы теории неустановившихся движений газа, т. е. таких движений, когда параметры газового потока в каждой его точке изменяются с течением времени.

Фундаментальную роль в формировании Газовая динамика как самостоятельной науки сыграла опубликована в 1902 работа С. А. Чаплыгина «О газовых струях». Развитые в ней методы решения газодинамических задач получили впоследствии широкое распространение и обобщение. Плодотворный метод решения задач Газовая динамика предложили в 1908 нем. учёные Л. Прандтль и Т. Майер, исследовавшие частный случай течения газа с непрерывным увеличением скорости. В 1922 в работе «Опыт гидромеханики сжимаемой жидкости» советский учёный А. А. Фридман заложил основы динамической метеорологии. В 1929 нем. учёными Л. Прандтлем и А. Буземаном был разработан эффективный численно-графический метод решения широкого класса газодинамических задач, распространённый в 1934 сов. учёным Ф. И. Франклем на более сложные случаи течения газа. Эти методы широко применяются при решении задач Газовая динамика с помощью ЭВМ. В 1921 в СССР была создана, а в 1927 оформилась как научное учреждение газодинамическая лаборатория, деятельность которой совместно с Группой изучения реактивного движения (1932) заложила основы сов. ракетной техники.

Как самостоятельный раздел гидроаэромеханики Газовая динамика существует с 1930, когда рост скоростей в авиации потребовал серьёзного исследования влияния сжимаемости при изучении движения воздуха. В 1935 в Риме состоялся 1-й международный конгресс по Газовая динамика Интенсивное развитие Газовая динамика началось во время и особенно после окончания 2-й мировой войны 1939-45 в связи с широким использованием Газовая динамика в технике: применение реактивной авиации, ракетного оружия, ракетных и воздушно-реактивных двигателей; полёты самолётов и снарядов со сверхзвуковыми скоростями; создание атомных бомб, взрыв которых влечёт за собой распространение сильных взрывных и ударных волн. В этот период Газовая динамика выдающуюся роль сыграли исследования советских учёных С. А. Христиановича, А. А. Дородницына, Л. И. Седова, Г. И. Петрова, Г. Г. Чёрного и др., немецких учёных Прандтля, Буземана, английских учёных Дж. Тейлора, Дж. Лайтхилла, американских учёных Т. Кармана, А. Ферри, У. Хейса, китайского учёного Цянь Сюэ-сэня, а также учёных др. стран.

Задачи газовой динамики при проектировании разнообразных аппаратов, двигателей и газовых машин состоят в определении сил давления и трения, температуры и теплового потока в любой точке поверхности тела или канала, омываемых газом, в любой момент времени. При исследовании распространения газовых струй, взрывных и ударных волн, горения и детонации методами Газовая динамика определяются давление, температура и др. параметры газа во всей области распространения. Изучение поставленных техникой сложных задач превратило современную газовою динамику в науку о движении произвольных смесей газов, которые могут содержать также твёрдые и жидкие частицы (например, выхлопные газы ракетных двигателей на жидком или твёрдом топливе), причём параметры, характеризующие состояние этих газов (давление, температура, плотность, электропроводность и др.), могут изменяться в широких пределах.

Для развития совресенной газовой динамики характерно неразрывное сочетание теоретических методов, использования ЭВМ и постановки сложных аэродинамических и физических экспериментов. Теоретические представления, частично опирающиеся на экспериментальные данные, позволяют описать с помощью уравнений движение газовых смесей сложного состава, в том числе многофазных смесей при наличии физико-химических превращений. Методами прикладной математики разрабатываются эффективные способы решения этих уравнений на ЭВМ. Наконец, из экспериментальных данных определяются необходимые значения физических и химических характеристик, свойственных изучаемой среде и рассматриваемым процессам (коэффициент вязкости и теплопроводности, скорости химических реакций, времена релаксации и др.).

Многие задачи, поставленные современной техникой перед газовой динамикой, пока не могут быть решены расчётно-теоретическими методами, в этих случаях широко пользуются газодинамическими экспериментами, поставленными на основе подобия теории и законов гидродинамического и аэродинамического моделирования. Газодинамические эксперименты в аэрогазодинамических лабораториях проводятся в сверхзвуковых и гиперзвуковых аэродинамических трубах, на баллистических установках, в ударных и импульсных трубах и на др. газодинамических установках специального назначения.

Законами газовой динамике широко пользуются во внешней и внутренней баллистике, при изучении таких явлений, как взрыв, горение, детонация, конденсация в движущемся потоке. Прикладная газовая динамика, в которой обычно применяются упрощённые теоретические представления об осреднённых по поперечному сечению параметрах газового потока и основные закономерности движения, найденные экспериментальным путём, используется при расчёте компрессоров и турбин, сопел и диффузоров, ракетных двигателей, аэродинамических труб, эжекторов, газопроводов и многих др. технических устройств.

Газодинамические исследования ведутся в тех же научных учреждениях, что и исследования по аэродинамике, а результаты их публикуются в тех же научных журналах и сборниках.

Источники

ru.wikipedia.org Википедия - свободная энциклопедия

bse.sci-lib.com Большая Советская энциклопедия

Динамика выясняет основные причины механического движения. Вопрос о причинах механического движения имеет долгую историю. Аристотель в своём трактате, который назывался «Физика», утверждал, что всякому движению есть движущая сила, поэтому все учёные-физики до XVI века искали силу, которая движет. Например, в трактате XIII века причины движения пущенной стрелы со скоростью были описаны следующим образом: сдвинувшись, стрела разрезает воздух, который находится впереди, но за оперением остаётся пустое пространство, в него входит воздух из окружающей среды и подталкивает эту стрелу (см. Рис. 1). Из этого объяснения выходит, что воздух является движущей силой и в разряжённом воздухе стрела будет лететь меньшее расстояние, что совершенно неверно.


Рис. 1. Движение стрелы

Утверждения Аристотеля считались абсолютной истиной до трудов Галилея. Он сформулировал закон инерции : если на тело не действуют никакие силы или действие этих сил скомпенсировано, тело сохраняет состояние покоя или равномерного прямолинейного движения.

Следующим этапом развития динамики были труды И. Ньютона. Он сформулировал систему законов (3 закона Ньютона), которые являются основными законами механики.

Ньютон выяснил, что ответ на основной вопрос динамики оказывается разным в двух классах систем отсчёта - это инерциальные и неинерциальные системы отсчёта, и сформулировал первый закон, который является уточнённым вариантом закона инерции Галилея. Первый закон Ньютона : существуют инерциальные системы отсчёта, в которых единственной причиной изменения состояния движения является воздействие какого-нибудь другого тела или поля.

Система отсчёта является инерциальной , если она связана со свободным телом или движется относительно свободного тела без ускорения. Свободным является тело, на которое ничто не действует. Понятие свободного тела - это абстрактное понятие. Таких тел в природе нет. Поэтому об инерциальной системе отсчёта можно говорить как об относительном понятии. Например, системы отсчета, жестко связанные с поверхностью Земли, строго говоря, не являются инерциальными, так как Земля движется по орбите вокруг Солнца и при этом вращается вокруг своей оси, однако при описании движений, не имеющих глобального (т. е. всемирного) масштаба, системы отсчета, связанные с Землей, можно с достаточной точностью считать инерциальными.

Динамика по Ньютону оперирует следующими физическими величинами:

1. Сила - это мера механического воздействия на данное тело со стороны какого-либо другого тела или поля (F ).

Механическое воздействие - это воздействие, приводящее к изменению скорости тела или к его деформации.

1 Ньютон - это сила, которая придаёт телу массой 1 килограмм ускорение 1 метр в секунду за секунду.

2. Масса - это мера инертности тела. Чем больше масса тела, тем труднее изменить его скорость.

Для однородного тела масса определяется через его плотность:

где - плотность тела; - объём тела.

Немецкий физик В. Кауфман в своих опытах обнаружил, что масса, как мера инертности тела, не является постоянной величиной. Он экспериментально нашёл зависимость массы электрона от его скорости.

где m - масса движущегося тела; - масса покоящегося тела; v - скорость тела; c - скорость света.

Прямоугольный брусок массой 32 г имеет размеры: длину 5 см, ширину 2 см и высоту 16 мм. Найти его плотность. Варианты ответа: 1. 500 ; 2. ; 3. ; 4. .

Дано : ; ; ;

Найти :

Решение

Из формулы массы выразим плотность:

Объём найдём по формуле:

Следовательно:

Ответ : 2.

3. Импульс - это физическая векторная величина, равная произведению массы тела на его скорость.

Найти импульс тела массой 1,2 кг при скорости 18 км/ч. Варианты ответа: 1. ; 2. ; 3. ; 4. .

Дано : ;

Найти :

Решение

Импульс равен:

Ответ : 3)

При выяснениях причин механического движения необходимо учитывать, что на рассматриваемое тело действует много различных тел и полей. В таком случае необходимо уметь находить результирующую сил, приложенных к телу.

Предположим к точке приложено три силы - (см. Рис. 2). Для нахождения результирующей воспользуемся элементами векторной алгебры.

Рис. 2. Силы, приложенные к точке

Каждый вектор силы можно выразить через составляющие по координатным осям:

Результирующая находится таким образом:

Мяч массой 400 г, двигаясь со скоростью 20 м/с, ударился о стенку и упруго отскочил от неё под углом к её поверхности. Найти изменение импульса мяча при ударе.

Реферат на тему:

Динамика (физика)



План:

    Введение
  • 1 Основная задача динамики
  • 2 Законы Ньютона
  • 3 Законы Ньютона в неинерциальных системах отсчета
  • 4 Описание динамики исходя из принципа наименьшего действия
  • 5 Формулы некоторых сил, действующих на тело
  • Литература

Введение

Дина́мика (греч. δύναμις - сила) - раздел механики, в котором изучаются причины возникновения механического движения. Динамика оперирует такими понятиями, как масса, сила, импульс, энергия.

Также динамикой нередко называют, применительно к другим областям физики (например, к теории поля), ту часть рассматриваемой теории, которая более или менее прямо аналогична динамике в механике, противопоставляясь обычно кинематике (к кинематике в таких теориях обычно относят, например, соотношения, получающиеся из преобразований величин при смене системы отсчета).

Иногда слово динамика применяется в физике и не в описанном смысле, а в более общелитературном: для обозначения просто процессов, развивающихся во времени, зависимости от времени каких-то величин, не обязательно имея в виду конкретный механизм или причину этой зависимости.

Динамика, базирующаяся на законах Ньютона, называется классической динамикой. Классическая динамика описывает движения объектов со скоростями от долей миллиметров в секунду до километров в секунду.

Однако эти методы перестают быть справедливыми для движения объектов очень малых размеров (элементарные частицы) и при движениях со скоростями, близкими к скорости света. Такие движения подчиняются другим законам.

С помощью законов динамики изучается также движение сплошной среды, т. е. упруго и пластически деформируемых тел, жидкостей и газов.

В результате применения методов динамики к изучению движения конкретных объектов возник ряд специальных дисциплин: небесная механика, баллистика, динамика корабля, самолёта и т. п.


1. Основная задача динамики

Исторически деление на прямую и обратную задачу динамики сложилось следующим образом.

  • Прямая задача динамики: по заданному характеру движения определить равнодействующую сил, действующих на тело.
  • Обратная задача динамики: по заданным силам определить характер движения тела.

2. Законы Ньютона

Классическая динамика основана на трёх основных законах Ньютона:

  • 1-й: Существуют такие системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела или их действие скомпенсировано.
  • 2-й: В инерциальной системе отсчета сумма всех сил, действующих на тело, равна произведению массы этого тела на векторное ускорение этого же тела (действие на тело силы, проявляется в сообщении ему ускорения).

В наиболее общем случае, который описывает также движение тела с изменяющейся массой (например, реактивное движение), 2-й закон Ньютона принято записывать следующим образом:

,

где - импульс тела. Таким образом, сила характеризует быстроту изменения импульса.

  • 3-й: Тела действуют друг на друга силами равными по модулю и противоположными по направлению

Если при этом рассматриваются взаимодействующие материальные точки, то обе эти силы действуют вдоль прямой, их соединяющей. Это приводит к тому, что суммарный момент импульса системы состоящей из двух материальных точек в процессе взаимодействия остается неизменным. Таким образом, из второго и третьего законов Ньютона могут быть получены законы сохранения импульса и момента импульса


3. Законы Ньютона в неинерциальных системах отсчета

Существование инерциальных систем отсчета лишь постулируется первым законом Ньютона. Реальные системы отсчета, связанные, например, с Землей или с Солнцем, не обладают в полной мере свойством инерциальности в силу их кругового движения. Вообще говоря, экспериментально доказать существование ИСО невозможно, поскольку для этого необходимо наличие свободного тела (тела на которое не действуют никакие силы), а то, что тело является свободным, может быть показано лишь в ИСО. Описание же движения в неинерциальных системах отсчета, движущихся с ускорением относительно инерциальных, требует введения т. н. фиктивных сил таких как сила инерции, центробежная сила или сила Кориолиса. Эти «силы» не обусловлены взаимодействием тел, то есть по своей природе не являются силами и вводятся лишь для сохранения формы второго закона Ньютона:

,

где - сумма всех фиктивных сил, возникающих в неинерциальной системе отсчета.


4. Описание динамики исходя из принципа наименьшего действия

Многие законы динамики могут быть описаны исходя не из законов Ньютона, а из принципа наименьшего действия.

5. Формулы некоторых сил, действующих на тело

  • Сила всемирного тяготения:

или в векторной форме:

вблизи земной поверхности:

  • Сила трения:
F f = μN
  • Сила Архимеда:
F A = ρg V

Литература

  • Алешкевич В. А., Деденко Л. Г., Караваев В. А. Механика твердого тела. Лекции. Издательство Физического факультета МГУ, 1997. http://nature.web.ru/db/msg.html?mid=1186208&s=120000000
  • Матвеев. А. Н. Механика и теория относительности. М.: Высшая школа, 1986. (3-е изд. М.: ОНИКС 21 век: Мир и Образование, 2003. - 432с.) http://www.alleng.ru/d/phys/phys108.htm
  • Павленко Ю. Г. Лекции по теоретической механике. М.: ФИЗМАТЛИТ, 2002. - 392с. http://www.alleng.ru/d/phys/phys99.htm
  • Сивухин Д. В. Общий курс физики. В 5 т. Том I. Механика. 4-е изд. М.: ФИЗМАТЛИТ; Изд-во МФТИ, 2005. - 560с.
  • Яворский Б. М. , Детлаф А. А. Физика для школьников старших классов и поступающих в вузы: учебное пособие. М.: Дрофа, 2002, 800с. ISBN 5-7107-5956-3

Данный реферат составлен на основе