Следствие вписанные углы, опирающиеся на одну и ту же дугу окружности. Н.Никитин Геометрия

«Вписанный угол» - Следствие 1: Решение задач. Найди рисунки, на которых изображены вписанные углы. Проблема № 2: Построить сразу несколько углов. Чем похожи и чем различаются углы АОВ и АСВ? Не решено! Найди ошибку в формулировках: Проблема № 1 ? Величина вписанного угла. Проблема № 1: Сразу несколько! Вершина не на окружности.

«Окружность вписанная в многоугольник» - Найдите периметр треугольника ABC, если известно, что BC = 10 см. Боковые стороны трапеции, описанной около окружности, равны 2 см и 4 см. Аналогично, угол BOC равен 90о. Найдите среднюю линию трапеции. Найдите периметр данного треугольника. В любой ли правильный многоугольник можно ли вписать окружность?

«Окружность 8 класс» - В любой треугольник можно вписать окружность. Проведем перпендикуляры ОК, ОL и ОM к сторонам?АВС. Теорема. Вписанная окружность. Следствия: Проведем биссектрисы треугольника, пересекающиеся в точке О.

«Битва на Курской дуге» - Встреча «Большой тройки» в Тегеране. История России. В.Перов. По предложению Жукова Красная Армия перешла к преднамеренной обороне. Стороны выработали принципы создания Организации Объединенных Наций. 1.Сталинградская битва. Сталинградская битва. В конце июля 1943 г. США и Англия высадили десант в Италии.

«Задачи об окружности и круге» - Длина окружности и площадь круга. Чему равна площадь соответствующего данной дуге кругового сектора? Найдите площадь закрашенной фигуры. 3. Периметр правильного треугольника, вписанного в окружность, равен 6|/3 дм. Решение задач.

«Длина окружности» - Найдите длину окружности этого диска. Великий древнегреческий математик Архимед. Найдите площадь циферблата. Найдите диаметр колеса тепловоза. Диаметр окружности вдвое больше ее радиуса d = 2r. Москва. Найдите диаметр колеса. Длина окружности. Диаметр. Число "пи" называют Архимедово число.

ОКРУЖНОСТЬ И КРУГ. ЦИЛИНДР.

§ 76. ВПИСАННЫЕ И НЕКОТОРЫЕ ДРУГИЕ УГЛЫ.

1. Вписанный угол.

Угол, вершина которого находится на окружности, а стороны являются хордами, называется вписанным.

Угол АВС - вписанный угол. Он опирается на дугу АС, заключённую между его сторонами (черт. 330).

Теорема. Вписанный угол измеряется половиной дуги, на которую он опирается.

Это надо понимать так: вписанный угол содержит столько угловых градусов, минут и секунд, сколько дуговых градусов, минут и секунд содержится в половине дуги, на которую он опирается.

При доказательстве этой теоремы надо рассмотреть три случая.

Первый случай. Центр круга лежит на стороне вписанного угла (черт. 331).

Пусть / АВС - вписанный угол и центр круга О лежит на стороне ВС. Требуется доказать, что он измеряется половиной дуги АС.

Соединим точку А с центром круга. Получим равнобедренный /\ AОВ, в котором
АО = ОВ, как радиусы одного и того же круга. Следовательно, / А = / В. / АОС является внешним по отношению к треугольнику АОВ, поэтому / АОС = / А + / В (§ 39, п. 2), а так как углы А и В равны, то / В составляет 1 / 2 / АОС.

Но / АОС измеряется дугой АС, следовательно, / В измеряется половиной дуги АС.

Например, если АС содержит 60° 18", то / В содержит 30°9".

Второй случай. Центр круга лежит между сторонами вписанного угла (черт. 332).

Пусть / АВD - вписанный угол. Центр круга О лежит между его сторонами. Требуется доказать, что / АВD измеряется половиной дуги АD.

Для доказательства проведём диаметр ВС. Угол АВD разбился на два угла: / 1 и / 2.

/ 1 измеряется половиной дуги АС, а / 2 измеряется половиной дуги СD, следовательно, весь / АВD измеряется 1 / 2 АС + 1 / 2 СD, т. е. половиной дуги АD.
Например, если АD содержит 124°, то / В содержит 62°.

Третий случай. Центр круга лежит вне вписанного угла (черт. 333).

Пусть / МАD - вписанный угол. Центр круга О находится вне угла. Требуется доказать, что / МАD измеряется половиной дуги МD.

Для доказательства проведём диаметр АВ. / МАD = / МАВ- / DАВ. Но / МАВ измеряется 1 / 2 МВ, а / DАВ измеряется 1 / 2 DВ. Следовательно, / МАD измеряется
1 / 2 (МВ - DВ), т. е. 1 / 2 МD.
Например, если МD содержит 48° 38"16", то / МАD содержит 24° 19" 8".

Следствия. 1. Все вписанные углы, опирающиеся на одну и ту же дугу, равны между собой, так как они измеряются половиной одной и той же дуги (черт. 334, а).

2. Вписанный угол, опирающийся на диаметр,-прямой, так как он опирается на половину окружности. Половина окружности содержит 180 дуговых градусов, значит, угол, опирающийся на диаметр, содержит 90 угловых градусов (черт. 334, б).

2. Угол, образованный касательной и хордой.

Теорема. Угол, образованный касательной и хордой, измеряется половиной дуги, заключённой между его сторонами.

Пусть / САВ составлен хордой СА и касательной АВ (черт. 335). Требуется доказать, что он измеряется половиной СА. Проведём через точку С прямую СD || АВ. Вписанный / АСD измеряется половиной дуги АD, но АD = СА, так как они заключены между касательной и параллельной ей хордой. Следовательно, / DСА измеряется половиной дуги СА. Так как данный / САВ = / DСА, то и он измеряется половиной дуги СА.

Упражнения.

1. На чертеже 336 найти касательные к окружности блоков.

2. По чертежу 337, а доказать, что угол АDС измеряется полусуммой дуг АС и ВК.

3. По чертежу 337, б доказать, что угол АМВ измеряется полуразностью дуг АВ и СЕ.

4. Через точку А, лежащую внутри круга, с помощью чертёжного треугольника провести хорду так, чтобы она в точке А разделилась пополам.

5. С помощью чертёжного треугольника разделить дугу на 2, 4, 8... равных частей.

6. Описать данным радиусом окружность, проходящую через две данные точки. Сколько решений имеет задача?

7. Сколько окружностей можно провести через данную точку?

Отметим на окружности две точки А и В. Они разделяют окружность на две дуги. Чтобы различать эти дуги, на каждой из них отмечают промежуточную точку, например L и М (рис. 214). Обозначают дуги так: ALB и AMВ. Иногда используется обозначение без промежуточной точки: AB (когда ясно, о какой из двух дуг идёт речь).


Рис. 214

Дуга называется полуокружностью , если отрезок, соединяющий её концы, является диаметром окружности. На рисунке 215, а изображены две полуокружности, одна из которых выделена цветом.


Рис. 215

Угол с вершиной в центре окружности называется её центральным углом . Пусть стороны центрального угла окружности с центром О пересекают её в точках А к В. Центральному углу АОВ соответствуют две дуги с концами А и В (рис. 215). Если ∠АОВ развёрнутый, то ему соответствуют две полуокружности (рис. 215, а). Если ∠АОВ неразвёрнутый, то говорят, что дуга АВ, расположенная внутри этого угла, меньше полуокружности . На рисунке 215, б эта дуга выделена цветом. Про другую дугу с концами А и В говорят, что она больше полуокружности (дуга ALB на рисунке 215, в).

Дугу окружности можно измерять в градусах. Если дуга А В окружности с центром О меньше полуокружности или является полуокружностью, то её градусная мера считается равной градусной мере центрального угла АОВ (см. рис. 215, а, б). Если же дуга АВ больше полуокружности, то её градусная мера считается равной 360° - ∠АОВ (см. рис. 215, в).

Отсюда следует, что сумма градусных мер двух дуг окружности с общими концами равна 360°.

Градусная мера дуги АВ (дуги ALB), как и сама дуга, обозначается символом АВ (ALB). На рисунке 216 градусная мера дуги САВ равна 145°. Обычно говорят кратко: «Дуга САВ равна 145°» и пишут: CAB =145°. На этом же рисунке ADB = 360° - 115° = 245°, CDB = 360° - 145° = 215°, DВ = 180°.


Рис. 216

Теорема о вписанном угле

Угол, вершина которого лежит на окружности, а стороны пересекают, окружность, называется вписанным углом .

На рисунке 217 угол АВС вписанный, дуга АМС расположена внутри этого угла. В таком случае говорят, что вписанный угол АВС опирается на дугу АМС. Докажем теорему о вписанном угле.


Рис. 217

Теорема

Доказательство

Пусть ∠ABC - вписанный угол окружности с центром О, опирающийся на дугу АС (рис. 218). Докажем, что Рассмотрим три возможных случая расположения луча ВО относительно угла АВС.

1) Луч ВО совпадает с одной из сторон угла АВС , например со стороной ВС (рис. 218, а). В этом случае дуга АС меньше полуокружности, поэтому ∠AOC = AC. Так как угол АОС - внешний угол равнобедренного треугольника АВО, а углы 1 и 2 при основании равнобедренного треугольника равны, то

    ∠AOC = ∠1 + ∠2 = 2∠1.


Рис. 218

Отсюда следует, что

2) Луч ВО делит угол АВС на два угла. В этом случае луч ВО пересекает дугу АС в некоторой точке D (рис. 218, б). Точка D разделяет дугу АС на две дуги: AD и DC. По доказанному в п. 1)

Складывая эти равенства, получаем:

3) Луч ВО не делит угол ABC на два угла и не совпадает со стороной этого угла. Для этого случая, пользуясь рисунком 218, в, проведите доказательство самостоятельно.

Следствие 1


Рис. 219

Следствие 2


Рис. 220

Используя следствие 1, докажем теорему о произведении отрезков пересекающихся хорд.

Теорема

Доказательство

Пусть хорды АВ и CD пересекаются в точке Е (рис. 221). Докажем, что

    АЕ ВЕ = СЕ DE.


Рис. 221

Рассмотрим треугольники ADE и СВЕ. В этих треугольниках углы 1 и 2 равны, так как они вписанные и опираются на одну и ту же дугу BD, а углы 3 и 4 равны как вертикальные. По первому признаку подобия треугольников Δ ADE ∼ Δ CBE. Отсюда следует, что или АЕ BE = СЕ DE. Теорема доказана.

Задачи

649. Начертите окружность с центром О и отметьте на ней точку А. Постройте хорду АВ так, чтобы: a) ∠AOB = 60°; б) ∠AOB = 90°; в) ∠AOB = 120°; г) ∠AOB = 180°.

650. Радиус окружности с центром О равен 16. Найдите хорду АВ, если: a) ∠AOB = 60°; б) ∠AOB = 90°; в) ∠AOB =180°.

651. Хорды АВ и CD окружности с центром О равны.

    а) Докажите, что две дуги с концами А и В соответственно равны двум дугам с концами С и D.
    б) Найдите дуги с концами С и D, если ∠AOB = 112°.

652. На полуокружности АВ взяты точки С и D так, что АС = 37°, BD = 23°. Найдите хорду CD, если радиус окружности равен 15см.

653. Найдите вписанный угол АВС, если дуга АС, на которую он опирается, равна: а) 48°; б) 57°; в) 90°; г) 124°; д) 180°.

654. По данным рисунка 222 найдите х.


Рис. 222

655. Центральный угол АОВ на 30° больше вписанного угла, опирающегося на дугу АВ. Найдите каждый из этих углов.

656. Хорда АВ стягивает дугу, равную 115°, а хорда АС - дугу в 43°. Найдите угол ВАС.

657. Точки А и В разделяют окружность на две дуги, меньшая из которых равна 140°, а большая точкой М делится в отношении 6: 5, считая от точки А. Найдите угол ВАМ.

658. Через точку А к данной окружности проведены касательная АВ (В - точка касания) и секущая AD, проходящая через центр О (D - точка на окружности, О лежит между А и D). Найдите ∠BAD и ∠ADB, если BD = 110°20".

659. Докажите, что градусные меры дуг окружности, заключённых между параллельными хордами, равны.

660. Через точку, лежащую вне окружности, проведены две секущие, образующие угол в 32°. Большая дуга окружности, заключённая между сторонами этого угла, равна 100°. Найдите меньшую дугу.

661. Найдите острый угол, образованный двумя секущими, проведёнными из точки, лежащей вне окружности, если дуги, заключённые между секущими, равны 140° и 52°.

662. Хорды АВ и CD окружности пересекаются в точке Е. Найдите угол ВЕС, если AD = 54°, BC = 70°.

663. Отрезок АС - диаметр окружности, АВ - хорда, МА - касательная, угол МАВ острый. Докажите, что ∠MAB = ∠ACB.

664. Прямая AM - касательная к окружности, АВ - хорда этой окружности. Докажите, что угол МАВ измеряется половиной дуги АВ, расположенной внутри угла МАВ.

665. Вершины треугольника АВС лежат на окружности. Докажите, что если АВ - диаметр окружности, то ∠C > ∠A и ∠C > ∠B.

666. Хорды АВ и CD пересекаются в точке Е. Найдите ED, если:

    а) АЕ = 5, ВЕ = 2, СЕ = 2,5; б) АЕ = 16, ВЕ = 9, CE = ED;
    в) АЕ = 0,2, BE = 0,5, СЕ = 0,4.

667. Диаметр АА 1 окружности перпендикулярен к хорде ВВ 1 и пересекает её в точке С. Найдите ВВ 1 если АС = 4 см, СА 1 = 8 см.

668. Докажите, что перпендикуляр, проведённый из какой-нибудь точки окружности к диаметру, есть среднее пропорциональное для отрезков, на которые основание перпендикуляра делит диаметр.

669. Пользуясь утверждением, сформулированным в задаче 668, постройте отрезок, равный среднему пропорциональному для двух данных отрезков.

670. Через точку А проведены касательная АВ (В - точка касания) и секущая, которая пересекает окружность в точках Р и Q. Докажите, что АВ 2 = АР AQ.

671. Через точку А проведены касательная АВ (В - точка касания) и секущая, которая пересекает окружность в точках С и D. Найдите CD, если: а) АВ = 4 см, АС = 2 см; б) АВ = 5 см, AD = 10 см.

672. Через точку А, лежащую вне окружности, проведены две секущие, одна из которых пересекает окружность в точках В 1 и С 1 , а другая - в точках В 2 и С 2 . Докажите, что АВ 1 АС 1 = АВ 2 АС 2 .

673. К данной окружности постройте касательную, проходящую через данную точку вне окружности.

Решение

Пусть даны окружность с центром О и точка А вне этой окружности. Допустим, что задача решена и АВ - искомая касательная (рис. 223). Так как прямая АВ перпендикулярна к радиусу ОВ, то решение задачи сводится к построению точки В окружности, для которой ∠ABO прямой. Эту точку можно построить следующим образом: проводим отрезок ОА и строим его середину О 1 . Затем проводим окружность с центром в точке Ох радиуса О 1 А. Эта окружность пересекает данную окружность в двух точках: В 1 В 1 . Прямые АВ и АВ 1 - искомые касательные, так как АВ ⊥ ОВ и АВ 1 ⊥ ОВ 1 . Действительно, углы АВО и АВ 1 O, вписанные в окружность с центром О 1 , опираются на полуокружности, поэтому они прямые. Очевидно, задача имеет два решения.


Рис. 223

Ответы к задачам

    650. а) 16; б) 16√2; в) 32.

    651. 112° и 248°.

    652. 15√3 см.

    654. а) 64°; б) 175°; в) 34°; г) 105°.

    655. 60° и 30° или 140° и 110°.

    656. 101° или 36°.

    658. 20°20", 34°50".

    664. Указание. Воспользоваться задачей 663.

    666. а) 4; б) 12; в) 0,25.

    667. 8√2 см.

    670. Указание. Сначала доказать, что Δ ABP ∼ Δ AQB

    671. а) 6 см; б) 7,5 см.

    672. Указание. Воспользоваться задачей 670.