Руда сырье для получения серы. Чистая желтая сера

Сера в природе известна в нескольких полиморфных кристаллических модификациях, в коллоидных выделениях, в жидком и газообразном состояниях. В природных условиях устойчивой модификацией является ромбическая сера (α-сера). При атмосферном давлении при температуре выше 95,6° α-сера переходит в моноклинную β-серу, при охлаждении снова становится ромбической. γ-сера также кристаллизующаяся в моноклинной сингонии, при атмосферном давлении неустойчива и переходит в α-серу. Структура γ-серы не изучена; в данную структурную группу она отнесена условно.

В статье рассмотренно несколько полиморфных модификаций серы: α-сера, β-сера, γ-сера

α-модификация

Английское название минерала α-сера - α-Sulрhur

Происхождение названия

Название α-сера введено Дана (1892).

Синонимы:
Ромбическая сера. Обычно просто называется серой. Дэйтон-сера (Сузуки, 1915) - псевдоморфоза α-серы по β-сере.

Формула

Химический состав

Нередко самородная сера является практически чистой. Сера вулканического происхождения часто содержит небольшие количества As, Se, Те и следы Тi. Сера многих месторождений загрязнена битумами, глиной, разными сульфатами и карбонатами. В ней наблюдаются включения газов и жидкости, содержащей маточный раствор с NaCl, СаСЬ, Na2SO4 и др. Содержит иногда до 5,18% Se (селенистая сера)

Разновидности
1. Волканит - (селенистая сера) оранжево-красного, красно-бурого цвета.

Кристаллографическая характеристика

Сингония. Ромбическая.

Класс. Дипирамидальный. Некоторые авторы считали, что сера кристаллизуется в ромбо-тетраэдрический класс так как иногда она имеет вид сфеноидов, но эта форма, по Руайе, объясняется влиянием асимметрической среды (активных углеводородов) на рост кристаллов.

Кристаллическая структура серы

Структура серы молекулярная: 8 атомов в решетке входят в одну молекулу. Молекула серы образует восьмерные кольца, в которых атомы чередуются на двух уровнях (вдоль оси кольца). 4 атома S одного уровня образуют квадрат, повернутый относительно другого квадрата на 45°. Плоскости квадратов параллельны оси с. Центры колец располагаются в ромбической ячейке по «алмазному» закону: в вершинах и центрах граней гранецентрированной ячейки и в центрах четырех октантов из восьми, на которые делится элементарная ячейка. В структуре серы выдержан принцип Юма-Розери, требующий для элементов менделеевской группы V1б координации 2 (= 8 - 6). В структуре теллура - селена, а также в моноклинной сере это достигается спиральным расположением атомов, в структуре ромбической серы (а также синтетических β-селене и β -теллуре) - их кольцевым расположением. Расстояние S - S в кольце равно 2,10 А, что в точности совпадает с расстоянием S - S в радикале S 2 пирита (и ковеллина) и немного больше расстояния S-S между атомами S из разных колец (3,3 А).

Форма нахождения в природе

Облик кристаллов

Облик кристаллов различный - дипирамидальный, реже толстотаблитчатый по с (001), дисфеноидальный и др. На гранях (111) наблюдаются фигуры естественного травления, отсутствующие на гранях (113).

Двойники

Редки двойники по (101), (011), (110) или (111), отмечаются также двойники по (211).

Агрегаты. Сплошные массы, шаровые п почковидные выделения, сталактиты и сталагмиты, порошковатые налеты и кристаллы.

Физические свойства

Оптические

  • Цвет серно-желтый, соломенно- и медово-желтый, желто-бурый, от примесей красноватый, зеленоватый, серый; иногда от примесей битумов цвет коричневый или почти черный.
  • Черта бесцветная.
  • Блеск алмазный
  • Отлив смолистый до жирного.
  • Прозрачность. Прозрачна до просвечивающей.

Механические

  • Твердость 1-2. Хрупка.
  • Плотность 2,05-2,08.
  • Спайность по (001), (110), (111) несовершенная. Отдельность по (111).
  • Излом раковистый до неровного.

Химические свойства

Растворяется в сероуглероде, скипидаре, керосине.

Прочие свойства

Электропроводность при обычной температуре почти равна нулю. При трении сера электризуется отрицательно. В ультрафиолетовых лучах пластинка толщиной 2 мм непрозрачна. При атмосферном давлении температура плавл. 112,8°; температура кипения + 444,5°. Теплота плавления при 115° 300 кал/г-атом. Теплота испарения при 316° 11600 кал/г-атом. При атмосферном давлении при 95,6° α-сера переходит в β-серу с увеличением объема.


Искусственное получение

Получается путем возгона или кристаллизацией из раствора.

Диагностические признаки

Легко узнается по желтому цвету, хрупкости, блеску и легкости воспламенения.

Сопутствующие минералы. Гипс , ангидрит , опал , ярозит , асфальт, нефть, озокерит, газообразный углеводород, сероводород, целестин , галит , кальцит , арагонит , барит , пирит.

Происхождение и нахождение в природе

Самородная сера встречается только в самой верхней части земной коры. Образуется при разнообразных процессах.

Большую роль в образовании месторождений серы играют животные и растительные организмы, с одной стороны, как аккумуляторы S, а с другой, как способствующие распаду H 2 S и других сернистых соединений. С деятельностью бактерий связывают образование серы в водах, илах, почвах, болотах и в нефтях; в последних она частью содержится в виде коллоидных частиц. Сера может выделяться из вод, содержащих H 2 S, под влиянием кислорода воздуха. В приморских районах местами сера выпадает при смешении пресной воды с соленой (из H 2 S морской воды, под действием кислорода, растворенного в пресных водах). Из некоторых природных вод сера выделяется в виде белой мути (р. Молочная в Куйбышевской обл, и др.). Из вод серных источников и из болотных вод, содержащих H 2 S и S, сера выпадает в северных районах России в зимний период в процессе вымораживания. Главным источником образования серы во многих месторождениях так или иначе является H 2 S, какого бы происхождения он ни был.

Значительные скопления серы наблюдаются в вулканических областях, в зоне окисления некоторых месторождений и среди осадочных толщ; месторождения последней группы служат основными источниками самородной серы, добываемой для практических целей. В вулканических областях сера выделяется как при извержениях вулканов, так и из фумарол, сольфатар, горячих источников и газовых струй. Иногда из кратера вулкана выливается расплавленная масса серы в виде потока (в Японии), причем сначала образуются β- или γ-сера превращающиеся позднее в α-серу с характерной зернистой структурой. При вулканических извержениях сера главным образом возникает при воздействии выделяющегося H 2 S на сернистый ангидрид или при окислении сероводорода кислородом воздуха; она может также возгоняться с парами воды. Пары S могут захватываться газами фумарол, струями углекислоты. Наблюдаемое впервые стадии вулканических извержений голубое пламя представляет облака горящей серы (Вулкано, на Липарских о-вах, Италия). Сероводородная стадия фумарол и сольфатар, сопровождающаяся образованием самородной серы, следует после стадии выделения фтористых и хлористых соединений и предшествует стадии углекислых выделений. Из сольфатар сера выделяется в виде рыхлых туфообразных продуктов, которые ветром и атмосферными осадками легко переносятся, образуя вторичные месторождения (Ков-Крик, шт. Юта в США).
Сера. Кристаллы в гипсе

Изменение минерала

В земной коре самородная сера легко окисляется с образованием серной кислоты и различных сульфатов; под влиянием бактерий может также давать сероводород.

Месторождения

Месторождения серы вулканического происхождения обычно невелики; они имеются на Камчатке (фумаролы), на горе Алагез в Армянии, в Италии (сольфатары Слит Поццуоли), в Исландии, Мексике, Японии, США, на Яве, на Липарских о-вах и т. д.
Выделение серы в горячих источниках сопровождается отложением опала, СаСО 3 , сульфатов и др. Местами сера замещает известняки около горячих источников, иногда выделяется в виде тончайшей мути. Горячие источники, отлагающие серу, наблюдаются в вулканических областях и в районах молодых тектонических нарушений, например, в России - на Кавказе, в Средней Азии, на Дальнем Востоке, на Курильских о-вах; в США - в Иеллоустонском национальном парке, в Калифорнии; в Италии, Испании, Японии и др.
Нередко самородная сера образуется в процессе гипергенных изменений при разложении сульфидных минералов (пирита, марказита , мельниковита, галенита, антимонита и др.). Довольно большие скопления найдены в зоне окисления колчеданных залежей, например, в Сталинском месторождении Свердловской обл. и в Блявинском месторождении Оренбургской обл.; в последнем сера имеет вид плотной, но хрупкой массы слоистой текстуры, различной окраски. В месторождении Майкаин в Павлодарской области (Казахстан) крупные скопления самородной серы наблюдались между зоной ярозитов и зоной колчеданных руд.
В небольших количествах самородная сера встречается в зоне окисления очень многих месторождений. Известно образование серы в связи с каменноугольными пожарами при самовозгорании пирита или марказита (порошковатая сера в ряде месторождений Урала), при пожарах в месторождениях нефтеносных сланцев (например, в Калифорнии).

В черном морском иле сера образуется при его посерении на воздухе за счет изменения находящегося в нем односернистого железа.

Наиболее крупные промышленные месторождения серы находятся среди осадочных пород, главным образом третичного или пермского возраста. Их образование связано с восстановлением серы сульфатов, преимущественно гипса, реже - ангидрита. Вопрос о происхождении серы в осадочных образованиях является спорным. Гипс под влиянием органических соединений, бактерий, свободного водорода и др. восстанавливается сначала, возможно, до CaS или Ca(HS) 2 , которые под действием углекислоты и воды переходят в кальцит с выделением сероводорода; последний при взаимодействии с кислородом дает серу. Скопления серы в осадочных толщах иногда имеют пластовый характер. Часто они приурочены к соляным куполам. В этих месторождениях сера сопровождается асфальтом, нефтью, озокеритом, газообразными углеводородами, сероводородом, целестином, галитом, кальцитом, арагонитом, баритом, пиритом и другими минералами. Известны псевдоморфозы серы по волокнистому гипсу (селениту). В России такого типа месторождения имеются в районе Средней Волги (Сюкеевское Татарстан, Алекееевское, Водинское Самарская обл. и др.), в Туркменистане (Гаурдак, Каракумы), в Урало- Эмбенском р-не Казахстана, где ряд месторождений приурочен к соляным куполам, в Дагестане (Аварская и Махачкалинская группы) и в других районах.
Вне России крупные месторождения серы, приуроченные к осадочным толщам, имеются в Италии (Сицилия, Романья), в США (шт. Луизиана и Техас), Испании (около Кадиса) и в других странах.

Впервые увидев изумительной красоты кристаллы ярко-жёлтого, лимонного или медового цвета, можно ошибочно принять их за янтарь. Но это не что иное, как самородная сера.

Сера самородная существует на Земле с момента рождения планеты. Можно сказать, что она имеет внеземное происхождение. Известно, что этот минерал присутствует в больших количествах и на других планетах. Ио — спутник Сатурна, покрытый извергающимися вулканами, похож на огромный яичный желток. Значительная часть поверхности Венеры также покрыта слоем жёлтой серы.

Люди начали использовать её ещё до нашей эры, но точная дата открытия неизвестна.

Неприятный удушающий запах, возникающий при горении, принёс этому веществу дурную славу. Чуть ли не во всех религиях мира расплавленная сера, источающая невыносимое зловоние, ассоциировалась с адской преисподней, где грешники принимали жуткие мучения.

Древние жрецы, совершая религиозные обряды, применяли горящий серный порошок для общения с подземными духами. Считалось, что сера – порождение тёмных сил из потустороннего мира.

Описание смертоносных испарений встречается у Гомера. А знаменитый самовоспламеняющийся «греческий огонь», повергавший противника в мистический ужас, также имел в своём составе серу.

В VIII веке китайцы применяли горючие свойства самородной серы при изготовлении пороха.

Арабские алхимики называли серу «отцом всех металлов» и создали оригинальную ртутно-серную теорию. По их мнению, сера присутствует в составе любого металла.

Позже французский физик Лавуазье, после проведения серии опытов по горению серы, установил её элементарную природу.

После открытия пороха и его распространения в Европе начали добывать самородную серу и разработали метод получения вещества из пирита. Впрочем, этот способ широко использовался ещё в древней Руси.

Можно выделить следующие генетические типы: 1) магматические, 2) карбонатитовые, 3) скарновые, 4) гидротермальные и пневматолитовые, 5) вулканогенно-осадочные, 6) подземноводные и газонефтяные, 7) осадочные.

К магматическим месторождениям серы следует относить ликвационные медно-никелевые месторождения, сера в которых формирует сульфиды , , , и других металлов и извлекается попутно при переработке руд цветных металлов. Примеры - Талнахское и другие месторождение в России, Сёдбери в Канаде.

К карбонатитовым месторождениям серы относятся редко встречаемые гипс-барит-флюоритовые, связанные с апикальными частями карбонатитовых комплексов. Сера извлекается из . Пример - месторождение Амба-Донгар в Индии.

К скарновым месторождениям серы относятся медные и полиметаллические месторождения, сера которых также представлена сульфидами различных металлов: железа, меди, , и др. Извлекаются они попутно с получением металлов. Примеры - Турьинские медные рудники Урала, полиметаллические месторождения Кара- Мазара в Средней Азии.

Среди гидротермальных месторождений серы следует выделять плутоногенные и вулканогенные. К плутоногенным относятся медные н полиметаллические месторождения, сера которых формирует сульфиды железа и цветных металлов; извлекается она попутно. Примеры - полиметаллические месторождения Забайкалья. Среди гидротермальных вулканогенных месторождений выделяется ряд формаций. К этому типу следует относить формации самородной серы в вулканических образованиях. Это и метасоматические залежи (точнее, импрегнационно-метасоматические, так как часть серы формируется не путем замещения, а путем выполнения пустот) серы в приповерхностных зонах вулканических построек, преимущественно среди опалитов, и месторождения серных потоков и кратерных расплавов, а также месторождения, формирующиеся из серосодержащих газов и горячих вод непосредственно в поверхностных условиях.

Для импрегнационно-метасоматических месторождений, играющих ведущую роль в вулканогенной группе, характерна определенная метасоматическая зональность, при этом среди характерных пород здесь наблюдаются и сами серные руды - сероносные опалиты, и алунитовые породы, пропилиты и монтмориллонитизированные вулканиты. Примеры - Новое на Курильских островах, Мелитойваямское на Камчатке, ряд месторождений Японии. Этот тип месторождений возникает при воздействии сероносных газов и растворов на вулканические постройки, при этом интенсивно выщелачивается ряд металлов, в том числе железо и , а кремнезем остается и формирует существенно опаловые породы - опалиты.

Нередко наряду с самородной серой и серосодержащим минералом алунитом отмечается и сульфид серы - мельниковит. Месторождения серных потоков возникают при расплавлении ранее возникших серных залежей при активизации вулканов. Например, серный поток, вынесший 200 тыс. т серы, наблюдался в Японии на вулкане Сиеретоко-Иоцан. В некоторых вулканах в кратерах имеются серные расплавы (например, на островах Галапагос). Поверхностные небольшие месторождения серы, в том числе сульфуриты, формируются из серосодержащих вод и газов. Они известны на вулкане Менделеева и ряде вулканов Японии.

К вулканогенно-осадочным месторождениям серы относятся кратерно-озерные месторождения самородной серы, а также месторождения колчеданных руд, формирующиеся при поступлении сероносных вулканогенных гидротерм в морские бассейны. Примером кратерно-озерных месторождений служит одно из крупных месторождений Индонезии Телага Бодае. К колчеданным вулканогенно-осадочным месторождениям принадлежит ряд месторождений Испании и Португалии, играющих заметную роль в получении сульфидной серы. К этому типу можно отнести и некоторые месторождения цветных металлов, из руд которых сера извлекается как попутный компонент.

Существенное значение в добыче серы имеют подземноводные и газонефтяные месторождения серы . Подземно-водные месторождения возникают при метасоматическом замещении гипсов и ангидритов серокальцитовыми рудами. Процесс этот осуществляется на определенном расстоянии от поверхности земли, т. е. может начаться только после определенного уровня денудации, вызывающего приближение продуктивных горизонтов гипсов и ангидритов к поверхности. При этом существенную роль играют процессы эрозии, в частности деятельность древних долин, приближающих сульфатоносные слои к поверхности, а также наличие разрывных нарушений, облегчающих миграцию вод, в том числе подъем глубинных вод. К этому типу месторождений относятся наиболее крупные месторождения серы России, стран Ближнего Востока и др.

Разновидностью месторождений данного типа являются месторождения серы в кепроках соляных куполов. Кепроки, или остаточные шляпы, возникают при растворении верхних частей растущих: соляных куполов. Строение их зональное: непосредственно выше солей, в области фронта их растворения, представленного «соляным зеркалом», располагаются гипсы и ангидриты, выше - зона карбонатных пород, а над ней нередко отмечаются скопления глин, как наиболее труднорастворимого остатка соляной толщи. Осернению подвергаются породы зоны сульфатов кальция (см. рис. 30). Пример этого подтипа месторождений - месторождения серы Мексиканского залива.

В газовых месторождениях сера входит в состав сероводорода, который попутно извлекается при добыче природных горючих газов. Такие месторождения известны в Канаде, Франции, России (Оренбургские месторождения газа). Месторождения сернистых нефтей известны в ряде стран. Сера извлекается попутно при переработке .

К осадочным месторождениям серы относятся гипсоангидритовые месторождения, из которых получают серу в ряде стран, а также колчедансодержащие каменные и бурые и скопления пирита и марказита в песчаниках и глинистых породах, в том числе в глинистых . Из угля соединения серы извлекают как в процессе обогащения углей, так и при получении кокса. Пример - Подмосковный буроугольный бассейн. Скопления, в том числе желваки железного колчедана, известны в песчано-глинистых отложениях ряда стран, в том числе , Россия и др. Иногда отмечаются сплошные залежи колчеданов (не желваки или караваи), правда в таком случае не исключается эффузивно-осадочный генезис этих пластов и линз сплошных колчеданных руд.

В некоторых случаях отмечается формирование осадочных скоплений самородной серы, однако промышленные скопления этого типа пока не установлены.

Сегодня именно химическая промышленность потребляет наибольшее количество серы. Наиболее важной является серная кислота. Именно поэтому на ее изготовление уходит почти половина серы, которая добывается по всему миру. Из трехсот кг серы при сжигании получается около одной тонны серной кислоты.

Еще одной отраслью промышленности, которая неразрывно связана с добываемой серой и потребляет ее существенную часть, является производство бумаги. Чтобы получить 17 целлюлозы требуется использовать не меньше ста кг серы.

Применение серы в резиновой промышленности

Для того, чтобы превратить каучук в резину чаще всего используется сера. При смешивании с серой и нагревании до нужной температуры каучук приобретает свойства, за которые очень ценится среди потребителей, – упругость и эластичность. Этот процесс еще называют вулканизацией.

Она бывает:

  1. Горячей. Предложена Гудиром в 1839 году. Смесь каучука и серы нагревается примерно до 150 градусов Цельсия.
  2. Холодной. Предложена Парксом в 1846 году. Каучук не нагревается, а обрабатывается с раствором хлорида серы S2C12.

Вулканизацию проводят с целью появления в веществе связей между полимерными группами.

Большинство важных физико-механических свойств материала, прошедшего вулканизацию, зависят от того, из чего состоят, как распределены и сколько энергии содержат связи -С-Sn-С-. Например, при разной концентрации добавляемой серы могут получиться абсолютно различные материалы с отличающимися свойствами.

Сера в сельском хозяйстве и медицине

Сера в чистом виде и в соединениях с другими элементами с успехом применяется для сельскохозяйственных целей. Она также значима для растений, как фосфор. Удобрения, имеющие в своем составе серу, положительно влияют и на качество собранного урожая, и на его количество.

Опытным путем ученые выявили влияние серы на устойчивость злаков к морозам. Она провоцирует образование органических веществ, которые содержит сульфгидрильные группы-S-Н. Благодаря этому повышается морозостойкость растения за счет гидрофильности белков и изменения внутренней структуры. Еще одним способом использовать серу для сельскохозяйственных нужд является ее применение в предотвращении болезней, в основном хлопчатника и винограда.

Для медицинских целей может быть использована и чистая сера, а также ее соединения с другими элементами. Основа для многих мазей, которые используются для лечения разных грибковых заболеваний кожи – это мелкодисперсная сера. Большинство препаратов сульфамидной группы – это ничто иное, как соединения разных веществ с серой: сульфадимезин, норсульфазол, белый стрептоцид.

Сегодня объем добычи серы превышает необходимое количество сырья для промышленности. Ее добывают не только из глубины земли, но и из газов или при очищении топлива. В связи с этим придумываются новые способы применения вещества, например, в строительстве. Так, в Канаде изобрели пенопласт из серы, который планируется использовать при укладке дорог и для прокладывания трубопровода за пределами полярного круга. А в Монреале был построен первый в мире дом из необычных по составу блоков, которые на треть состоят из серы (остальное песок). Для изготовления таких блоков используют металлические формы, в которых нагревают смесь до температуры больше 100 градусов Цельсия. Они такие же прочные и устойчивые к износу, как их цементные аналоги. Избежать окисления поможет простая обработка синтетическим лаком. Из таких блоков можно построить гараж или склад, магазин или дом.

Сегодня все чаще можно встретить информацию о появлении новых стройматериалов, которые содержат серу. Ни для кого уже не секрет, что при использовании серы получается асфальтовое покрытие, обладающее отличными свойствами. Оно может сравниться с покрытием из гравия и даже превзойти его. Достаточно выгодно использовать его при строительстве автострады. Для получения такого состава необходимо смешать одну часть асфальта, две части серы и 13 частей песка.

Потребность в данном сырье растет. Продажи серы в долгосрочной перспективе будут только увеличиваться.

Сера - золотисто-желтое токсическое вещество
и признак активной вулканической деятельности
Токсические и ядовитые камни и минералы

Сера (лат. Sulfur) S, химический элемент VI группы периодической системы Д.И. Менделеева; атомный номер 16, атомная масса 32,06. Природная сера состоит из четырех стабильных изотопов: 32 S (95,02%), 33 S (0,75%), 34 S (4,21%), 36 S (0,02%). Получены искусственные радиоактивные изотопы 31 S (T ½ = 2,4 сек), 35 S (T ½ = 87,1 сут), 37 S (Т ½ = 5,04 мин) и другие.

Историческая справка.

Сера в самородном состоянии, а также в виде сернистых соединений известна с древнейших времен. Она упоминается в Библии и Торе евреев (рукописи Мертвого моря), поэмах Гомера и других. Сера входила в состав "священных" курений при религиозных обрядах (одурманивание пришедших – пьют ртруть и дают красную киноварь в порошке); считалось, что запах горящей серы в сатанинских обрядах ("Все женщины - ведьмы", г. Альмаден, Испания, континент, вместо работы в шахтах на промышленной красной киновари) отгоняет духов (вызывает фрагментированные поражения ствола спинного мозга и головного мозга в основании входащих в него нервов). Серу не применяют в церкви на службах - вместо нее используют более безопасный порошок янтаря (в т.ч. амброид - похож на серу, тоже хрупкий, но более легкий по весу и электризуется при трении, в отличие от серы). Серу в церкви не воскуривают (ересь). Вызывает аборты.

Сера давно стала компонентом зажигательных смесей для военных целей, например "греческого огня" (10 в. н. э.). Около 8 века в Китае стали использовать серу в пиротехнических целях. Издавна серой и ее соединениями лечили кожные заболевания. В период средневековой алхимии (обработка золотисто-желтого и беловатого с серебром и платиной золота жидкой ртутью и красной киноварью с целью получения белой амальгамы, похожей на серебро, т.н. "белое золото") возникла гипотеза, согласно которой сера (начало горючести) и ртуть (начало металличности) считали составными частями всех металлов. Элементарную природу серы установил А. Л. Лавуазье и включил ее в список неметаллических простых тел (1789). В 1822 году Э. Мичерлих доказал аллотропию серы.


Щетка кристаллов серы (60х40 см) с о-ва Сицилия (Италия). Фото: В.И. Дворядкин.


Золото в гальке кварца из битакских конгломератов. Симферополь, Крым (Украина). Фото: А.И. Тищенко.
Страшный имитатор серы, особенно в кристаллах и включениях. Золото - ковкое, сера - хрупкая.

Распространение серы в природе.

Сера относится к весьма распространенным химическим элементам (кларк 4,7 * 10 -2); встречается в свободном состоянии (самородная сера) и в виде соединений - сульфидов, полисульфидов, сульфатов. Вода морей и океанов содержит сульфаты натрия, магния, кальция. Известно более 200 минералов серы, образующихся при эндогенных процессах. В биосфере образуется свыше 150 минералов сера (преимущественно сульфатов); широко распространены процессы окисления сульфидов до сульфатов, которые в свою очередь восстанавливаются до вторичного H 2 S и сульфидов. Очень опасна - проявляется на вулканах, где наблюдается дефицит воды, сухая возгонка от очагов раскаленной магмы по фумаролам, видимым и невидимым трещинам, с вторичной пиритизацией и пр.

Эти реакции происходят при участии микроорганизмов. Многие процессы биосферы приводят к концентрации серы - она накапливается в гумусе почв, углях, нефти, морях и океанах (8,9 * 10 -2 %), подземных водах, в озерах и солончаках. В глинах и сланцах серы в 6 раз больше, чем в земной коре в целом, в гипсе - в 200 раз, в подземных сульфатных водах - в десятки раз. В биосфере происходит круговорот серы: она приносится на материки с атмосферными осадками и возвращается в океан со стоком. Источником сера в геологическом прошлом Земли служили главным образом продукты извержения вулканов, содержащие SO 2 и H 2 S. Хозяйственная деятельность человека ускорила миграцию серы; интенсифицировалось окисление сульфидов.


Сера (желтая). Роздольское м-ние, Прикарпатье, Зап. Украина. Фото: А.А. Евсеев.


Арагонит (белая), сера (желтая). Чианчиана, Сицилия, Италия. Фото: А.А. Евсеев.

Физические свойства серы.

Сера - твердое кристаллическое вещество, устойчивое в виде двух аллотропических модификаций. Ромбическая α-S лимонно-желтого цвета, плотность 2,07 г/см 3 , t пл 112,8 o С, устойчива ниже 95,6 o С; моноклинная β-S медово-желтого цвета, плотность 1,96 г/см 3 , t пл 119,3 o С, устойчива между 95,6 o С и температурой плавления. Обе эти формы образованы восьмичленными циклическими молекулами S 8 с энергией связи S-S 225,7 кдж/моль.

При плавлении сера превращается в подвижную желтую жидкость, которая выше 160 o С буреет, а около 190 o С становится вязкой темно-коричневой массой. Выше 190 o С вязкость уменьшается, а при 300 o С сера вновь становится жидкотекучей. Это обусловлено изменением строения молекул: при 160 o С кольца S 8 начинают разрываться, переходя в открытые цепи; дальнейшее нагревание выше 190 o С уменьшает среднюю длину таких цепей.

Если расплавленную серу, нагретую до 250-300 o С, влить тонкой струей в холодную воду, то получается коричнево-желтая упругая масса (пластическая сера). Она лишь частично растворяется в сероуглероде, в осадке остается рыхлый порошок. Растворимая в CS 2 модификация называется λ-S, а нерастворимая - μ-S. Температура плавления, 113 o С (ромб.), 119 o С (монокл.). Температура кипения 444 o С.

При комнатной температуре обе эти модификации превращаются в устойчивую хрупкую α-S. t кип серы 444,6 o С (одна из стандартных точек международной температурной шкалы). В парах при температуре кипения, кроме молекул S 8 , существуют S 6 , S 4 и S 2 . При дальнейшем нагревании крупные молекулы распадаются, и при 900 o С остаются лишь S 2 , которые приблизительно при 1500 o С заметно диссоциируют на атомы. При замораживании жидким азотом сильно нагретых паров серы получается устойчивая ниже -80 o С пурпурная модификация, образованная молекулами S 2 .

Сера - плохой проводник тепла и электричества. В воде она практически нерастворима, хорошо растворяется в безводном аммиаке, сероуглероде и в ряде органических растворителей (фенол, бензол, дихлорэтан и других).

ДОПОГ 2.1
Легковоспламеняющиеся газы
Риск пожара. Риск взрыва. Могут находиться под давлением. Риск удушья. Могут вызывать ожоги и/или отморожения. Емкости могут взрываться при нагревании (сверхопасны - практически не горят)

ДОПОГ 2.2
Газовый баллон Невоспламеняющиеся, нетоксичные газы.
Риск удушья. Могут находиться под давлением. Могут вызывать отморожение (похоже на ожог - бледность, пузыри, черная газовая гангрена - скрип). Емкости могут взрываться при нагревании (сверхопасны – взрыв от искры, пламени, спички, практически не горят)
Использовать укрытие. Избегать низких участков поверхности (ям, низин, траншей)
Зеленый ромб, номер ДОПОГ, черный или белый газовый баллон (типа "баллон", "термос")

ДОПОГ 2.3
Токсичные газы . Череп и скрещенные кости
Опасность отравления. Могут находиться под давлением. Могут вызывать ожоги и/или отморожения. Емкости могут взрываться при нагревании (сверхопасны – мгновенное распространение газов по окрестности)
Использовать маску для аварийного оставления транспортного средства. Использовать укрытие. Избегать низких участков поверхности (ям, низин, траншей)
Белый ромб, номер ДОПОГ, черный череп и скрещенные кости

ДОПОГ 3
Легковоспламеняющиеся жидкости
Риск пожара. Риск взрыва. Емкости могут взрываться при нагревании (сверхопасны – легко горят)
Использовать укрытие. Избегать низких участков поверхности (ям, низин, траншей)
Красный ромб, номер ДОПОГ, черное или белое пламя

ДОПОГ 4.1
Легковоспламеняющиеся твердые вещества , самореактивные вещества и твердые десенсибилизированные взрывчатые вещества
Риск пожара. Легковоспламеняющиеся или горючие вещества могут загораться от искр или пламени. Могут содержать самореактивные вещества, способные к экзотермическому разложению в случае нагревания, контакта с другими веществами (такими как: кислоты, соединения тяжелых металлов или амины), трению или удару.
Это может привести к выделению вредных или легковоспламеняющихся газов или пары или самовоспламенения. Емкости могут взрываться при нагревании (сверхопасны - практически не горят).
Риск взрыва десенсибилизированных взрывчатых веществ после потери десенсибилизатора
Семь вертикальных красных полос на белом фоне, равновеликие, номер ДОПОГ, черное пламя

ДОПОГ 8
Коррозийные (едкие) вещества
Риск ожогов в результате разъедания кожи. Могут бурно реагировать между собой (компоненты), с водой и другими веществами. Вещество, что разлилось / рассыпалось, может выделять коррозийную пару.
Составляют опасность для водной окружающей среды или канализационной системы
Белая верхняя половина ромба, черная - нижняя, равновеликие, номер ДОПОГ, пробирки, руки

Наименование особо опасного при транспортировке груза Номер
ООН
Класс
ДОПОГ
Ангидрид серный, стабилизированный СЕРЫ ТРИОКСИД СТАБИЛИЗИРОВАННЫЙ 1829 8
Ангидрид серист СЕРЫ ДИОКСИД 1079 2
Углероду дисульфид СЕРОУГЛЕРОД 1131 3
Газ СЕРЫ ГЕКСАФТОРИД 1080 2
КИСЛОТА СЕРНАЯ ОТРАБОТАННАЯ 1832 8
КИСЛОТА СЕРНАЯ ДЫМЯЩАЯСЯ 1831 8
КИСЛОТА СЕРНАЯ, что содержит не более 51% кислоты, или ЖИДКОСТЬ АККУМУЛЯТОРНАЯ КИСЛОТНАЯ 2796 8
КИСЛОТА СЕРНАЯ, РЕГЕНЕРИРОВАННАЯ ИЗ КИСЛОГО ГУДРОНА 1906 8
КИСЛОТА СЕРНАЯ, что содержит более 51% кислоты 1830 8
КИСЛОТА СЕРНАЯ 1833 8
СЕРА 1350 4.1
СЕРА РАСПЛАВЛЕНА 2448 4.1
Сера хлористая СЕРЫ ХЛОРИДЫ 1828 8
Сера шестифтористая СЕРЫ ГЕКСАФТОРИД 1080 2
Серы дихлорид 1828 8
СЕРЫ ДИОКСИД 1079 2
СЕРЫ ТЕТРАФТОРИД 2418 2
СЕРЫ ТРИОКСИД СТАБИЛИЗИРОВАННЫЙ 1829 8
СЕРЫ ХЛОРИДЫ 1828 8
СЕРОВОДОРОД 1053 2
СЕРОУГЛЕРОД 1131 3
СПИЧКИ БЕЗОПАСНЫЕ в коробках, книжечках, картонках 1944 4.1
СПИЧКИ ПАРАФИНОВЫЕ „ВЕСТА” 1945 4.1
Спички парафиновые СПИЧКИ ПАРАФИНОВЫЕ „ВЕСТА” 1945 4.1
СПИЧКИ САПЕРНЫЕ 2254 4.1