Применение графиков в решении уравнений. §22

Вы знаете, что каждой упорядоченной паре чисел соответствует определенная точка на координатной плоскости. Поскольку каждое решение уравнения с двумя переменными х и у - это упорядоченная пара чисел, то все его решения можно изобразить точками па координатной плоскости. В этих точек абсцисса - это значение переменной х, а ордината - соответствующее значение переменной у. Следовательно, получим график уравнения с двумя переменными.

Запомните!

Графиком уравнения с двумя переменными называется изображение на координатной плоскости всех точек, координаты которых удовлетворяют данное уравнение.

Посмотрите на рисунки 64 и 65. Вы видите график уравнения 0,5 x - у = 2, где х - четное одноцифрове число (рис. 64), и график уравнения х 2 + у 2 = 4 (рис. 65). Первый график содержит всего четыре точки, поскольку переменные х и у могут принимать только четыре значения. Второй же график является линией на координатной плоскости. Он содержит множество точек, поскольку переменная х может принимать любые значения от -2 до 2 и таких чисел - множество. Соответствующих значений в тоже множество. Они изменяются от 2 до 2.

На рисунке 66 показан график уравнения х + у = 4. В отличие от графика уравнения х 2 + у 2 = 4 (см. рис. 65), каждой абсцисі точек данного графика соответствует единственная ордината. А это означает, что на рисунке 66 изображен график функции. Убедитесь самостоятельно, что график уравнения на рисунке 64 также является графиком функции.

Обратите внимание

не у каждого уравнение его график является графиком функции, однако каждый график функции является графиком некоторого уравнения.

Уравнение x + y = 4 является линейным уравнением с двумя переменными. Решив его относительно у, получим: у = -х + 4. Полученное равенство можно понимать как формулу, которая задает линейную функцию у = -х + 4. Графиком такой функции является прямая. Итак, графиком линейного уравнения х + у = 4, который изображен на рисунке 66, есть прямая.

Можно ли утверждать, что график любого линейного уравнения с двумя переменными является прямой? Нет. Например, линейное уравнение 0 ∙ х + 0 ∙ у = 0 удовлетворяет любая пара чисел, а потому график этого уравнения содержит все точки координатной плоскости.

Выясним, что является графиком линейного уравнения с двумя переменными ах + bу + с = 0 в зависимости от значений коэффициентов а, b и с. Возможны такие случаи.

Пусть a ≠ 0, b ≠ 0, с ≠ 0. Тогда уравнение ах + by + с = 0 можно представить в виде:

Получили равенство, задающее линейную функцию у(х). Ее графику, а значит, и графиком данного уравнения является прямая, не проходящая через начало координат (рис. 67).

2. Пусть а ≠ 0, b ≠ 0, с = 0. Тогда уравнение ах + by + с = 0 приобретает вид ах + by + 0 = 0, или у = х.

Получили равенство, что задает прямую пропорциональность у(х). Ее графику, а значит, и графиком данного уравнения является прямая, проходящая через начало координат (рис. 68).

3. Пусть a ≠ 0, b = 0, с ≠ 0. Тогда уравнение ах + by + с = 0 приобретает вид ах + 0 ∙ у + с = 0, или х = -.

Получили равенство не задает функцию y(). Это равенство удовлетворяют такие пары чисел (х; у), в которых х = , а у - любое число. На координатной плоскости эти точки лежат на прямой, параллельной оси OY. Итак, графиком данного уравнения является прямая, параллельная оси ординат (рис. 69).

4. Пусть a ≠ 0, b = 0, с = 0. Тогда уравнение ах + by + с = 0 приобретает вид ах + 0 ∙ у + 0 = 0, или х = 0.

Это равенство удовлетворяют такие пары чисел (x; у), в которых х = 0, а у - любое число. На координатной плоскости эти точки лежат на оси OY. Итак, графиком данного уравнения с прямая, совпадающая с осью ординат.

5. Пусть а ≠ 0, b ≠ 0, с ≠0. Тогда уравнение ах + bу + с = 0 приобретает вид 0 ∙ х + by + с = 0, или у = -. Это равенство задает функцию y(x), что приобретает тех же значений для любых значений x, то есть является постоянной. Ее графику, а значит, и графиком данного уравнения является прямая, параллельная оси абсцисс (рис. 70).

6. Пусть а = 0, b ≠ 0, с = 0. Тогда уравнение ах + by + с = 0 приобретает вид 0 ∙ х + by + 0 = 0, или в = 0. Получили постоянную функцию у(х), в которой каждая точка графика лежит на оси ОХ. Итак, графиком данного уравнения является прямая, совпадающая с осью абсцисс.

7. Пусть a = 0, b = 0, с ≠ 0. Тогда уравнение ах + by + с = 0 приобретает вид 0 ∙ х + 0 ∙ у + с = 0, или 0 ∙ х + 0 ∙ в = с. А такое линейное уравнение не имеет решений, поэтому его график не содержит ни одной точки координатной плоскости.

8. Пусть а = 0, b = 0, с = 0. Тогда уравнение ах + by + с = 0 приобретает вид 0 ∙ х + 0 ∙ y + 0 = 0, или 0 ∙ х + 0 ∙ у = 0. А такое линейное уравнение имеет множество решений, поэтому его с графиком-вся координатная плоскость.

Можем подытожить полученные результаты.

График линейного уравнения с двумя переменными ах + bу +с = 0:

Является прямой, если а ≠ 0 или b ≠ 0;

Является всей плоскостью, если а = 0, b = 0 и с = 0;

Не содержит ни одной точки координатной плоскости, если а = 0, b = 0 и с ≠ 0.

Задача. Постройте график уравнения 2х - у - 3 = 0

Решения. Уравнения 2х - у - 3 = 0 является линейным. Поэтому его графиком является прямая у = 2х - 3. Для ее построения достаточно задать две точки, принадлежащие этой прямой. Составим таблицу значений у для двух произвольных значений х, например, для х = 0 и х = 2(табл. 27).

Таблица 27

На координатной плоскости обозначим точки с координатами (0; -3) и (2; 1) и проведем через них прямую (рис. 70). Эта прямая - искомый график уравнения 2х - у - 3 = 0.

Можно ли отождествлять график линейного уравнения с двумя переменными и график уравнения первой степени с двумя переменными? Нет, поскольку существуют линейные уравнения не являются уравнениями первой степени. Например, таковыми являются уравнение 0 ∙ х + 0 ∙ у + с = 0, 0 ∙ х + 0 ∙ у + 0 = 0.

Обратите внимание:

График линейного уравнения с двумя переменными может быть прямой, всей плоскостью или не содержать ни одной точки координатной плоскости;

График уравнения первой степени с двумя переменными всегда является прямой.

Узнайте больше

1. Пусть а ≠ 0. Тогда общее решение уравнения можно представить еще и в таком виде: Х = - у -. Получили линейную функцию х(у). Ее графиком является прямая. Для построения такого графика надо по-другому состковать оси координат: первой координатной осью (независимой переменной) считать ось ОУ, а второй (зависимой переменной)

Ось ОХ. Тогда ось ОУ удобно расположить горизонтально, а ось ОХ

Вертикально (рис. 72). График уравнения в этом случае тоже будет по-разному размещаться на координатной плоскости в зависимости отмечаний коэффициентов b и с. Исследуйте это самостоятельно.

2. Николай Николаевич Боголюбов (1909-1992) - выдающийся отечественный математик и механик, физик-теоретик, основатель научных школ по нелинейной механике и теоретической физике, академик АН УССР (1948) и АН СССР (с 1953). Родился в г. Нижний Новгород Российской империи. В 1921 г. семья переехала в Киев. После окончания семилетней школы Боголюбов самостоятельно изучал физику и математику и с 14-ти лет уже принимал участие в семинаре кафедры математической физики Киевского университета под руководством академика Д. А. Граве. В 1924 г. в 15-летнем возрасте Боголюбов написал первую научную работу, а в следующем году был принят в аспирантуру АНУРСР к академикам. М. Крылова, которую закончил в 1929 г., получив в 20 лет степень доктора математических наук.

В 1929 p. М.М. Боголюбов стал научным сотрудником Украинской академии наук, в 1934 начал преподавать в Киевском университете (с 1936 г. - профессор). С конца 40-х годов XX века. одновременно работал в России. Был директором Объединенного института ядерных исследований, а впоследствии - директором Математического института имени. А. Стеклова в Москве, преподавал в Московском государственном университете имени Михаила Ломоносова. В 1966 г. стал первым директором созданного им Института теоретической физики АН УССР в Киеве, одновременно (1963-1988) он - академик - секретарь Отдела математики АН СССР.

М.М. Боголюбов -дважды Герой Социалистического Труда (1969,1979), награжден Ленинской премией (1958), Государственной премией СССР (1947.1953,1984), Золотой медалью им. М. В. Ломоносова АН СССР (1985).

21 сентября 2009 г. на фасаде Красного корпуса Киевского национального университета имени Тараса Шевченко была открыта мемориальная доска гениальному ученому-академику Николаю Боголюбову в честь столетия со дня его рождения.

В 1992 г. Национальной академией наук Украины была основана Премия НАН Украины имени Н. М. Боголюбова, которая вручается Отделением математики НАН Украины за выдающиеся научные работы в области математики и теоретической физики. В честь ученого была названа малая планета «22616 Боголюбов».

ВСПОМНИТЕ ГЛАВНОЕ

1. Что является графиком линейного уравнения с двумя переменными?

2. В любом случае графиком уравнения с двумя переменными является прямая; плоскость?

3. В каком случае график линейного уравнения с двумя переменными проходит через начало координат?

РЕШИТЕ ЗАДАЧИ

1078 . На каком из рисунков 73-74 изображен график линейного уравнения с двумя переменными? Ответ объясните.

1079 . При каких значений коэффициентов а, b и с прямая ах + bу + с =0.

1) проходит через начало координат;

2) параллельна оси абсцисс;

3) параллельна оси ординат;

4) совпадает с осью абсцисс;

5) совпадает с осью ординат?

1080 . Не выполняя построения, определите, принадлежит графику линейного уравнения с двумя переменными 6х - 2у + 1 = 0 точка:

1)А(-1;2,5); 2)В(0;3,5); 3) С(-2; 5,5); 4)D(1,5;5).

1081 . Не выполняя построения, определите, принадлежит графику линейного уравнения с двумя переменными 3х + 3у - 5 = 0 точка:

1) A (-1; ); 2) B (0; 1).

1082

1) 2х + у - 4 = 0, если х = 0; 3) 3х + 3у - 1 = 0, если х = 2;

2) 4х - 2y + 5 = 0, если х = 0; 4)-5х - у + 6 = 0, если х = 2.

1083 . Для данного линейного уравнения с двумя переменными найдите значение у, соответствующее заданному значению х:

1)3х - у + 2 = 0, если х = 0; 2) 6х - 5y - 7 = 0, если х = 2.

1084

1) 2х + у - 4 = 0; 4) -х + 2у + 8 = 0; 7) 5х - 10 = 0;

2) 6х - 2y + 12 = 0; 5)-х - 2у + 4 = 0; 8)-2у + 4 = 0;

3) 5х - 10y = 0; 6)х - у = 0; 9) х - у = 0.

1085 . Постройте график линейного уравнения с двумя переменными:

1) 4х + у - 3 = 0; 4) 10х - 5у - 1 = 0;

2) 9х - 3у + 12 = 0; 5) 2х + 6 = 0;

3)-4х - 8у = 0; 6) у - 3 = 0.

1086 . Найдите координаты точки пересечения графика линейного уравнения с двумя переменными 2х - 3у - 18 = 0 с осью:

1) оси; 2) оси.

1087 . Найдите координаты точки пересечения графика линейного уравнения с двумя переменными 5х + 4у - 20 = 0 с осью:

1) оси; 2) оси.

1088 . На прямой, которая является графиком уравнения 0,5 х + 2у - 4 = 0, обозначено точку. Найдите ординату этой точки, если ее абсцисса равна:

5) 4(х - у) = 4 - 4у;

6) 7х - 2у = 2(1 + 3,5 х).

1094 . График линейного уравнения с двумя переменными проходит через точку А(3; -2). Найдите неизвестный коэффициент уравнения:

1) ах + 3у - 3 = 0;

2) 2х - by + 8 = 0;

3)-х + 3у - с = 0.

1095 . Определите вид четырехугольника, вершинами которого являются точки пересечения графиков уравнений:

х - y + 4 = 0, х - у - 4 = 0, -х - у + 4 = 0, -х - у - 4 = 0

1096 . Постройте график уравнения:

1) а - 4b + 1 = 0; 3) 3a + 0 ∙ b - 12 = 0;

2) 0 ∙ а + 2b + 6 = 0; 4) 0 ∙ a + 0 ∙ b + 5 = 0.

ПРИМЕНИТЕ НА ПРАКТИКЕ

1097 . Составьте линейное уравнение с двумя переменными по следующим данным: 1) 3 кг конфет и 2 кг печенья стоят 120 грн; 2) 2 ручки дороже 5 карандашей на 20 грн. Постройте график составленного уравнения.

1098 . Постройте график уравнения к задаче о: 1) количество девушек и парней в вашем классе; 2) покупку тетрадей в линейку и в клеточку.

ЗАДАЧИ НА ПОВТОРЕНИЕ

1099. Турист прошел 12 км за час. За сколько часов турист преодолеет расстояние 20 км с такой же скоростью движения?

1100. Какой должна быть скорость поезда по новому расписанию, чтобы он мог проехать расстояние между двумя станциями за 2,5 ч, если согласно старого расписания, двигаясь со скоростью 100 км/ч он преодолевал ее за 3 ч?

I ) Графическое решение квадратного уравнения:

Рассмотрим приведённое квадратное уравнение: x2+px+q=0;

Перепишем его так:x2=-px-q.(1)

Построим графики зависимостей:y=x2 и y=-px-q.

График первой зависимости нам известен, это есть парабола; вторая зависимость- линейная; её график есть прямая линия. Из уравнения (1) видно, что в том случае, когда х является его решением, рдинаты точек обоих графиков равны между собой. Значит, данному значению х соответствует одна и та же точка как на параболе, так и на прямой, то есть парабола и прямая пересекаются в точке с абциссой х.

Отсюда следующий графический способ решения квадратного уравнения:чертим параболу у=х2, чертим(по точкам) прямую у=-рх-q.

Если прямая и парабола пересекаются, то абциссы точек пересечения являются корнями квадратного уравнения. Этот способ удобен, если не требуется большой точности.

1.Решить уравнение:4x2-12x+7=0

Представим его в виде x2=3x-7/4.

Построим параболу y=x2 и прямую y=3x-7/4.

Рисунок 1.


Для построения прямой можно взять, например, точки(0;-7/4) и (2;17/4).Парабола и прямая пересекаются в двух точках с абциссами x1=0.8 и x2=2.2 (см. рисунок 1).

2.Решить уравнение: x2-x+1=0.

Запишем уравнение в виде: x2=x-1.

Построив параболу у=х2 и прямую у=х-1, увидим, что они не пересекаются(рисунок 2), значит уравнение не имеет корней.

Рисунок 2.



Проверим это. Вычислим дискриминант:

D=(-1)2-4=-3<0,

А поэтому уравнение не имеет корней.

3. Решить уравнение: x2-2x+1=0

Рисунок 3.

Если аккуратно начертить параболу у=х2 и прямую у=2х-1, то увидим, что они имеют одну общую точку(прямая касается параболы, см. рисунок 3), х=1, у=1;уравнение имеет один корень х=1(обязательно проверить это вычислением).



II ) Системы уравнений.

Графиком уравнения с двумя переменными называется множество точек координатной плоскости, координаты которых обращают уравнение в верное равенство. Графики уравнений с двумя переменными весьма разнообразны. Например, графиком уравнения 2х+3у=15 является прямая, уравнения у=0.5х2 –2 –парабола, уравнения х2 +у2=4 – окружность, и т.д..

Степень целого уравнения с двумя переменными определяется так же, как и степень целого уравнения с одной переменной. Если левая часть уравнения с двумя переменными представляет собой многочлен стандартного вида, а правая число 0, то степень уравнения считают равной степени многочлена. Для того чтобы выяснить, какова степень какого-либо уравнения с двумя переменными, его заменяют равносильным уравнением, левая часть которого – многочлен стандартного вида, а правая- нуль. Рассмотрим графический способ решения.

Пример1:решить систему ⌠ x2 +y2 =25 (1)

⌠y=-x2+2x+5 (2)

Построим в одной системе координат графики уравнений(Рисунок4):

Построим в одной системе координат графи)



х2 +у2=25 и у=-х2+2х+5

Координаты любой точки построенной окружности являются решением уравнения 1, а координаты любой точки параболы являются решением уравнения 2. Значит, координаты каждой из точек пересечения окружности и параболы удовлетворяют как первому уравнению системы, так и второму, т.е. являются решением рассматриваемой системы. Используя рисунок, находим приближённые значения координат точек пересечения графиков: А(-2,2; -4,5), В(0;5), С(2,2;4,5), D(4;-3).Следовательно, система уравнений имеет четыре решения:

х1≈-2,2 , у1≈-4,5; х2≈0, у2≈5;

х3≈2,2 , у3≈4,5; х4≈4, у4≈-3.

Подставив найденные значения в уравнения системы, можно убедиться, что второе и четвёртое из этих решений являются точными, а первое и третье – приближёнными.

III) Тригонометрические уравнения:

Тригонометрические уравнения решают как аналитически, так и графически. Рассмотрим графический способ решения на примере.

Рисунок5.

Пример1:sinx+cosx=1. Построим графики функций y=sinx u y=1-cosx.(рисунок 5)



Из графика видно, что уравнение имеет 2 решения: х=2πп,где пЄZ и х=π/2+2πk,где kЄZ(Обязательно проверить это вычислениями). Рисунок 6.

Пример2:Решить уравнение:tg2x+tgx=0. Решать это уравнение будем по принципу решения предыдущего. Сначала построим графики(См. рисунок 6)функций: y=tg2x u y=-tgx. По графику видно что уравнение имеет 2 решения: х=πп, пЄZ u x=2πk/3, где kЄZ.(Проверить это вычислениями)


Применение графиков в решении неравенств.

1)Неравенства с модулем.

Решить неравенство |x-1|+|x+1|<4.

На интеграле(-1;-∞) по определению модуля имеем |х-1|=-х+1,|х+1|=-х-1, и, следовательно, на этом интеграле неравенство равносиьно линейному неравенству –2х<4,которое справедливо при х>-2. Таким образом, в множество решений входит интеграл(-2;-1).На отрезке [-1,1] исходное неравенство равносильно верному числовому неравенству 2<4.Поэтому все значения переменной, принадлежащие этому отрезку, входят в множество решний.

На интеграле (1;+∞) опять получаем линейное неравенство 2х<4, справедливое при х<2. Поэтому интеграл (1;2) также входит в множество решений. Объединяя полученные результаты, делаем вывод: неравенству удовлетворяют все значения переменной из интеграла (-2;2) и только они.

Однако тот же самый результат можно получить из наглядных и в то же время строгих геометрических соображений. На рисунке 7 построены графики функций: y=f(x)=|x-1|+|x+1| и y=4.

Рисунок 7.



На интеграле (-2;2) график функции y=f(x) расположен под графиком функции у=4, а это означает, что неравенство f(x)<4 справедливо. Ответ:(-2;2)

II)Неравенства с параметрами.

Решение неравенств с одним или несколькими параметрами представляет собой, как правило, задачу более сложную по сравнению с задачей, в которой параметры отсутствуют.

Например, неравенство√а+х+√а-х>4, содержащее параметр а, естественно, требует, для своего решения гораздо больше усилий, чем неравенство √1+х + √1-х>1.

Что значит решить первое из этих неравенств? Это, по существу, означает решить не одно неравенство, а целый класс, целое множество неравенств, которые получаются, если придавать параметру а конкретные числовые значения. Второе же из выписанных неравенств является частным случаем первого, так как получается из него при значении а=1.

Таким образом, решить неравенство, содержащее параметры, это значит определить, при каких значениях параметров неравенство имеет решения и для всех таких значений параметров найти все решения.

Решить неравенство|х-а|+|х+а|0.

Для решения данного неравенства с двумя параметрами aub воспользуемся геометрическими соображениями. На рисунке 8 и 9 построены графики функций.

Y=f(x)=|x-a|+|x+a| uy=b.

Очевидно, что при b<=2|a| прямая y=b проходит не выше горизонтального отрезка кривой y=|x-a|+|x+a| и, следовательно, неравенство в этом случае не имеет решений (рисунок 8). Если же b>2|a|, то прямая y=b пересекает график функции y=f(x) в двух точках (-b/2;b) u (b/2;b)(рисунок 6) и неравенство в этом случае справедливо при –b/2

Ответ:Если b<=2|a| , то решений нет,

Если b>2|a|, то x €(-b/2;b/2).

III ) Тригонометрические неравенства:

При решении неравенств с тригонометрическими функциями существенно используется периодичность этих функций и их монотонность на соответствующих промежутках. Простейшие тригонометрические неравенства. Функция sinx имеет положительный период 2π. Поэтому неравенства вида: sinx>a, sinx>=a,

sin x

Достаточно решить сначала на каком-либо отрезке лдины 2π. Множество всех решений получим, прибавив к каждому из найденных на этом отрезке решений числа вида 2πп, пЄZ.

Пример 1: Решить неравенство sinx>-1/2.(рисунок 10)

Сначала решим это неравенство на отрезке[-π/2;3π/2]. Рассмотрим его левую часть – отрезок [-π/2;3π/2].Здесь уравнение sinx=-1/2 имеет одно решение х=-π/6; а функция sinx монотонно возрастает. Значит, если –π/2<=x<= -π/6, то sinx<=sin(-π/6)=-1/2, т.е. эти значения х решениями неравенства не являются. Если же –π/6<х<=π/2 то sinx>sin(-π/6) = –1/2. Все эти значения х не являются решениями неравенства.

На оставшемся отрезке [π/2;3π/2] функция sinx монотонно убывает и уравнение sinx = -1/2 имеет одно решение х=7π/6. Следовательно, если π/2<=x<7π/, то sinx>sin(7π/6)=-1/2, т.е. все эти значения х являются решениями неравенства. Для x Є имеем sinx<= sin(7π/6)=-1/2, эти значения х решениями не являются. Таким образом, множество всех решений данного неравенства на отрезке [-π/2;3π/2] есть интеграл (-π/6;7π/6).

В силу периодичности функции sinx с периодом 2π значения х из любого интеграла вида: (-π/6+2πn;7π/6 +2πn),nЄZ, также являются решениями неравенства. Никакие другие значения х решениями этого неравенства не являются.

Ответ: -π/6+2πn

Рисунок 10.



    Нарисуйте числовую линию. Поскольку для изображения неравенства с одной переменной достаточно одной оси, нет необходимости рисовать прямоугольную систему координат. Вместо этого просто проведите прямую линию.

    Изобразите неравенство. Это довольно просто, так как имеется всего лишь одна координата. Предположим, необходимо изобразить неравенство x <1. Для начала следует найти на оси число 1.

    • Если неравенство задается знаком > или < (“больше” или “меньше”), обведите заданное число пустым кружком.
    • Если неравенство задается знаком ≥ {\displaystyle \geq } (“больше или равно”) или ≤ {\displaystyle \leq } (“меньше или равно”), закрасьте кружок вокруг точки.
  1. Проведите линию. Проведите линию из только что отмеченной точки на числовой оси. Если переменная больше данного числа, отложите линию вправо. Если переменная меньше, проведите линию влево. На конце линии поставьте стрелку, чтобы показать, что она не является конечным отрезком и продолжается дальше.

    Проверьте ответ. Подставьте вместо переменной x какое-либо число и отметьте его положение на числовой оси. Если это число лежит на проведенной вами линии, график верен.

График линейного неравенства

    Используйте формулу прямой линии. Подобная формула использовалась выше для обычных линейных уравнений, однако в данном случае вместо знака ‘=’ следует поставить знак неравенства. Это может быть один из следующих знаков: <, >, ≤ {\displaystyle \leq } или ≥ {\displaystyle \geq } .

    • Уравнение прямой линии имеет вид y=mx+b , где m соответствует наклону, а b - пересечению с осью y.
    • Знак неравенства означает, что данное выражение имеет множество решений.
  1. Изобразите неравенство. Найдите точку пересечения прямой с осью y и ее наклон, после чего отметьте соответствующие координаты. В качестве примера рассмотрим неравенство y >1/2x +1. В этом случае прямая будет пересекать ось y при x =1, а ее наклон составит ½, то есть при движении вправо на 2 единицы мы будем подниматься вверх на 1 единицу.

    Проведите линию. Перед этим посмотрите на знак неравенства. Если это < или >, следует провести пунктирную линию. Если в неравенстве стоит знак ≤ {\displaystyle \leq } или ≥ {\displaystyle \geq } , линия должна быть сплошной.

    Заштрихуйте график. Так как неравенство имеет множество решений, на графике следует показать все возможные решения. Это означает, что следует заштриховать область над линией или под ней.

График квадратного уравнения

    Посмотрите на формулу. В квадратном уравнении хотя бы одна переменная возводится в квадрат. Обычно квадратное уравнение записывается в следующем виде: y=ax 2 +bx+c .

    • При построении графика квадратного уравнения у вас получится парабола, то есть кривая в виде латинской буквы ‘U’.
    • Для построения параболы необходимо знать координаты хотя бы трех точек, в том числе вершины параболы (ее центральной точки).
  1. Определите a, b и c. Например, в уравнении y=x 2 +2x+1 a =1, b =2 и c =1. Каждый параметр представляет собой число, которое стоит перед переменной в соответствующей степени. Например, если перед x не стоит никакого числа, значит b =1, поскольку соответствующее слагаемое можно записать в виде 1x .

    Найдите вершину параболы. Чтобы найти среднюю точку параболы, используйте выражение -b /2a . Для нашего примера получаем -2/2(1), то есть -1.

    Составьте таблицу. Итак, мы знаем, что координата x вершины равна -1. Однако это лишь одна координата. Чтобы найти соответствующую ей координату y , а также две другие точки параболы, необходимо составить таблицу.

    Постройте таблицу из трех строк и двух столбцов.

    • Запишите координату x вершины параболы в центральной ячейке левого столбца.
    • Выберите еще две координаты x на одинаковом расстоянии слева и справа (в отрицательную и положительную стороны вдоль горизонтальной оси). Например, можно отступить от вершины на 2 единицы влево и вправо, то есть записать в соответствующих ячейках -3 и 1.
    • Можно выбрать любые целые числа, которые отстоят от вершины на равном расстоянии.
    • Если вы хотите построить более точный график, вместо трех можно взять пять точек. В этом случае следует делать то же самое, только таблица будет состоять не из трех, а из пяти строк.
  2. Используйте уравнение и таблицу, чтобы найти неизвестные координаты y . Берите по одной координате x из таблицы, подставляйте ее в заданное уравнение и находите соответствующую координату y.

    • В нашем случае мы подставляем в уравнение y =x 2 +2x +1 вместо x -3. В результате находим y = -3 2 +2(-3)+1, то есть y =4.
    • Записываем найденную координату y в ячейке возле соответствующей ей координаты x.
    • Найдите таким образом все три (или пять, если вы используете больше точек) координаты y .
  3. Нанесите на график точки. Итак, у вас получилось по крайней мере три точки с известными координатами, которые можно отметить на графике. Соедините их кривой в форме параболы. Готово!

График квадратного неравенства

    Постройте график параболы. В квадратном неравенстве используется формула, аналогичная квадратному уравнению, однако вместо знака ‘=’ стоит знак неравенства. Например, квадратное неравенство может выглядеть следующим образом: y x 2 +bx +c. Используйте шаги из предыдущего метода “График квадратного уравнения” и найдите три точки параболы.