От чего зависит степень вероятности p. Классическое и статистическое определение вероятности

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Что такое вероятность?

Столкнувшись с этим термином первый раз, я бы не понял, что это такое. Поэтому попытаюсь объяснить доступно.

Вероятность - это шанс того, что произойдет нужное нам событие.

Например, ты решил зайти к знакомому, помнишь подъезд и даже этаж на котором он живет. А вот номер и расположение квартиры забыл. И вот стоишь ты на лестничной клетке, а перед тобой двери на выбор.

Каков шанс (вероятность) того, что если ты позвонишь в первую дверь, тебе откроет твой друг? Всего квартиры, а друг живет только за одной из них. С равным шансом мы можем выбрать любую дверь.

Но каков этот шанс?

Дверей, нужная дверь. Вероятность угадать, позвонив в первую дверь: . То есть один раз из трех ты точно угадаешь.

Мы хотим узнать, позвонив раз, как часто мы будем угадывать дверь? Давай рассмотри все варианты:

  1. Ты позвонил в дверь
  2. Ты позвонил в дверь
  3. Ты позвонил в дверь

А теперь рассмотрим все варианты, где может находиться друг:

а. За 1ой дверью
б. За 2ой дверью
в. За 3ей дверью

Сопоставим все варианты в виде таблицы. Галочкой обозначены варианты, когда твой выбор совпадает с местоположением друга, крестиком - когда не совпадает.

Как видишь всего возможно вариантов местоположения друга и твоего выбора, в какую дверь звонить.

А благоприятных исходов всего . То есть раза из ты угадаешь, позвонив в дверь раз, т.е. .

Это и есть вероятность - отношение благоприятного исхода (когда твой выбор совпал с местоположение друга) к количеству возможных событий.

Определение - это и есть формула. Вероятность принято обозначать p, поэтому:

Такую формулу писать не очень удобно, поэтому примем за - количество благоприятных исходов, а за - общее количество исходов.

Вероятность можно записывать в процентах, для этого нужно умножить получившийся результат на:

Наверное, тебе бросилось в глаза слово «исходы». Поскольку математики называют различные действия (у нас такое действие - это звонок в дверь) экспериментами, то результатом таких экспериментов принято называть исход.

Ну а исходы бывают благоприятные и неблагоприятные.

Давай вернемся к нашему примеру. Допустим, мы позвонили в одну из дверей, но нам открыл незнакомый человек. Мы не угадали. Какова вероятность, что если позвоним в одну из оставшихся дверей, нам откроет наш друг?

Если ты подумал, что, то это ошибка. Давай разбираться.

У нас осталось две двери. Таким образом, у нас есть возможные шаги:

1) Позвонить в 1-ую дверь
2) Позвонить во 2-ую дверь

Друг, при всем этом, точно находится за одной из них (ведь за той, в которую мы звонили, его не оказалось):

а) Друг за 1-ой дверью
б) Друг за 2-ой дверью

Давай снова нарисуем таблицу:

Как видишь, всего есть варианта, из которых - благоприятны. То есть вероятность равна.

А почему не?

Рассмотренная нами ситуация - пример зависимых событий. Первое событие - это первый звонок в дверь, второе событие - это второй звонок в дверь.

А зависимыми они называются потому что влияют на следующие действия. Ведь если бы после первого звонка в дверь нам открыл друг, то какова была бы вероятность того, что он находится за одной из двух других? Правильно, .

Но если есть зависимые события, то должны быть и независимые ? Верно, бывают.

Хрестоматийный пример - бросание монетки.

  1. Бросаем монетку раз. Какова вероятность того, что выпадет, например, орел? Правильно - , ведь вариантов всего (либо орел, либо решка, пренебрежем вероятностью монетки встать на ребро), а устраивает нас только.
  2. Но выпала решка. Ладно, бросаем еще раз. Какова сейчас вероятность выпадения орла? Ничего не изменилось, все так же. Сколько вариантов? Два. А сколько нас устраивает? Один.

И пусть хоть тысячу раз подряд будет выпадать решка. Вероятность выпадения орла на раз будет все также. Вариантов всегда, а благоприятных - .

Отличить зависимые события от независимых легко:

  1. Если эксперимент проводится раз (раз бросают монетку, 1 раз звонят в дверь и т.д.), то события всегда независимые.
  2. Если эксперимент проводится несколько раз (монетку бросают раз, в дверь звонят несколько раз), то первое событие всегда независимое. А дальше, если количество благоприятных или количество всех исходов меняется, то события зависимые, а если нет - независимые.

Давай немного потренируемся определять вероятность.

Пример 1.

Монетку бросают два раза. Какова вероятность того, что два раза подряд выпадет орел?

Решение:

Рассмотрим все возможные варианты:

  1. Орел-орел
  2. Орел-решка
  3. Решка-орел
  4. Решка-решка

Как видишь, всего варианта. Из них нас устраивает только. То есть вероятность:

Если в условии просят просто найти вероятность, то ответ нужно давать в виде десятичной дроби. Если было бы указано, что ответ нужно дать в процентах, тогда мы умножили бы на.

Ответ:

Пример 2.

В коробке конфет все конфеты упакованы в одинаковую обертку. Однако из конфет - с орехами, с коньяком, с вишней, с карамелью и с нугой.

Какова вероятность, взяв одну конфету, достать конфету с орехами. Ответ дайте в процентах.

Решение:

Сколько всего возможных исходов? .

То есть, взяв одну конфету, она будет одной из, имеющихся в коробке.

А сколько благоприятных исходов?

Потому что в коробке только конфет с орехами.

Ответ:

Пример 3.

В коробке шаров. из них белые, - черные.

  1. Какова вероятность вытащить белый шар?
  2. Мы добавили в коробку еще черных шаров. Какова теперь вероятность вытащить белый шар?

Решение:

а) В коробке всего шаров. Из них белых.

Вероятность равна:

б) Теперь шаров в коробке стало. А белых осталось столько же - .

Ответ:

Полная вероятность

Вероятность всех возможных событий равна ().

Допустим, в ящике красных и зеленых шаров. Какова вероятность вытащить красный шар? Зеленый шар? Красный или зеленый шар?

Вероятность вытащить красный шар

Зеленый шар:

Красный или зеленый шар:

Как видишь, сумма всех возможных событий равна (). Понимание этого момента поможет тебе решить многие задачи.

Пример 4.

В ящике лежит фломастеров: зеленых, красных, синих, желтых, черный.

Какова вероятность вытащить НЕ красный фломастер?

Решение:

Давай посчитаем количество благоприятных исходов.

НЕ красный фломастер, это значит зеленый, синий, желтый или черный.

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Что такое независимые события ты уже знаешь.

А если нужно найти вероятность того, что два (или больше) независимых события произойдут подряд?

Допустим мы хотим знать, какова вероятность того, что бросая монетку раза, мы два раза увидим орла?

Мы уже считали - .

А если бросаем монетку раза? Какова вероятность увидеть орла раза подряд?

Всего возможных вариантов:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Не знаю как ты, но я раза ошибся, составляя этот список. Ух! А подходит нам только вариант (первый).

Для 5 бросков можешь составить список возможных исходов сам. Но математики не столь трудолюбивы, как ты.

Поэтому они сначала заметили, а потом доказали, что вероятность определенной последовательности независимых событий каждый раз уменьшается на вероятность одного события.

Другими словами,

Рассмотрим на примере все той же, злосчастной, монетки.

Вероятность выпадения орла в испытании? . Теперь мы бросаем монетку раз.

Какова вероятность выпадения раз подряд орла?

Это правило работает не только, если нас просят найти вероятность того, что произойдет одно и то же событие несколько раз подряд.

Если бы мы хотели найти последовательность РЕШКА-ОРЕЛ-РЕШКА, при бросках подряд, мы поступили бы также.

Вероятность выпадения решка - , орла - .

Вероятность выпадения последовательности РЕШКА-ОРЕЛ-РЕШКА-РЕШКА:

Можешь проверить сам, составив таблицу.

Правило сложения вероятностей несовместных событий.

Так стоп! Новое определение.

Давай разбираться. Возьмем нашу изношенную монетку и бросим её раза.
Возможные варианты:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Так вот несовместные события, это определенная, заданная последовательность событий. - это несовместные события.

Если мы хотим определить, какова вероятность двух (или больше) несовместных событий то мы складываем вероятности этих событий.

Нужно понять, что выпадение орла или решки - это два независимых события.

Если мы хотим определить, какова вероятность выпадения последовательности) (или любой другой), то мы пользуемся правилом умножения вероятностей.
Какова вероятность выпадения при первом броске орла, а при втором и третьем решки?

Но если мы хотим узнать, какова вероятность выпадения одной из нескольких последовательностей, например, когда орел выпадет ровно раз, т.е. варианты и, то мы должны сложить вероятности этих последовательностей.

Всего вариантов, нам подходит.

То же самое мы можем получить, сложив вероятности появления каждой последовательности:

Таким образом, мы складываем вероятности, когда хотим определить вероятность некоторых, несовместных, последовательностей событий.

Есть отличное правило, помогающее не запутаться, когда умножать, а когда складывать:

Возвратимся к примеру, когда мы подбросили монетку раза, и хотим узнать вероятность увидеть орла раз.
Что должно произойти?

Должны выпасть:
(орел И решка И решка) ИЛИ (решка И орел И решка) ИЛИ (решка И решка И орел).
Вот и получается:

Давай рассмотрим несколько примеров.

Пример 5.

В коробке лежит карандашей. красных, зеленых, оранжевых и желтых и черных. Какова вероятность вытащить красный или зеленый карандаши?

Решение:

Пример 6.

Игральную кость бросают дважды, какова вероятность того, что в сумме выпадет 8 очков?

Решение.

Как мы можем получить очков?

(и) или (и) или (и) или (и) или (и).

Вероятность выпадения одной (любой) грани - .

Считаем вероятность:

Тренировка.

Думаю, теперь тебе стало понятно, когда нужно как считать вероятности, когда их складывать, а когда умножать. Не так ли? Давай немного потренируемся.

Задачи:

Возьмем карточную колоду, в которой карты, из них пик, червей, 13 треф и 13 бубен. От до туза каждой масти.

  1. Какова вероятность вытащить трефы подряд (первую вытащенную карту мы кладем обратно в колоду и перемешиваем)?
  2. Какова вероятность вытащить черную карту (пики или трефы)?
  3. Какова вероятность вытащить картинку (вальта, даму, короля или туза)?
  4. Какова вероятность вытащить две картинки подряд (первую вытащенную карту мы убираем из колоды)?
  5. Какова вероятность, взяв две карты, собрать комбинацию - (валет, дама или король) и туз Последовательность, в которой будут вытащены карты, не имеет значения.

Ответы:

Если ты смог сам решить все задачи, то ты большой молодец! Теперь задачи на теорию вероятностей в ЕГЭ ты будешь щелкать как орешки!

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. СРЕДНИЙ УРОВЕНЬ

Рассмотрим пример. Допустим, мы бросаем игральную кость. Что это за кость такая, знаешь? Так называют кубик с цифрами на гранях. Сколько граней, столько и цифр: от до скольки? До.

Итак, мы бросаем кость и хотим, чтобы выпало или. И нам выпадает.

В теории вероятностей говорят, что произошло благоприятное событие (не путай с благополучным).

Если бы выпало, событие тоже было бы благоприятным. Итого может произойти всего два благоприятных события.

А сколько неблагоприятных? Раз всего возможных событий, значит, неблагоприятных из них события (это если выпадет или).

Определение:

Вероятностью называется отношение количества благоприятных событий к количеству всех возможных событий . То есть вероятность показывает, какая доля из всех возможных событий приходится на благоприятные.

Обозначают вероятность латинской буквой (видимо, от английского слова probability - вероятность).

Принято измерять вероятность в процентах (см. тему , ) . Для этого значение вероятности нужно умножать на. В примере с игральной костью вероятность.

А в процентах: .

Примеры (реши сам):

  1. С какой вероятностью при бросании монетки выпадет орел? А с какой вероятностью выпадет решка?
  2. С какой вероятностью при бросании игральной кости выпадет четное число? А с какой - нечетное?
  3. В ящике простых, синих и красных карандашей. Наугад тянем один карандаш. Какова вероятность вытащить простой?

Решения:

  1. Сколько всего вариантов? Орел и решка - всего два. А сколько из них благоприятных? Только один - орел. Значит, вероятность

    С решкой то же самое: .

  2. Всего вариантов: (сколько сторон у кубика, столько и различных вариантов). Благоприятных из них: (это все четные числа:).
    Вероятность. С нечетными, естественно, то же самое.
  3. Всего: . Благоприятных: . Вероятность: .

Полная вероятность

Все карандаши в ящике зеленые. Какова вероятность вытащить красный карандаш? Шансов нет: вероятность (ведь благоприятных событий -).

Такое событие называется невозможным .

А какова вероятность вытащить зеленый карандаш? Благоприятных событий ровно столько же, сколько событий всего (все события - благоприятные). Значит, вероятность равна или.

Такое событие называется достоверным .

Если в ящике зеленых и красных карандашей, какова вероятность вытащить зеленый или красный? Опять же. Заметим такую вещь: вероятность вытащить зеленый равна, а красный - .

В сумме эти вероятности равны ровно. То есть, сумма вероятностей всех возможных событий равна или.

Пример:

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность не вытащить зеленый?

Решение:

Помним, что все вероятности в сумме дают. А вероятность вытащить зеленый равна. Значит, вероятность не вытащить зеленый равна.

Запомни этот прием: вероятность того, что событие не произойдет равна минус вероятность того, что событие произойдет.

Независимые события и правило умножения

Ты кидаешь монетку раза, и хочешь, чтобы оба раза выпал орел. Какова вероятность этого?

Давай переберем все возможные варианты и определим, сколько их:

Орел-Орел, Решка-Орел, Орел-Решка, Решка-Решка. Какие еще?

Всего варианта. Из них нам подходит только один: Орел-Орел. Итого, вероятность равна.

Хорошо. А теперь кидаем монетку раза. Посчитай сам. Получилось? (ответ).

Ты мог заметить, что с добавлением каждого следующего броска вероятность уменьшается в раза. Общее правило называется правилом умножения :

Вероятности независимых событий переменожаются.

Что такое независимые события? Все логично: это те, которые не зависят друг от друга. Например, когда мы бросаем монетку несколько раз, каждый раз производится новый бросок, результат которого не зависит от всех предыдущих бросков. С таким же успехом мы можем бросать одновременно две разные монетки.

Еще примеры:

  1. Игральную кость бросают дважды. Какова вероятность, что оба раза выпадет?
  2. Монетку бросают раза. Какова вероятность, что в первый раз выпадет орел, а потом два раза решка?
  3. Игрок бросает две кости. Какова вероятность, что сумма чисел на них будет равна?

Ответы:

  1. События независимы, значит, работает правило умножения: .
  2. Вероятность орла равна. Вероятность решки - тоже. Перемножаем:
  3. 12 может получиться только, если выпадут две -ки: .

Несовместные события и правило сложения

Несовместными называются события, которые дополняют друг друга до полной вероятности. Из названия видно, что они не могут произойти одновременно. Например, если бросаем монетку, может выпасть либо орел, либо решка.

Пример.

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность вытащить зеленый или красный?

Решение .

Вероятность вытащить зеленый карандаш равна. Красный - .

Благоприятных событий всего: зеленых + красных. Значит, вероятность вытащить зеленый или красный равна.

Эту же вероятность можно представить в таком виде: .

Это и есть правило сложения: вероятности несовместных событий складываются.

Задачи смешанного типа

Пример.

Монетку бросают два раза. Какова вероятность того, что результат бросков будет разный?

Решение .

Имеется в виду, что если первым выпал орел, второй должна быть решка, и наоборот. Получается, что здесь две пары независимых событий, и эти пары друг с другом несовместны. Как бы не запутаться, где умножать, а где складывать.

Есть простое правило для таких ситуаций. Попробуй описать, что должно произойти, соединяя события союзами «И» или «ИЛИ». Например, в данном случае:

Должны выпасть (орел и решка) или (решка и орел).

Там где стоит союз «и», будет умножение, а там где «или» - сложение:

Попробуй сам:

  1. С какой вероятностью при двух бросаниях монетки оба раза выпадет одно и та же сторона?
  2. Игральную кость бросают дважды. Какова вероятность, что в сумме выпадет очков?

Решения:

Еще пример:

Бросаем монетку раза. Какова вероятность, что хотя-бы один раз выпадет орел?

Решение:

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. КОРОТКО О ГЛАВНОМ

Вероятность - это отношение количества благоприятных событий к количеству всех возможных событий.

Независимые события

Два события независимы если при наступлении одного вероятность наступления другого не изменяется.

Полная вероятность

Вероятность всех возможных событий равна ().

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Вероятность определенной последовательности независимых событий, равна произведению вероятностей каждого из событий

Несовместные события

Несовместными называются события, которые никак не могут произойти одновременно в результате эксперимента. Ряд несовместных событий образуют полную группу событий.

Вероятности несовместных событий складываются.

Описав что должно произойти, используя союзы «И» или «ИЛИ», вместо «И» ставим знак умножения, а вместо «ИЛИ» — сложения.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

В своем блоге перевод очередной лекции курса «Принципы игрового баланса» игрового дизайнера Яна Шрайбера, который работал над такими проектами, как Marvel Trading Card Game и Playboy: the Mansion.

До сегодняшнего дня почти всё, о чем мы говорили, было детерминированным, и на прошлой неделе мы внимательно изучили транзитивную механику, разобрав её настолько подробно, насколько детально я могу объяснить. Но до сих пор мы не обращали внимание на другие аспекты многих игр, а именно на недетерминированные моменты - другими словами, случайность.

Понимание природы случайности очень важно для геймдизайнеров. Мы создаем системы, которые влияют на опыт пользователя в той или иной игре, поэтому нам нужно знать, как эти системы работают. Если в системе есть случайность, нужно понимать природу этой случайности и знать, как её изменить, чтобы получить нужные нам результаты.

Игральные кости

Давайте начнем с чего-то простого - с бросания игральных костей. Когда большинство людей думает об игральных костях, они представляют себе шестигранный кубик, известный как d6. Но большинство геймеров видели множество других игральных костей: четырёхгранные (d4), восьмигранные (d8), двенадцатигранные (d12), двадцатигранные (d20). Если вы настоящий гик, у вас, может быть, где-то найдутся 30-гранные или 100-гранные кости.

Если вы не знакомы с данной терминологией, d означает игральную кость, а число, стоящее после него, - количество её граней. Если число стоит перед d, то оно обозначает количество игральных костей при бросании. Например, в игре «Монополия» вы бросаете 2d6.

Итак, в данном случае словосочетание «игральная кость» - условное обозначение. Существует огромное количество других генераторов случайных чисел, которые не выглядят как фигуры из пластика, но выполняют ту же функцию - генерируют случайное число от 1 до n. Обычную монету можно также представить в виде двугранной игральной кости d2.

Я видел два дизайна семигранной кости: одна из них выглядела как игральный кубик, а вторая была больше похожа на семигранный деревянный карандаш. Четырехгранный дрейдл, также известный как титотум, - аналог четырехгранной кости. Игровое поле с крутящейся стрелкой в игре Chutes & Ladders, где результат может быть от 1 до 6, соответствует шестигранной кости.

Генератор случайных чисел в компьютере может создать любое число от 1 до 19, если дизайнер задаст такую команду, хотя в компьютере нет 19-гранной игральной кости (вообще, о вероятности выпадения чисел на компьютере я буду говорить подробнее на следующей неделе). Все эти предметы выглядят по-разному, но на самом деле они равнозначны: у вас есть равные шансы на каждый из нескольких возможных исходов.

У игральных костей есть некоторые интересные свойства, о которых нам нужно знать. Во-первых, вероятность выпадения любой из граней одинакова (я предполагаю, что вы бросаете игральную кость правильной геометрической формы). Если вы хотите узнать среднее значение броска (тем, кто увлекается теорией вероятностей, оно известно как математическое ожидание), суммируйте значения на всех гранях и разделите это число на количество граней.

Сумма значений всех граней для стандартного шестигранного кубика равна 1 + 2 + 3 + 4 + 5 + 6 = 21. Делим 21 на количество граней и получаем среднее значение броска: 21 / 6 = 3,5. Это особый случай, потому что мы предполагаем, что все исходы равновероятны.

Что если у вас особенные игральные кости? Например, я видел игру с шестигранной игральной костью со специальными наклейками на гранях: 1, 1, 1, 2, 2, 3, поэтому она ведет себя как странная трехгранная игральная кость, с которой больше шансов, что выпадет число 1, чем 2, и скорее выпадет 2, чем 3. Какое среднее значение броска для этой кости? Итак, 1 + 1 + 1 + 2 + 2 + 3 = 10, делим на 6 - получается 5 / 3, или примерно 1,66. Таким образом, если у вас особенная игральная кость и игроки будут бросать три кости, а затем суммировать результаты - вы знаете, что сумма их броска будет равна примерно 5, и можете балансировать игру, основываясь на этом предположении.

Игральные кости и независимость

Как я уже говорил, мы исходим из предположения, что выпадение каждой грани равновероятно. Здесь неважно, сколько игральных костей вы бросаете. Каждый бросок кости независим - это означает, что предыдущие броски не влияют на результаты последующих. При достаточном количестве испытаний вы обязательно заметите серию чисел - например, выпадение в основном более крупных или меньших значений - или другие особенности, но это не значит, что игральные кости «горячие» или «холодные». Позже мы об этом поговорим.

Если вы бросаете стандартный шестигранный кубик, и два раза подряд выпадает число 6 - вероятность того, что результатом следующего броска будет 6, точно так же равна 1 / 6. Вероятность не повышается от того, что кубик «нагрелся». В то же время вероятность не понижается: неверно рассуждать, что уже два раза подряд выпадало число 6, а значит, теперь должна выпасть другая грань.

Конечно, если вы бросаете кубик двадцать раз и каждый раз выпадает число 6 - шанс того, что в двадцать первый раз выпадет 6, довольно высок: возможно, у вас просто неправильный кубик. Но если кубик правильный, вероятность выпадения каждой из граней одинакова, независимо от результатов других бросков. Вы можете также представить себе, что мы каждый раз заменяем игральную кость: если два раза подряд выпало число 6, уберите «горячий» кубик из игры и замените его на новый. Прошу прощения, если кто-то из вас уже знал об этом, но мне необходимо было это прояснить, прежде чем двигаться дальше.

Как сделать выпадение игральных костей более или менее случайным

Давайте поговорим о том, как получить разные результаты на разных игральных костях. Если вы бросаете игральную кость только один раз или несколько раз, игра будет казаться более случайной тогда, когда у кости будет больше граней. Чем чаще нужно бросать игральную кость и чем больше игральных костей вы бросаете, тем больше результаты приближаются к среднему значению.

Например, в случае 1d6 + 4 (то есть если вы один раз бросаете стандартную шестигранную игральную кость и прибавляете к результату 4), средним значением будет число от 5 до 10. Если вы бросаете 5d2, средним значением также будет число от 5 до 10. Результатом бросания 5d2 будут в основном числа 7 и 8, реже другие значения. Та же серия, даже то же среднее значение (в обоих случаях 7,5), но природа случайности разная.

Подождите минутку. Разве я только что не говорил, что игральные кости не «нагреваются» и не «охлаждаются»? А теперь я говорю: если бросать много игральных костей, результаты бросков приближаются к среднему значению. Почему?

Позвольте мне объяснить. Если вы бросаете одну игральную кость, вероятность выпадения каждой из граней одинакова. Это значит, что, если вы бросаете много игральных костей на протяжении некоторого времени, каждая грань будет выпадать примерно одинаковое количество раз. Чем больше костей вы бросаете, тем больше в совокупности результат будет приближаться к среднему значению.

Это не потому, что выпавшее число «заставляет» выпасть другое число, которое ещё не выпадало. А потому, что небольшая серия выпадения числа 6 (или 20, или другого числа) в итоге не так уж повлияет на результат, если вы бросите игральные кости ещё десять тысяч раз и в основном будет выпадать среднее значение. Сейчас у вас выпадет несколько больших чисел, а позже несколько маленьких - и со временем они приблизятся к среднему значению.

Это происходит не потому, что предыдущие броски влияют на игральные кости (серьёзно, игральная кость сделана из пластика, у неё нет мозгов, чтобы подумать: «Ой, давно не выпадало 2»), а потому, что так обычно происходит при большом количестве бросков игральных костей.

Таким образом, произвести расчеты для одного случайного броска игральной кости довольно несложно - по крайней мере, вычислить среднее значение броска. Есть также способы вычислить, «насколько случайно» что-либо происходит, и сказать, что результаты бросания 1d6 + 4 будут «более случайными», чем 5d2. Для 5d2 выпавшие результаты будут распределяться более равномерно. Для этого нужно вычислить среднеквадратическое отклонение: чем больше будет значение, тем более случайными окажутся результаты. Мне бы не хотелось сегодня приводить столько расчётов, эту тему я объясню позже.

Единственное, что я попрошу вас запомнить: как правило, чем меньше игральных костей вы бросаете, тем больше случайность. И ещё чем больше граней у игральной кости, тем больше случайность, так как больше возможных вариантов значения.

Как вычислить вероятность при помощи подсчёта

Возможно, у вас возник вопрос: как мы можем вычислить точную вероятность выпадения определённого результата? На самом деле, это довольно важно для многих игр: если вы изначально бросаете игральную кость - скорее всего, есть какой-то оптимальный результат. Отвечаю: нам нужно посчитать два значения. Во-первых, общее число исходов при бросании игральной кости, а во вторых, число благоприятных исходов. Разделив второе значение на первое, вы получите нужную вероятность. Чтобы получить процентное соотношение, умножьте полученный результат на 100.

Примеры

Вот очень простой пример. Вы хотите, чтобы выпало число 4 или выше, и один раз бросаете шестигранную игральную кость. Максимальное число исходов составляет 6 (1, 2, 3, 4, 5, 6). Из них 3 исхода (4, 5, 6) являются благоприятными. Значит, чтобы посчитать вероятность, делим 3 на 6 и получаем 0,5 или 50%.

Вот пример немного сложнее. Вы хотите, чтобы при бросании 2d6 выпало чётное число. Максимальное число исходов - 36 (по 6 вариантов для каждой игральной кости, одна кость не влияет на другую, поэтому умножаем 6 на 6 и получаем 36). Сложность вопроса данного типа заключается в том, что легко посчитать дважды. Например, при бросании 2к6 есть два варианта результата 3: 1+2 и 2+1. Они выглядят одинаково, но разница в том, какое число отображено на первой игральной кости и какое - на второй.

Вы также можете представить себе, что игральные кости разных цветов: так, например, в данном случае одна игральная кость красного цвета, другая синего. Затем посчитайте количество вариантов выпадения чётного числа:

  • 2 (1+1);
  • 4 (1+3);
  • 4 (2+2);
  • 4 (3+1);
  • 6 (1+5);
  • 6 (2+4);
  • 6 (3+3);
  • 6 (4+2);
  • 6 (5+1);
  • 8 (2+6);
  • 8 (3+5);
  • 8 (4+4);
  • 8 (5+3);
  • 8 (6+2);
  • 10 (4+6);
  • 10 (5+5);
  • 10 (6+4);
  • 12 (6+6).

Оказывается, что есть 18 вариантов для благоприятного исхода из 36 - как и в предыдущем случае, вероятность равна 0,5 или 50%. Возможно, неожиданно, но довольно точно.

Моделирование методом Монте-Карло

Что если для такого подсчёта у вас слишком много игральных костей? Например, вы хотите знать, какова вероятность того, что выпадет сумма, равная 15 или больше, при броске 8d6. Для восьми игральных костей существует огромное множество разных результатов, и их подсчёт вручную займёт очень много времени - даже если мы найдем какое-нибудь хорошее решение, чтобы сгруппировать разные серии бросков игральных костей.

В данном случае проще всего не считать вручную, а воспользоваться компьютером. Есть два способа подсчёта вероятности на компьютере. С помощью первого способа можно получить точный ответ, но он включает в себя немного программирования или скриптинга. Компьютер будет просматривать каждую возможность, оценивать и подсчитывать общее количество итераций и количество итераций, которые соответствуют нужному результату, и затем предоставит ответы. Ваш код может выглядеть примерно следующим образом:

Если вы не разбираетесь в программировании и вам нужен не точный, а примерный ответ, вы можете смоделировать данную ситуацию в Excel, где вы подбросите 8d6 несколько тысяч раз и получите ответ. Чтобы бросить 1d6 в Excel, используйте формулу =FLOOR(RAND()*6)+1 .

Существует название для ситуации, когда вы не знаете ответа и просто много раз пробуете - моделирование методом Монте-Карло. Это отличное решение, к которому можно прибегнуть, когда посчитать вероятность слишком сложно. Самое замечательное, что в данном случае нам не нужно понимать, как происходит математический расчёт, и мы знаем, что ответ будет «довольно хорошим», потому что, как мы уже знаем, чем больше бросков, тем больше результат приближается к среднему значению.

Как объединить независимые испытания

Если вы спросите о нескольких повторяющихся, но независимых испытаниях, то исход одного броска не влияет на исходы других бросков. Есть ещё одно более простое объяснение данной ситуации.

Как различить что-либо зависимое и независимое? В принципе, если вы можете выделить каждый бросок (или серию бросков) игральной кости как отдельное событие, то он независим. Например, мы бросаем 8к6 и хотим, чтобы выпала сумма, равная 15. Данное событие нельзя разделить на несколько независимых бросков игральных костей. Чтобы получить результат, вы вычисляете сумму всех значений, поэтому результат, выпавший на одной игральной кости, влияет на результаты, которые должны выпасть на других.

Вот пример независимых бросков: перед вами игра с игральными костями, и вы несколько раз бросаете шестигранные кубики. Чтобы вы остались в игре, при первом броске должно выпасть значение 2 или выше. Для второго броска - 3 или выше. Для третьего требуется 4 или выше, для четвертого - 5 или выше, для пятого - 6. Если все пять бросков успешные, вы выиграли. В данном случае все броски независимы. Да, если один бросок будет неудачным, он повлияет на результат всей игры, но один бросок не влияет на другой. Например, если ваш второй бросок игральных костей очень удачный, это никак не означает, что следующие броски будут так же хороши. Поэтому мы можем рассматривать вероятность каждого броска игральных костей отдельно.

Если у вас независимые вероятности и вы хотите знать, какова вероятность того, что все события наступят, вы определяете каждую индивидуальную вероятность и перемножаете их. Другой способ: если вы, чтобы описать несколько условий, используете союз «и» (например, какова вероятность наступления какого-то случайного события и какого-то другого независимого случайного события?) - посчитайте отдельные вероятности и перемножьте их.

Неважно, что вы считаете, - никогда не суммируйте независимые вероятности. Это распространённая ошибка. Чтобы понять, почему это неправильно, представьте себе ситуацию, когда вы подбрасываете монету и хотите знать, какова вероятность того, что два раза подряд выпадет «орёл». Вероятность выпадения каждой из сторон - 50%. Если вы суммируете эти две вероятности, вы получите 100% шанс того, что выпадет «орёл», но мы знаем, что это неправда, ведь два раза подряд могла бы выпасть «решка». Если вместо этого вы перемножите две вероятности, у вас получится 50% * 50% = 25% - это правильный ответ для расчёта вероятности выпадения «орла» два раза подряд.

Пример

Давайте вернёмся к игре с шестигранной игральной костью, где нужно, чтобы сначала выпало число больше чем 2, затем больше чем 3 - и так далее до 6. Каковы шансы того, что в данной серии из пяти бросков все исходы будут благоприятными?

Как говорилось выше, это независимые испытания, поэтому мы подсчитываем вероятность для каждого отдельного броска, а затем перемножаем их. Вероятность того, что исход первого броска будет благоприятным, равна 5/6. Второго - 4/6. Третьего - 3/6. Четвертого - 2/6, пятого - 1/6. Умножаем все результаты друг на друга и получаем примерно 1,5%. Победы в данной игре случаются довольно редко, поэтому, если вы добавите этот элемент в вашу игру, вам нужен будет довольно большой джекпот.

Отрицание

Вот ещё одна полезная подсказка: иногда сложно посчитать вероятность того, что событие наступит, зато легче определить шансы, что событие не наступит. Например, предположим, у нас есть ещё одна игра: вы бросаете 6d6 и выигрываете, если хотя бы один раз выпадет 6. Какова вероятность выигрыша?

В данном случае нужно учесть много вариантов. Возможно, выпадет одно число 6, то есть на одной из игральных костей выпадет число 6, а на других - числа от 1 до 5, тогда есть 6 вариантов того, на какой из игральных костей будет 6. Вам может выпасть число 6 на двух игральных костях, или на трёх, или на ещё большем количестве, и каждый раз нужно будет делать отдельный подсчёт, поэтому здесь легко запутаться.

Но давайте посмотрим на задачу с другой стороны. Вы проиграете, если ни на одной из игральных костей не выпадет число 6. В данном случае у нас есть 6 независимых испытаний. Вероятность того, что на каждой из игральных костей выпадет число, не равное 6, составляет 5/6. Перемножьте их - и получите примерно 33%. Таким образом, вероятность проигрыша составляет один к трём. Следовательно, вероятность выигрыша - 67% (или два к трём).

Из этого примера очевидно: если вы считаете вероятность того, что событие не наступит, нужно вычесть результат из 100%. Если вероятность выиграть равна 67%, то вероятность проиграть - 100% минус 67%, или 33%, и наоборот. Если сложно посчитать одну вероятность, но легко посчитать противоположную, посчитайте противоположную, а затем вычтите это число из 100%.

Соединяем условия для одного независимого испытания

Чуть выше я говорил, что вы никогда не должны суммировать вероятности при независимых испытаниях. Есть ли какие-либо случаи, когда суммировать вероятности можно? Да, в одной особенной ситуации.

Если вы хотите вычислить вероятность для нескольких не связанных между собой благоприятных исходов одного испытания, суммируйте вероятности каждого благоприятного исхода. Например, вероятность выпадения чисел 4, 5 или 6 на 1d6 равна сумме вероятности выпадения числа 4, вероятности выпадения числа 5 и вероятности выпадения числа 6. Данную ситуацию можно представить так: если вы в вопросе о вероятности используете союз «или» (например, какова вероятность того или иного исхода одного случайного события?) - подсчитайте отдельные вероятности и просуммируйте их.

Обратите внимание: когда вы вычислите все возможные исходы игры, сумма вероятностей их наступления должна быть равна 100%, иначе ваш расчёт был сделан неверно. Это хороший способ перепроверить свои вычисления. Например, вы проанализировали вероятность выпадения всех комбинаций в покере. Если вы просуммируете все полученные результаты, у вас должно получиться ровно 100% (или, по крайней мере, значение довольно близкое к 100%: если вы пользуетесь калькулятором, может возникнуть маленькая ошибка при округлении, но если суммируете точные числа вручную, всё должно сойтись). Если сумма не сходится, значит, вы, скорее всего, не учли какие-то комбинации или посчитали вероятности некоторых комбинаций неверно, и вычисления нужно перепроверить.

Неравные вероятности

До сих пор мы предполагали, что каждая грань игральной кости выпадает с одинаковой периодичностью, потому что таким представляется принцип работы игральной кости. Но иногда можно столкнуться с ситуацией, когда возможны разные исходы и у них разные шансы выпадения.

Например, в одном из дополнений карточной игры Nuclear War есть игровое поле со стрелкой, от которого зависит результат запуска ракеты. Чаще всего она наносит обычный урон, более сильный или более слабый, но иногда урон усиливается в два или три раза, или ракета взрывается на стартовой площадке и причиняет вам вред, или происходит какое-то другое событие. В отличие от игрового поля со стрелкой в Chutes & Ladders или A Game of Life результаты игрового поля в Nuclear War неравновероятны. Некоторые секции игрового поля больше по размеру и стрелка останавливается на них гораздо чаще, в то время как другие секции очень маленькие и стрелка останавливается на них редко.

Итак, на первый взгляд, кость выглядит примерно следующим образом: 1, 1, 1, 2, 2, 3 - мы о ней уже говорили, она представляет из себя что-то вроде утяжелённой 1d3. Следовательно, нам нужно разделить все эти секции на равные части, найти самую маленькую единицу измерения, делитель, которому всё кратно, и затем представить ситуацию в виде d522 (или какой-то другой), где множество граней игральной кости будет отображать ту же ситуацию, но с большим количеством исходов. Это один из способов решения задачи, и он технически выполним, но есть более простой вариант.

Давайте вернёмся к нашей стандартной шестигранной игральной кости. Мы говорили, что для вычисления среднего значения броска для нормальной игральной кости нужно суммировать значения на всех гранях и разделить их на количество граней, но как именно происходит расчёт? Можно выразить это иначе. Для шестигранной игральной кости вероятность выпадения каждой грани равна точно 1/6. Теперь мы умножаем исход каждой грани на вероятность этого исхода (в данном случае 1/6 для каждой грани), а затем суммируем полученные значения. Таким образом, суммируя (1 * 1/6) + (2 * 1/6) + (3 * 1/6) + (4 * 1/6) + (5 * 1/6) + (6 * 1/6), получаем тот же результат (3,5), как и при расчёте выше. На самом деле мы считаем так каждый раз: умножаем каждый исход на вероятность этого исхода.

Можем ли мы произвести такой же расчёт для стрелки на игровом поле в игре Nuclear War? Конечно, можем. И если мы суммируем все найденные результаты, то получим среднее значение. Всё, что нам нужно сделать, - вычислить вероятность каждого исхода для стрелки на игровом поле и умножить на значение исхода.

Другой пример

Упомянутый метод расчёта среднего значения также подходит, если результаты равновероятны, но имеют разные преимущества - например, если вы бросаете игральную кость и выигрываете больше при выпадении одних граней, чем других. Например, возьмём игру, которая бывает в казино: вы делаете ставку и бросаете 2d6. Если выпадут три числа с наименьшим значением (2, 3, 4) или четыре числа с высоким значением (9, 10, 11, 12) - вы выиграете сумму, равную вашей ставке. Особенными являются числа с самым низким и самым высоким значением: если выпадет 2 или 12, вы выиграете в два раза больше, чем ваша ставка. Если выпадет любое другое число (5, 6, 7, 8), вы проиграете вашу ставку. Это довольно простая игра. Но какова вероятность выигрыша?

Начнем с того, что посчитаем, сколько раз вы можете выиграть. Максимальное число исходов при бросании 2d6 составляет 36. Каково количество благоприятных исходов?

  • Есть 1 вариант, что выпадет 2, и 1 вариант, что выпадет 12.
  • Есть 2 варианта, что выпадет 3 и 2 варианта, что выпадет 11.
  • Есть 3 варианта, что выпадет 4, и 3 варианта, что выпадет 10.
  • Есть 4 варианта, что выпадет 9.

Просуммировав все варианты, получаем 16 благоприятных исходов из 36. Таким образом, при нормальных условиях вы выиграете 16 раз из 36 возможных - вероятность выигрыша немного меньше, чем 50%.

Но в двух случаях из этих шестнадцати вы выиграете в два раза больше - это как выиграть дважды. Если вы будете играть в эту игру 36 раз, каждый раз делая ставку в $1, и каждый из всех возможных исходов выпадет один раз, вы выиграете в сумме $18 (на самом деле вы выиграете 16 раз, но два из них будут считаться как два выигрыша). Если вы играете 36 раз и выигрываете $18, не значит ли это, что вероятности равные?

Не торопитесь. Если вы посчитаете количество раз, когда можете проиграть, то у вас получится 20, а не 18. Если вы будете играть 36 раз, каждый раз делая ставку в $1, вы выиграете общую сумму в $18 при выпадении всех благоприятных исходов. Но вы проиграете общую сумму в $20 при выпадении всех 20 неблагоприятных исходов. В результате вы будете немного отставать: вы теряете в среднем $2 нетто за каждые 36 игр (вы также можете сказать, что теряете в среднем 1/18 доллара в день). Теперь вы видите, как легко в данном случае допустить ошибку и посчитать вероятность неправильно.

Перестановка

До сих пор мы предполагали, что порядок расположения чисел при бросании игральных костей не имеет значения. Выпадение 2 + 4 - это то же самое, что и выпадение 4 + 2. В большинстве случаев мы вручную подсчитываем число благоприятных исходов, но иногда данный способ непрактичен и лучше использовать математическую формулу.

Пример данной ситуации из игры с игральными костями Farkle. Для каждого нового раунда вы бросаете 6d6. Если вам повезет и выпадут все возможные результаты 1-2-3-4-5-6 (стрейт), вы получите большой бонус. Какова вероятность того, что это произойдет? В данном случае есть множество вариантов выпадения данной комбинации.

Решение выглядит следующим образом: на одной из игральных костей (и только на одной) должно выпасть число 1. Сколько вариантов выпадения числа 1 на одной игральной кости? Вариантов 6, так как есть 6 игральных костей, и на любой из них может выпасть число 1. Соответственно, возьмите одну игральную кость и отложите её в сторону. Теперь на одной из оставшихся игральных костей должно выпасть число 2. Для этого есть 5 вариантов. Возьмите ещё одну игральную кость и отложите её в сторону. Затем на 4 из оставшихся игральных костей может выпасть число 3, на 3 из оставшихся игральных костей может выпасть число 4, на 2 костях - число 5. В итоге у вас остаётся одна игральная кость, на которой должно выпасть число 6 (в последнем случае игральная кость одна, и выбора нет).

Чтобы посчитать количество благоприятных исходов для выпадения комбинации «стрейт», мы умножаем все разные независимые варианты: 6 x 5 x 4 x 3 x 2 x 1=720 - похоже, есть довольно большое количество вариантов того, что выпадет эта комбинация.

Чтобы посчитать вероятность выпадения комбинации «стрейт», нам нужно разделить 720 на количество всех возможных исходов для бросания 6d6. Каково число всех возможных исходов? На каждой игральной кости может выпасть 6 граней, поэтому мы умножаем 6 x 6 x 6 x 6 x 6 x 6 = 46656 (число намного больше, чем предыдущее). Делим 720 на 46656 и получаем вероятность, равную примерно 1,5%. Если бы вы занимались дизайном этой игры, вам было бы полезно это знать, чтобы вы могли создать соответствующую систему подсчёта очков. Теперь мы понимаем, почему в игре Farkle вы получите такой большой бонус, если вам выпадет комбинация «стрейт»: это ситуация довольно редкая.

Результат также интересен и по другой причине. На примере видно, насколько редко за короткий период выпадает результат, соответствующий вероятности. Конечно, если бы мы бросали несколько тысяч игральных костей, разные грани игральных костей выпадали бы довольно часто. Но когда мы бросаем только шесть игральных костей, почти никогда не случается так, чтобы выпала каждая из граней. Становится понятно, что глупо ожидать, что сейчас выпадет грань, которой ещё не было, потому что «нам давно не выпадало число 6». Слушай, твой генератор случайных чисел сломался.

Это приводит нас к распространённому заблуждению, что все исходы выпадают с одинаковой периодичностью на протяжении небольшого периода времени. Если мы бросаем игральные кости несколько раз, периодичность выпадения каждой из граней не будет одинаковой.

Если вы когда-либо раньше работали над онлайн-игрой с каким-нибудь генератором случайных чисел, то, скорее всего, сталкивались с ситуацией, когда игрок пишет в службу технической поддержки с жалобой, что генератор случайных чисел не показывает случайные числа. Он пришёл к такому выводу, потому что убил 4 монстров подряд и получил 4 совершенно одинаковые награды, а эти награды должны выпадать только в 10% случаев, поэтому такое, очевидно, почти никогда не должно происходить.

Вы делаете математический расчёт. Вероятность равна 1/10 * 1/10 * 1/10 * 1/10, то есть 1 исход из 10 тысяч - довольно редкий случай. Именно это пытается вам сказать игрок. Есть ли в данном случае проблема?

Всё зависит от обстоятельств. Сколько игроков сейчас на вашем сервере? Предположим, у вас достаточно популярная игра, и каждый день в неё играет 100 тысяч человек. Сколько игроков убьют четырёх монстров подряд? Возможно, все, несколько раз за день, но давайте предположим, что половина из них просто обменивается разными предметами на аукционах, переписывается на RP-серверах, или выполняет другие игровые действия - таким образом, на монстров охотится только половина из них. Какова вероятность, что кому-то выпадет одна и та же награда? В данной ситуации можно ожидать, что это произойдет как минимум несколько раз за день.

Кстати, поэтому кажется, что каждые несколько недель кто-нибудь выигрывает в лотерею, даже если этим кем-то никогда не были вы или ваши знакомые. Если достаточное количество людей регулярно играет - есть вероятность, что где-то найдется хотя бы один счастливчик. Но если в лотерею играете вы сами, то вы вряд ли выиграете, уж скорее вас пригласят на работу в Infinity Ward.

Карты и зависимость

Мы обсудили независимые события, например бросание игральной кости, и теперь знаем много мощных инструментов анализа случайности во многих играх. Расчёт вероятности немного сложнее, когда речь идёт о вынимании карт из колоды, потому что каждая карта, которую мы вынимаем, влияет на те, что остаются в колоде.

Если у вас стандартная колода в 52 карты, вы вынимаете из нее 10 червей и хотите знать вероятность того, что следующая карта будет той же масти, - вероятность изменилась по сравнению с первоначальной, потому что вы уже убрали одну карту масти черви из колоды. Каждая карта, которую вы убираете, изменяет вероятность появления следующей карты в колоде. В данном случае предыдущее событие влияет на следующее, поэтому мы называем такую вероятность зависимой.

Обратите внимание: когда я говорю «карты», я имею в виду любую игровую механику, в которой есть набор объектов и вы убираете один из объектов, не заменяя его. «Колода карт» в данном случае - аналог мешочка с фишками, из которого вы вынимаете одну фишку, или урны, из которой вынимают цветные шарики (я никогда не видел игр с урной, из которой бы вынимали цветные шарики, но преподаватели теории вероятностей по какой-то причине предпочитают данный пример).

Свойства зависимости

Хотелось бы уточнить, что, когда речь идет о картах, я предполагаю, что вы вынимаете карты, смотрите на них и убираете из колоды. Каждое из этих действий - важное свойство. Если бы у меня была колода, скажем, из шести карт с числами от 1 до 6, я бы перетасовал их и вынул одну карту, затем перетасовал все шесть карт снова - это было бы аналогично бросанию шестигранной игральной кости, ведь один результат здесь не влияет на последующие. А если я вынимаю карты и не заменяю их, то, вынув карту 1, повышаю вероятность того, что в следующий раз выну карту с числом 6. Вероятность будет повышаться, пока я в итоге не выну эту карту или не перетасую колоду.

Факт того, что мы смотрим на карты, также важен. Если я выну карту из колоды и не посмотрю на неё - у меня не будет дополнительной информации и на самом деле вероятность не изменится. Это может прозвучать нелогично. Как простое переворачивание карты может волшебным образом изменить вероятность? Но это возможно, потому что вы можете посчитать вероятность для неизвестных предметов только исходя из того, что вы знаете.

Например, если вы перетасуете стандартную колоду карт, откроете 51 карту и ни одна из них не будет трефовой дамой, то вы можете быть на 100% уверены, что оставшаяся карта - это трефовая дама. Если же вы перетасуете стандартную колоду карт и вынете 51 карту, не глядя на них, то вероятность того, что оставшаяся карта - трефовая дама, всё равно останется 1/52. Открывая каждую карту, вы получаете больше информации.

Подсчёт вероятности для зависимых событий выполняется по тем же принципам, как и для независимых, за исключением того, что это немного сложнее, так как вероятности меняются, когда вы открываете карты. Таким образом, вам нужно перемножить много разных значений, вместо умножения одного и того же значения. На самом деле это значит, что нам нужно соединить все расчёты, которые мы делали, в одну комбинацию.

Пример

Вы тасуете стандартную колоду в 52 карты и вынимаете две карты. Какова вероятность того, что вы вынете пару? Есть несколько способов вычислить эту вероятность, но, пожалуй, самый простой выглядит следующим образом: какова вероятность того, что, вынув одну карту, вы не сможете вынуть пару? Эта вероятность равна нулю, поэтому не так важно, какую первую карту вы вынули, при условии, что она совпадает со второй. Неважно, какую именно карту мы вынем первой, у нас всё равно есть шанс вынуть пару. Поэтому вероятность вынуть пару после того, как вынули первую карту, равна 100%.

Какова вероятность того, что вторая карта совпадет с первой? В колоде остается 51 карта, и 3 из них совпадают с первой картой (вообще-то их было бы 4 из 52, но вы уже убрали одну из совпадающих карт, когда вынули первую карту), так что вероятность равна 1/17. Поэтому в следующий раз, когда за игрой в техасский холдем парень напротив вас за столом скажет: «Круто, ещё одна пара? Мне сегодня везет», вы будете знать, что с высокой долей вероятности он блефует.

Что если мы добавим два джокера, так что у нас в колоде будет 54 карты, и захотим узнать, какова вероятность вынуть пару? Первой картой может оказаться джокер, и тогда в колоде будет только одна карта, которая совпадёт, а не три. Как найти вероятность в данном случае? Мы разделим вероятности и перемножим каждую возможность.

Нашей первой картой может быть джокер или какая-нибудь другая карта. Вероятность вынуть джокер равна 2/54, вероятность вынуть какую-то другую карту - 52/54. Если первая карта - джокер (2/54), то вероятность того, что вторая карта совпадет с первой, равна 1/53. Перемножаем значения (мы можем перемножить их, потому что это отдельные события, и мы хотим, чтобы оба события произошли) и получаем 1/1431 - меньше чем одну десятую процента.

Если первой вы вынимаете какую-то другую карту (52/54), вероятность совпадения со второй картой равна 3/53. Перемножаем значения и получаем 78/1431 (немного больше, чем 5,5%). Что мы делаем с этими двумя результатами? Они не пересекаются, и мы хотим знать вероятность каждого из них, поэтому суммируем значения. Получаем окончательный результат 79/1431 (всё равно примерно 5,5%).

Если бы мы хотели быть уверенными в точности ответа, мы могли бы посчитать вероятность всех остальных возможных результатов: вынимание джокера и несовпадение со второй картой или вынимание какой-то другой карты и несовпадение со второй картой. Просуммировав эти вероятности и вероятность выигрыша, мы бы получили ровно 100%. Я не буду приводить здесь математический расчёт, но вы можете попробовать посчитать, чтобы перепроверить.

Парадокс Монти Холла

Это приводит нас к довольно известному парадоксу, который часто приводит многих в замешательство, - парадокс Монти Холла. Парадокс назван в честь ведущего телешоу Let"s Make a Deal. Для тех, кто никогда не видел это телешоу, скажу, что оно было противоположностью The Price Is Right.

В The Price Is Right ведущий (раньше ведущим был Боб Баркер, кто сейчас, Дрю Кэри? Неважно) - ваш друг. Он хочет, чтобы вы выиграли деньги или классные призы. Он пытается предоставить вам все возможности для выигрыша, при условии, что вы сможете угадать, сколько на самом деле стоят предметы, приобретенные спонсорами.

Монти Холл вел себя иначе. Он был как злой близнец Боба Баркера. Его целью было сделать так, чтобы вы в эфире национального телевидения выглядели как идиот. Если вы участвовали в шоу, он был вашим противником, вы играли против него, и шансы на выигрыш были в его пользу. Возможно, я слишком резко высказываюсь, но, глядя на шоу, в которое больше шансов попасть, если носить нелепый костюм, я прихожу именно к таким выводам.

Один из самых известных мемов шоу был такой: перед вами три двери, дверь номер 1, дверь номер 2 и дверь номер 3. Вы можете бесплатно выбрать какую-то одну дверь. За одной из них находится великолепный приз - например, новый легковой автомобиль. За двумя другими дверьми нет никаких призов, обе они не представляют из себя никакой ценности. Они должны вас унизить, поэтому за ними не просто ничего, а что-то глупое, например, козёл или огромный тюбик зубной пасты - что угодно, только не новый легковой автомобиль.

Вы выбираете одну из дверей, Монти уже собирается открыть её, чтобы вы узнали, выиграли или нет… но подождите. Прежде чем узнать, давайте посмотрим на одну из тех дверей, которые вы не выбрали. Монти знает, за какой дверью находится приз, и он всегда может открыть дверь, за которой нет приза. «Вы выбираете дверь номер 3? Тогда давайте откроем дверь номер 1, чтобы показать, что за ней не было приза». А теперь он из щедрости предлагает вам возможность обменять выбранную дверь номер 3 на то, что находится за дверью номер 2.

В этот момент и возникает вопрос о вероятности: повышает ли эта возможность вашу вероятность выиграть, или понижает, или она остаётся неизменной? Как вы думаете?

Верный ответ: возможность выбрать другую дверь увеличивает вероятность выигрыша с 1/3 до 2/3. Это нелогично. Если раньше вы не сталкивались с данным парадоксом, то, скорее всего, вы думаете: подождите, как это: открыв одну дверь, мы волшебным образом изменили вероятность? Как мы уже видели на примере с картами, именно это и происходит, когда мы получаем больше информации. Очевидно, что, когда вы выбираете в первый раз, вероятность выигрыша равна 1/3. Когда открывается одна дверь, это совершенно не меняет вероятность выигрыша для первого выбора: всё равно вероятность равна 1/3. Но вероятность того, что другая дверь правильная, теперь равна 2/3.

Давайте посмотрим на этот пример с другой стороны. Вы выбираете дверь. Вероятность выигрыша равна 1/3. Я предлагаю вам поменять две другие двери, что и делает Монти Холл. Конечно, он открывает одну из дверей, чтобы показать, что за ней нет приза, но он всегда может так поступить, поэтому на самом деле это ничего не меняет. Конечно, вам захочется выбрать другую дверь.

Если вы не совсем разобрались с вопросом и нужно более убедительное объяснение, нажмите на эту ссылку , чтобы перейти к замечательному маленькому Flash-приложению, которое позволит вам изучить этот парадокс более подробно. Вы можете играть, начиная с примерно 10 дверей, и затем постепенно перейти к игре с тремя дверьми. Есть также симулятор, где вы можете играть с любым количеством дверей от 3 до 50 или запустить несколько тысяч симуляций и посмотреть, сколько раз вы бы выиграли, если бы играли.

Выбираете одну из трех дверей - вероятность выиграть равна 1/3. Теперь у вас есть две стратегии: поменять выбор после открытия неверной двери или нет. Если вы не меняете свой выбор, то вероятность так и останется 1/3, так как выбор идет только на первом этапе, и надо сразу угадать. Если же меняете, то выиграть вы можете, если выберете сперва неверную дверь (потом откроют другую неверную, останется верная - меняя решение, вы как раз её и берете). Вероятность выбрать в начале неверную дверь составляет 2/3 - вот и получается, что, поменяв свое решение, вы в два раза увеличиваете вероятность выигрыша.

Ремарка от преподавателя высшей математики и специалиста по игровому балансу Максима Солдатова - её, разумеется, не было у Шрайбера, но без неё понять это волшебное превращение достаточно трудно

И снова о парадоксе Монти Холла

Что касается самого шоу: даже если соперники Монти Холла не были сильны в математике, то он разбирался в ней хорошо. Вот что он делал, чтобы немного изменить игру. Если вы выбирали дверь, за которой находился приз, вероятность чего равна 1/3, он всегда предлагал вам возможность выбрать другую дверь. Вы выбрали легковой автомобиль, а затем поменяете его на козла и будете выглядеть довольно глупо - а это именно то, что нужно, ведь Холл своего рода злой парень.

Но если вы выберете дверь, за которой не будет приза, то он предложит вам выбрать другую только в половине случаев, либо же просто покажет вам вашего нового козла, и вы уйдете со сцены. Давайте проанализируем эту новую игру, в которой Монти Холл может решать, предлагать вам шанс выбрать другую дверь или нет.

Предположим, он следует данному алгоритму: если вы выбираете дверь с призом, он всегда предлагает вам возможность выбрать другую дверь, в ином случае он с равной вероятностью предложит вам выбрать другую дверь или подарит козла. Какова вероятность вашего выигрыша?

В одном из трёх вариантов вы сразу выбираете дверь, за которой находится приз, и ведущий предлагает вам выбрать другую.

Из оставшихся двух вариантов из трёх (вы изначально выбираете дверь без приза) в половине случаев ведущий предложит вам поменять решение, а в другой половине случаев - нет.

Половина от 2/3 - это 1/3, то есть в одном случае из трёх вы получите козла, в одном случае из трёх выберете неправильную дверь и ведущий предложит вам выбрать другую, и в одном случае из трёх вы выберете правильную дверь, но он опять же предложит другую.

Если ведущий предлагает выбрать другую дверь, мы уже знаем, что тот один случай из трёх, когда он дарит нам козла и мы уходим, не произошёл. Это полезная информация: она означает, что наши шансы на выигрыш изменились. Два случая из трёх, когда у нас есть возможность выбрать: в одном случае это значит, что мы угадали правильно, а в другом, что мы угадали неправильно, поэтому, если нам вообще предложили возможность выбрать, значит, вероятность нашего выигрыша равна 1/2, и c точки зрения математики неважно, оставаться при своём выборе или выбирать другую дверь.

Как и покер, это игра психологическая, а не математическая. Почему Монти предложил вам выбор? Он думает, что вы простофиля, который не знает, что выбрать другую дверь - «правильное» решение и будет упорно держаться за свой выбор (ведь психологически сложнее ситуация, когда вы выбрали автомобиль, а затем его потеряли)?

Или он, решив, что вы умный и выберете другую дверь, предлагает вам этот шанс, потому что знает, что вы изначально угадали правильно и попадётесь на крючок? Или, может быть, он нетипично для себя добр и подталкивает вас сделать что-то, выгодное для вас, потому что он уже давно не дарил автомобилей и продюсеры говорят, что зрителям становится скучно, и лучше бы в скором времени подарить большой приз, чтобы рейтинги не падали?

Таким образом, Монти удается иногда предлагать выбор, и при этом общая вероятность выигрыша остается равной 1/3. Помните, что вероятность того, что вы проиграете сразу, равна 1/3. Вероятность того, что вы сразу угадаете правильно, равна 1/3, и в 50% этих случаев вы выиграете (1/3 x 1/2 = 1/6).

Вероятность того, что вы сначала угадаете неправильно, но потом у вас будет шанс выбрать другую дверь, равна 1/3, и в половине этих случаев вы выиграете (также 1/6). Суммируйте две не зависящие друг от друга возможности выигрыша - и вы получите вероятность, равную 1/3, поэтому неважно, останетесь вы при своём выборе или выберете другую дверь - общая вероятность вашего выигрыша на протяжении всей игры равна 1/3.

Вероятность не становится больше, чем в той ситуации, когда вы угадали дверь и ведущий просто показал вам, что за ней находится, не предложив выбрать другую. Смысл предложения не в том, чтобы изменить вероятность, а в том, чтобы сделать процесс принятия решения более увлекательным для телевизионного просмотра.

Кстати, это одна из причин, почему покер может быть таким интересным: в большинстве форматов между раундами, когда делаются ставки (например, флоп, терн и ривер в техасском холдеме), постепенно открываются карты, и если в начале игры у вас одна вероятность выиграть, то после каждого раунда ставок, когда открыто больше карт, эта вероятность меняется.

Парадокс мальчика и девочки

Это приводит нас к другому известному парадоксу, который, как правило, всех озадачивает, - парадоксу мальчика и девочки. Единственное из того, о чём я сегодня пишу, что не связано непосредственно с играми (хотя предполагаю, что я просто должен подтолкнуть вас на создание соответствующей игровой механики). Это скорее головоломка, но интересная, и, чтобы её решить, нужно понимать условную вероятность, про которую мы говорили выше.

Задача: у меня есть друг с двумя детьми, хотя бы один ребёнок из них - девочка. Какова вероятность того, что второй ребёнок тоже девочка? Давайте предположим, что в любой семье шансы рождения девочки и мальчика составляют 50/50, и это справедливо для каждого ребёнка.

На самом деле, в сперме некоторых мужчин больше сперматозоидов с X-хромосомой или Y-хромосомой, поэтому вероятность немного меняется. Если вы знаете, что один ребёнок - девочка, вероятность появления второй девочки немного выше, кроме того, есть и другие условия, например, гермафродитизм. Но для решения этой задачи мы не будем принимать это во внимание и предположим, что рождение ребёнка - это независимое событие и рождение мальчика и девочки равновероятны.

Так как речь идёт о шансе 1/2, интуитивно мы ожидаем, что ответ будет, скорее всего, 1/2 или 1/4, или в знаменателе будет какое-то другое число, кратное двум. Но ответ - 1/3. Почему?

Сложность в данном случае в том, что информация, которая у нас есть, сокращает количество возможностей. Предположим, родители - фанаты «Улицы Сезам» и независимо от пола детей назвали их A и B. При нормальных условиях есть четыре равновероятные возможности: A и B - два мальчика, A и B - две девочки, A - мальчик и B - девочка, A - девочка и B - мальчик. Так как мы знаем, что хотя бы один ребёнок - девочка, мы можем исключить возможность, что A и B - два мальчика. Таким образом, у нас остается три возможности - всё ещё равновероятных. Если все возможности равновероятны и их три, то вероятность каждой из них равна 1/3. Только в одном из этих трёх вариантов оба ребёнка девочки, поэтому ответ - 1/3.

И снова о парадоксе мальчика и девочки

Решение задачи становится ещё более нелогичным. Представьте, что у моего друга двое детей и один из них - девочка, которая родилась во вторник. Предположим, что при нормальных условиях ребёнок с равной вероятностью может родиться в каждый из семи дней недели. Какова вероятность того, что второй ребёнок тоже девочка?

Вы можете подумать, что ответ всё равно будет 1/3: какое значение имеет вторник? Но и в этом случае интуиция нас подводит. Ответ - 13/27, что не просто не интуитивно, а очень странно. В чём дело в данном случае?

На самом деле, вторник изменяет вероятность, потому что мы не знаем, какой ребёнок родился во вторник, или, возможно, во вторник родились оба. В данном случае мы используем ту же логику: считаем все возможные комбинации, когда хотя бы один ребёнок - девочка, которая родилась во вторник. Как и в предыдущем примере, предположим, что детей зовут A и B. Комбинации выглядят следующим образом:

  • A - девочка, которая родилась во вторник, B - мальчик (в данной ситуации есть 7 возможностей, по одной для каждого дня недели, когда мог родиться мальчик).
  • В - девочка, которая родилась во вторник, А - мальчик (также 7 возможностей).
  • A - девочка, которая родилась во вторник, В - девочка, которая родилась в другой день недели (6 возможностей).
  • В - девочка, которая родилась во вторник, А - девочка, которая родилась не во вторник (также 6 вероятностей).
  • А и В - две девочки, которые родились во вторник (1 возможность, нужно обратить на это внимание, чтобы не посчитать дважды).

Суммируем и получаем 27 разных равновозможных комбинаций рождения детей и дней с хотя бы одной возможностью рождения девочки во вторник. Из них 13 возможностей, когда рождаются две девочки. Это также выглядит совершенно нелогично - похоже, данная задача была придумана только для того, чтобы вызвать головную боль. Если вы до сих пор озадачены, на сайте игрового теоретика Йеспера Юла есть хорошее объяснение этого вопроса.

Если сейчас вы работаете над игрой

Если в игре, дизайном которой вы занимаетесь, есть случайность, это отличный повод её проанализировать. Выберите какой-нибудь элемент, который вы хотите проанализировать. Сначала спросите себя, какова, по вашим ожиданиям, вероятность для данного элемента, какой она должна быть в контексте игры.

Например, если вы создаёте RPG и думаете, какой должна быть вероятность, что игрок победит монстра в битве, спросите себя, какое процентное отношение побед кажется вам правильным. Обычно в случае с консольными RPG игроки очень расстраиваются при поражении, поэтому лучше, чтобы они проигрывали нечасто - в 10% случаев или меньше. Если вы дизайнер RPG, вы, наверно, знаете лучше, чем я, но нужно, чтобы у вас была базовая идея, какой должна быть вероятность.

Затем спросите себя, зависимые ли у вас вероятности (как с картами) или независимые (как с игральными костями). Разберите все возможные результаты и их вероятности. Убедитесь, что сумма всех вероятностей равна 100%. И, конечно, сравните полученные результаты со своими ожиданиями. Получается ли бросать игральные кости или вынимать карты так, как вы задумали, или видно, что значения нужно корректировать. И, конечно, если вы найдете недостатки, можете использовать те же расчёты, чтобы определить, насколько нужно поменять значения.

Задание на дом

Ваше «домашнее задание» на этой неделе поможет вам отточить навыки работы с вероятностью. Вот две игры в кости и карточная игра, которые вам предстоит анализировать, используя вероятность, а также странная механика игры, которую я когда-то разрабатывал, - на её примере вы проверите метод Монте-Карло.

Игра №1 - Драконьи кости

Это игра в кости, которую мы как-то раз придумали с коллегами (спасибо Джебу Хевенсу и Джесси Кингу), - она специально выносит мозг людям своими вероятностями. Это простая игра казино, которая называется «Драконьи кости», и это азартное соревнование в кости между игроком и заведением.

Вам дается обычный кубик 1d6. Цель игры - выбросить число больше, чем у заведения. Тому дается нестандартный 1d6 - такой же, как и у вас, но на одной из его граней вместо единицы - изображение дракона (таким образом, у казино кубик дракон-2-3-4-5-6). Если заведению выпадает дракон, оно автоматически выигрывает, а вы проигрываете. Если обоим выпадает одинаковое число - это ничья, и вы кидаете кости снова. Победит тот, кто выбросит большее число.

Разумеется, все складывается не совсем в пользу игрока, ведь у казино есть преимущество в виде грани дракона. Но действительно ли это так? Это вам и предстоит вычислить. Но сначала проверьте свою интуицию.

Предположим, что выигрыш составляет 2 к 1. Таким образом, если вы побеждаете, вы сохраняете свою ставку и получаете её удвоенную сумму. К примеру, если вы ставите 1 доллар и выигрываете - вы сохраняете этот доллар и получаете еще 2 сверху, итого 3 доллара. Если проигрываете - теряете только свою ставку. Сыграли бы вы? Чувствуете ли вы интуитивно, что вероятность больше, чем к 2 к 1, или все же считаете, что меньше? Другими словами, в среднем за 3 игры вы рассчитываете выиграть больше одного раза, или меньше, или один раз?

Как только разобрались с интуицией, применяйте математику. Для обеих игральных костей существует лишь 36 возможных положений, так что вы без проблем можете просчитать их все. Если вы не уверены в этом предложении «2 к 1», подумайте вот о чем: предположим, вы сыграли в игру 36 раз (каждый раз ставя по 1 доллару). Из-за каждой победы вы получаете 2 доллара, из-за проигрыша теряете 1, а ничья ничего не меняет. Посчитайте все свои вероятные выигрыши и проигрыши и решите, потеряете ли вы некоторую сумму долларов или же приобретете. Затем спросите себя, насколько права оказалась ваша интуиция. А затем осознайте, какой же я злодей.

И, да, если вы уже задумались над этим вопросом - я намеренно сбиваю вас с толку, искажая настоящую механику игр в кости, но, уверен, вы сможете преодолеть это препятствие, всего лишь хорошенько подумав. Попробуйте решить эту задачу самостоятельно.

Игра №2 - Бросок на удачу

Это азартная игра в кости, которая называется «Бросок на удачу» (также «Птичья клетка», потому что иногда кости не бросают, а помещают в большую проволочную клетку, напоминающую клетку из «Бинго»). Игра простая, суть сводится примерно вот к чему: поставьте, скажем, 1 доллар на число от 1 до 6. Затем вы бросаете 3d6. За каждую кость, на которой выпадает ваше число, вы получаете 1 доллар (и сохраняете свою изначальную ставку). Если ни на одной кости ваше число не выпадает, казино получает ваш доллар, а вы - ничего. Таким образом, если вы ставите на 1 и вам трижды выпадает единица на гранях, вы получаете 3 доллара.

Интуитивно кажется, что в этой игре равные шансы. Каждая кость - это индивидуальный шанс выиграть в 1 случае из 6, так что в сумме трех бросков ваш шанс выиграть равен 3 к 6. Однако, разумеется, помните, что вы слагаете три отдельные кости, и вам разрешено складывать только при условии, что мы говорим об отдельных выигрышных комбинациях одной и той же кости. Что-то вам нужно будет умножить.

Как только вы вычислите все возможные результаты (вероятно, это будет легче сделать в Excel, чем от руки, ведь их 216), игра на первый взгляд всё ещё выглядит четно-нечетной. На самом деле, у казино всё же больше шансов выиграть - насколько больше? В частности, сколько в среднем вы рассчитываете проиграть денег за каждый раунд игры?

Всё, что вам нужно сделать, - суммировать выигрыши и проигрыши всех 216 результатов, а затем разделить на 216, что должно быть довольно просто. Но, как видите, тут можно попасть в несколько ловушек, именно поэтому я и говорю: если вам кажется, что в этой игре равные шансы на выигрыш, вы всё неправильно поняли.

Игра №3 - 5-карточный стад покер

Если вы уже размялись на предыдущих играх, давайте проверим, что мы знаем об условной вероятности, на примере данной карточной игры. Давайте представим себе покер с колодой на 52 карты. Давайте также представим 5-карточный стад, где каждый игрок получает только по 5 карт. Нельзя сбросить карту, нельзя вытянуть новую, никакой общей колоды - вы получаете всего лишь 5 карт.

Роял-флеш - это 10-J-Q-K-A в одной комбинации, всего их четыре, таким образом, существует четыре возможных способа получить роял-флеш. Рассчитайте вероятность того, что вам выпадет одна такая комбинация.

Я должен предупредить вас об одном: помните, что вы можете вытянуть эти пять карт в любом порядке. То есть сначала вы можете вытянуть туза, или десятку, неважно. Так что, проводя расчеты, имейте в виду, что на самом деле существует более четырех способов получить роял-флэш, если предположить, что карты выдавались по порядку.

Игра №4 - Лотерея IMF

Четвертую задачу не получится так просто решить методами, о которых мы сегодня говорили, но вы легко сможете смоделировать ситуацию при помощи программирования или Excel. Именно на примере этой задачи вы сможете отработать метод Монте-Карло.

Я уже упоминал ранее игру Chron X, над которой когда-то работал, и там была одна очень интересная карта - лотерея IMF. Вот как она работала: вы использовали её в игре. После того как раунд завершался, карты перераспределялись, и была возможность в 10%, что карта выйдет из игры и что случайный игрок получит 5 единиц каждого типа ресурса, фишка которого присутствовала на этой карте. Карта вводилась в игру без единой фишки, но каждый раз, оставаясь в игре в начале следующего раунда, она получала одну фишку.

Таким образом, существовал 10% шанс того, что вы введете её в игру, раунд закончится, карта покинет игру, и никто ничего не получит. Если этого не произойдет (с вероятностью 90%), появляется 10% шанс (вообще-то 9%, поскольку это 10% из 90%), что в следующем раунде она покинет игру, и кто-то получит 5 единиц ресурсов. Если карта покинет игру через один раунд (10% от имеющихся 81%, так что вероятность - 8,1%), кто-то получит 10 единиц, ещё через раунд - 15, ещё - 20, и так далее. Вопрос: каково вообще ожидаемое значение числа ресурсов, которые вы получите от этой карты, когда она наконец покинет игру?

Обычно мы бы пытались решить эту задачу, вычислив возможность каждого исхода и умножив на количество всех исходов. Есть вероятность в 10%, что вы получите 0 (0,1 * 0 = 0). 9%, что вы получите 5 единиц ресурсов (9% * 5 = 0,45 ресурсов). 8,1% того, что вы получите 10 (8,1%*10=0,81 ресурсов - в целом, ожидаемое значение). И так далее. А потом мы бы всё это суммировали.

А теперь вам очевидна проблема: всегда есть шанс, что карта не покинет игру, она может остаться в игре навсегда, на бесконечное число раундов, так что возможности просчитать всякую вероятность не существует. Методы, изученные нами сегодня, не дают нам возможности просчитать бесконечную рекурсию, так что нам придется создать её искусственным путем.

Если вы достаточно хорошо разбираетесь в программировании, напишите программу, которая будет симулировать эту карту. У вас должна быть временная петля, которая приводит переменную в исходное положение нуля, показывает случайное число и с вероятностью 10% переменная выходит из петли. В противоположном случае она добавляет к переменной 5, и цикл повторяется. Когда она наконец выйдет из петли, увеличьте общее число пробных пусков на 1 и общее число ресурсов (насколько - зависит от того, на каком значении остановилась переменная). Затем сбросьте переменную и начните заново.

Запустите программу несколько тысяч раз. В конце концов разделите общее количество ресурсов на общее количество пробегов - это и будет ваше ожидаемое значение метода Монте-Карло. Запустите программу несколько раз, чтобы удостовериться, что числа, которые вы получили, примерно одинаковы. Если разброс все еще велик, увеличьте число повторов во внешней петле, пока не начнете получать соответствия. Можете быть уверены: какие бы числа вы в итоге ни получили, они будут приблизительно верны.

Если же вы незнакомы с программированием (хотя даже если и знакомы), вот вам небольшое упражнение на проверку навыков работы с Excel. Если вы геймдизайнер, эти навыки никогда не будут лишними.

Сейчас вам очень пригодятся функции if и rand. Rand не требует значений, она всего лишь выдает случайное десятичное число от 0 до 1. Обычно мы совмещаем его с floor и плюсами и минусами, чтобы симулировать бросок кости, о чем я уже упоминал ранее. Впрочем, в этом случае мы всего лишь оставляем вероятность в 10%, что карта покинет игру, так что мы можем просто проверить, не составляет ли значение rand меньше 0,1, и больше не забивать себе этим голову.

If имеет три значения. По порядку: условие, которое либо верно, либо нет, затем значение, которое возвращается, если условие верно, и значение, которое возвращается, если условие неверно. Так что следующая функция будет возвращаться 5% времени, и 0 остальных 90% времени: =IF(RAND()<0.1,5,0) .

Существует много способов установить эту команду, но я бы использовал такую формулу для ячейки, которая представляет первый раунд, скажем, это ячейка A1: =IF(RAND()<0.1,0,-1) .

Здесь я использую негативную переменную в значении «эта карта не покинула игру и пока не отдала никаких ресурсов». Так что, если первый раунд завершился и карта покинула игру, A1 - это 0; в противоположном случае это –1.

Для следующей ячейки, представляющей второй раунд: =IF(A1>-1, A1, IF(RAND()<0.1,5,-1)) . Так что, если первый раунд завершился, и карта сразу покинула игру, A1 - это 0 (число ресурсов), и эта ячейка просто скопирует это значение. В противоположном случае A1 - это –1 (карта еще не покинула игру), и эта ячейка продолжает случайное движение: 10% времени она будет возвращать 5 единиц ресурсов, в остальное время ее значение будет по-прежнему равняться –1. Если применять эту формулу к добавочным ячейкам, мы получим добавочные раунды, и, какая бы ячейка ни выпала вам в конце, вы получите конечный результат (или –1, если карта так и не покинула игру после всех разыгранных вами раундов).

Возьмите этот ряд ячеек, который представляет собой единственный раунд с этой картой, и копируйте и вставьте несколько сотен (или тысяч) рядов. Возможно, у нас и не получится сделать бесконечный тест для Excel (существует ограниченное количество ячеек в таблице), но, по крайней мере, мы можем рассмотреть большинство случаев. Затем выделите одну ячейку, в которой вы поместите среднее значение результатов всех раундов - Excel любезно предоставляет для этого функцию average().

В Windows вы хотя бы можете нажать F9 для пересчета всех случайных чисел. Как и раньше, сделайте это несколько раз и посмотрите, одинаковые ли величины вы получаете. Если разброс слишком велик, удвойте число пробегов и попробуйте снова.

Нерешенные задачи

Если вы совершенно случайно имеете научную степень в области теории вероятностей и вышеприведенные задачи кажутся вам слишком лёгкими - вот две задачи, над которыми я ломаю голову годами, но, увы, я не так хорош в математике, чтобы их решить.

Нерешенная задача №1: Лотерея IMF

Первая нерешенная задача - предыдущее задание на дом. Я легко могу применить метод Монте-Карло (с помощью С++ или же Excel) и буду уверен в ответе на вопрос «сколько ресурсов получит игрок», но я не знаю точно, как предоставить точный доказуемый ответ математически (это же бесконечная серия).

Нерешенная задача №2: Последовательности фигур

Эту задачу (она тоже выходит далеко за пределы задач, которые решаются в этом блоге) мне подкинул один знакомый геймер более десяти лет тому назад. Во время игры в блэкджек в Вегасе он заметил одну интересную особенность: вынимая карты из башмака на 8 колод, он видел десять фигур подряд (фигура или фигурная карта - 10, Джокер, Король или Королева, так что всего их 16 в стандартной колоде на 52 карты или 128 в башмаке на 416 карт).

Какова вероятность того, что в этом башмаке по меньшей мере одна последовательность десяти или более фигур? Предположим, что их тасовали честно, в случайном порядке. Или же, если вам больше нравится, какова вероятность того, что нигде не встречается последовательность из десяти или более фигур?

Можем упростить задачу. Вот последовательность из 416 частей. Каждая часть - 0 или 1. Есть 128 единиц и 288 нулей, случайно разбросанных по всей последовательности. Сколько существует способов в случайном порядке перемежить 128 единиц 288 нулями и сколько раз в этих способах встретится как минимум одна группа десяти или более единиц?

Всякий раз, как только я принимался за решение этой задачи, она казалась мне лёгкой и очевидной, но стоило углубиться в детали, как она внезапно разваливалась на части и представлялась просто-таки невозможной.

Так что не торопитесь выпаливать ответ: сядьте, хорошенько подумайте, изучите условия, попробуйте подставить реальные числа, потому что все люди, с которыми я говорил об этой задаче (в том числе и несколько аспирантов, работающих в этой сфере), реагировали примерно одинаково: «Это же совершенно очевидно… ой, нет, погоди, совсем не очевидно». Это тот случай, когда у меня нет метода для просчитывания всех вариантов. Я, безусловно, мог бы прогнать задачу методом брутфорса через компьютерный алгоритм, но гораздо интереснее было бы узнать математический способ решения.

Краткая теория

Для количественного сравнения событий по степени возможности их появления вводится числовая мера, которая называется вероятностью события. Вероятностью случайного события называется число, являющееся выражением меры объективной возможности появления события.

Величины, определяющие, насколько значительны объективные основания рассчитывать на появление события, характеризуются вероятностью события. Необходимо подчеркнуть, что вероятность есть объективная величина, существующая независимо от познающего и обусловленная всей совокупностью условий, которые способствуют появлению события.

Объяснения, которые мы дали понятию вероятности, не являются математическим определением, так как они не определяют это понятие количественно. Существует несколько определений вероятности случайного события, которые широко применяются при решении конкретных задач (классическое, геометрическое определение вероятности , статистическое и т. д.).

Классическое определение вероятности события сводит это понятие к более элементарному понятию равновозможных событий, которое уже не подлежит определению и предполагается интуитивно ясным. Например, если игральная кость - однородный куб, то выпадения любой из граней этого куба будут равновозможными событиями.

Пусть достоверное событие распадается на равновозможных случаев , сумма которых дает событие . То есть случаи из , на которые распадается , называются благоприятствующими для события , так как появление одного из них обеспечивает наступление .

Вероятность события будем обозначать символом .

Вероятность события равна отношению числа случаев , благоприятствующих ему, из общего числа единственно возможных, равновозможных и несовместных случаев к числу , т. е.

Это есть классическое определение вероятности. Таким образом, для нахождения вероятности события необходимо, рассмотрев различные исходы испытания, найти совокупность единственно возможных, равновозможных и несовместных случаев, подсчитать общее их число n, число случаев m, благоприятствующих данному событию, и затем выполнить расчет по вышеприведенной формуле.

Вероятность события, равная отношению числа благоприятных событию исходов опыта к общему числу исходов опыта называется классической вероятностью случайного события.

Из определения вытекают следующие свойства вероятности:

Свойство 1. Вероятность достоверного события равна единице.

Свойство 2. Вероятность невозможного события равна нулю.

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Свойство 4. Вероятность наступления событий, образующих полную группу, равна единице.

Свойство 5. Вероятность наступления противоположного события определяется так же, как и вероятность наступления события A.

Число случаев, благоприятствующих появлению противоположного события . Отсюда вероятность наступления противоположного события равна разнице между единицей и вероятностью наступления события A:

Важное достоинство классического определения вероятности события состоит в том, что с его помощью вероятность события можно определить, не прибегая к опыту, а исходя из логических рассуждений.

При выполнении комплекса условий достоверное событие обязательно произойдет, а невозможное обязательно не произойдет. Среди событий, которые при создании комплекса условий могут произойти, а могут не произойти, на появление одних можно рассчитывать с большим основанием, на появление других с меньшим основанием. Если, например, в урне белых шаров больше, чем черных, то надеяться на появление белого шара при вынимании из урны наудачу больше оснований, чем на появление черного шара.

На соседней странице рассматривается .

Пример решения задачи

Пример 1

В ящике находится 8 белых, 4 черных и 7 красных шаров. Наудачу извлечены 3 шара. Найти вероятности следующих событий: – извлечен по крайней мере 1 красный шар, – есть по крайней мере 2 шара одного цвета, – есть по крайней мере 1 красный и 1 белый шар.

Решение задачи

Общее число исходов испытания найдем как число сочетаний из 19 (8+4+7) элементов по 3:

Найдем вероятность события – извлечен по крайней мере 1 красный шар (1,2 или 3 красных шара)

Искомая вероятность:

Пусть событие – есть по крайней мере 2 шара одного цвета (2 или 3 белых шара, 2 или 3 черных шара и 2 или 3 красных шара)

Число исходов, благоприятствующих событию:

Искомая вероятность:

Пусть событие – есть по крайней мере один красный и 1 белый шар

(1 красный, 1 белый, 1 черный или 1 красный, 2 белых или 2 красных, 1 белый)

Число исходов, благоприятствующих событию:

Искомая вероятность:

Ответ: P(A)=0.773;P(C)=0.7688; P(D)=0.6068

Пример 2

Брошены две игральные кости. Найти вероятность того, что сумма очков не меньше 5.

Решение

Пусть событие – сумма очков не меньше 5

Воспользуемся классическим определением вероятности:

Общее число возможных исходов испытания

Число испытаний, благоприятствующих интересующему нас событию

На выпавшей грани первого игрального кубика может появиться одно очко, два очка…, шесть очков. аналогично шесть исходов возможны при бросании второго кубика. Каждый из исходов бросания первой кости может сочетаться с каждым из исходов второй. Таким образом, общее число возможных элементарных исходов испытания равно числу размещений с повторениями (выбор с размещениями 2 элементов из совокупнности объема 6):

Найдем вероятность противоположного события – сумма очков меньше 5

Благоприятствовать событию будут следующие сочетания выпавших очков:

1-я кость 2-я кость 1 1 1 2 1 2 3 2 1 4 3 1 5 1 3

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Примеры близких по теме задач

Формула полной вероятности. Формула Байеса
На примере решения задачи рассмотрены формула полной вероятности и формула Байеса, а также рассказывается, что такое гипотезы и условные вероятности.

Когда бросается монета, можно сказать, что она упадет орлом вверх, или вероятность этого составляет 1/2. Конечно, это не означает того, что если монета подбрасывается 10 раз, она обязательно упадет вверх орлом 5 раз. Если монета является "честной" и если она подбрасывается много раз, то орел выпадет очень близко в половине случаев. Таким образом, существует два вида вероятностей: экспериментальная и теоретическая .

Экспериментальная и теоретическая вероятность

Если бросить монетку большое количество раз - скажем, 1000 - и посчитать, сколько раз выпадет орел, мы можем определить вероятность того, что выпадет орел. Если орел выпадет 503 раза, мы можем посчитать вероятность его выпадения:
503/1000, или 0,503.

Это экспериментальное определение вероятности. Такое определение вероятности вытекает из наблюдения и изучения данных и является довольно распространенным и очень полезным. Вот, к примеру, некоторые вероятности которые были определены экспериментально:

1. Вероятность того, что у женщины разовьется рак молочной железы составляет 1/11.

2. Если вы целуетесь, с кем-то, кто болен простудой, то вероятность того, что вы тоже заболеете простудой, составляет 0,07.

3. Человек, который только что был освобожден из тюрьмы, имеет 80% вероятности возвращения назад в тюрьму.

Если мы рассматриваем бросание монеты и беря во внимание то, что столь же вероятно, что выпадет орел или решка, мы можем вычислить вероятность выпадение орла: 1 / 2. Это теоретическое определение вероятности. Вот некоторые другие вероятности, которые были определены теоретически, с помощью математики:

1. Если находится 30 человек в комнате, вероятность того, что двое из них имеют одинаковый день рождения (исключая год), составляет 0,706.

2. Во время поездки, Вы встречаете кого-то, и в течение разговора обнаруживаете, что у вас есть общий знакомый. Типичная реакция: "Этого не может быть!". На самом деле, эта фраза не подходит, потому что вероятность такого события достаточно высока - чуть более 22%.

Таким образом, экспериментальная вероятность определяются путем наблюдения и сбора данных. Теоретические вероятности определяются путем математических рассуждений. Примеры экспериментальных и теоретических вероятностей, как например, рассмотренных выше, и особенно тех, которые мы не ожидаем, приводят нас, к ваэности изучения вероятности. Вы можете спросить: "Что такое истинная вероятность?" На самом деле, таковой нет. Экспериментально можно определить вероятности в определенных пределах. Они могут совпадать или не совпадать с вероятностями, которые мы получаем теоретически. Есть ситуации, в которых гораздо легче определить один из типов вероятности, чем другой. Например, было бы довольно найти вероятность простудиться, используя теоретическую вероятность.

Вычисление экспериментальных вероятностей

Рассмотрим сначала экспериментальное определение вероятности. Основной принцип, который мы используем для вычисления таких вероятностей, является следующим.

Принцип P (экспериментальный)

Если в опыте, в котором проводится n наблюдений, ситуация или событие Е происходит m раз за n наблюдений, то говорят, что экспериментальная вероятность события равна P (E) = m/n.

Пример 1 Социологический опрос. Было проведено экспериментальное исследование, чтобы определить количество левшей, правшей и людей, у которых обе руки развиты одинаково Результаты показаны на графике.

a) Определите вероятность того, что человек - правша.

b) Определите вероятность того, что человек - левша.

c) Определите вероятность того, что человек одинаково свободно владеет обеими руками.

d) В большинстве турниров, проводимых Профессиональной Ассоциацией Боулинга, участвуют 120 игроков. На основании данных этого эксперимента, сколько игроков могут быть левшой?

Решение

a)Число людей, являющиеся правшами, составляет 82, количество левшей составляет 17, а число тех, кто одинаково свободно владеет двумя руками - 1. Общее количество наблюдений - 100. Таким образом, вероятность того, что человек правша, есть Р
P = 82/100, или 0,82, или 82%.

b) Вероятность того, что человек левша, есть Р, где
P = 17/100, или 0,17, или 17%.

c) Вероятность того, что человек одинаково свободно владеет двумя руками составляет P, где
P = 1/100, или 0,01, или 1%.

d) 120 игроков в боулинг, и из (b) мы можем ожидать, что 17% - левши. Отсюда
17% от 120 = 0,17.120 = 20,4,
то есть мы можем ожидать, что около 20 игроков являются левшами.

Пример 2 Контроль качества . Для производителя очень важно держать качество своей продукции на высоком уровне. На самом деле, компании нанимают инспекторов контроля качества для обеспечения этого процесса. Целью является выпуск минимально возможного количества дефектных изделий. Но так как компания производит тысячи изделий каждый день, она не может позволить себе проверять каждое изделие, чтобы определить, бракованное оно или нет. Чтобы выяснить, какой процент продукции являются дефектным, компания проверяет гораздо меньше изделий.
Министерство сельского хозяйства США требует, чтобы 80% семян, которые продают производители, прорастали. Для определения качества семян, которые производит сельхозкомпания, высаживается 500 семян из тех, которые были произведены. После этого подсчитали, что 417 семян проросло.

a) Какова вероятность того, что семя прорастет?

b) Отвечают ли семена государственным стандартам?

Решение a) Мы знаем, что из 500 семян, которые были высажены, 417 проросли. Вероятность прорастания семян Р, и
P = 417/500 = 0,834, или 83.4%.

b) Так как процент проросших семян превысил 80% по требованию, семена отвечают государственным стандартам.

Пример 3 Телевизионные рейтинги. Согласно статистических данных, в Соединенных Штатах 105 500 000 домохозяйств с телевизорами. Каждую неделю, информация о просмотре передач собирается и обрабатывается. В течение одной недели 7815000 домохозяйств были настроены на популярный комедийный сериал "Все любят Реймонда" на CBS и 8302000 домохозяйств были настроены на популярный сериал «Закон и порядок» на NBC (Источник: Nielsen Media Research). Какова вероятность того, что телевизор одного дома настроен на «Everybody Loves Raymond" в течение данной недели? на «Закон и порядок»?

Решениеn Вероятность того, что телевизор в одном домохозяйстве настроен на "Все любят Реймонда" равна Р, и
P = 7,815,000/105,500,000 ≈ 0,074 ≈ 7,4%.
Возможность, что телевизор домохозяйства был настроен на «Закон и порядок» составляет P, и
P = 8,302,000/105,500,000 ≈ 0,079 ≈ 7,9%.
Эти проценты называются рейтингами.

Теоретическая вероятность

Предположим, что мы проводим эксперимент, такие, как бросание монетки ли дротиков, вытаскивание карты из колоды, или проверка изделий на качество на сборочной линии. Каждый возможный результат такого эксперимента называется исход . Множество всех возможных исходов называется пространством исходов . Событие это множество исходов, то есть подмножество пространства исходов.

Пример 4 Бросание дротиков. Предположим, что в эксперименте «метание дротиков» дротик попадает в мишень. Найдите каждое из нижеследующих:

b) Пространство исходов

Решение
a) Исходы это: попадание в черное (Ч), попадание в красное (К) и попадание в белое (Б).

b) Пространство исходов есть {попадание в черное, попадание в красное, попадание в белое}, которое может быть записано просто как {Ч, К, Б}.

Пример 5 Бросание игральных костей. Игральная кость это куб с шестью гранями, на каждой их которых нарисовано от одной до шести точек.


Предположим, что мы бросаем игральную кость. Найдите
a) Исходы
b) Пространство исходов

Решение
a) Исходы: 1, 2, 3, 4, 5, 6.
b) Пространство исходов {1, 2, 3, 4, 5, 6}.

Мы обозначаем вероятность того, что событие Е случается в качестве Р (Е). Например, "монета упадет решкой" можно обозначать H. Тогда Р (Н) представляет собой вероятность того, монета упадет решкой. Когда все исходы эксперимента имеют одинаковую вероятность появления, говорят, что они равновероятны. Чтобы увидеть различия между событиями, которые равновероятны, и неравновероятными событиями, рассмотрим мишень, изображенную ниже.

Для мишени A, события попадания в черное, красное и белое равновероятны, так как черные, красные и белые сектора - одинаковые. Однако, для мишени B зоны с этими цветами не одинаковы, то есть попадание в них не равновероятно.

Принцип P (Теоретический)

Если событие E может случиться m путями из n возможных равновероятных исходов из пространства исходов S, тогда теоретическая вероятность события, P(E) составляет
P(E) = m/n.

Пример 6 Какая вероятность выкинуть 3, бросив игральный кубик?

Решение На игральном кубике 6 равновероятных исходов и существует только одна возможность выбрасивания цифры 3. Тогда вероятность P составит P(3) = 1/6.

Пример 7 Какая вероятность выбрасывания четной цифры на игральном кубике?

Решение Событие - это выбрасывание четной цифры. Это может случиться 3 способами (если выпадет 2, 4 или 6). Число равновероятных исходов равно 6. Тогда вероятность P(четное) = 3/6, или 1/2.

Мы будем использовать ряд примеров, связанных со стандартной колодой из 52 карт. Такая колода состоит из карт, показанных на рисунке ниже.

Пример 8 Какая вероятность вытянуть туза из хорошо перемешанной колоды карт?

Решение Существует 52 исхода (количество карт в колоде), они равновероятны (если колода хорошо перемешана), и есть 4 способа вытянуть туза, поэтому согласно принципу P, вероятность
P(вытягивания туза) = 4/52, или 1/13.

Пример 9 Предположим, что мы выбираем не глядя, один шарик из мешка с 3-мя красными шариками и 4-мя зелеными шариками. Какова вероятность выбора красного шарика?

Решение Существует 7 равновероятных исходов достать любой шарик, и так как число способов вытянуть красный шарик равно 3, получим
P(выбора красного шарика) = 3/7.

Следующие утверждения - это результаты из принципа P.

Свойства вероятности

a) Если событие E не может случиться, тогда P(E) = 0.
b) Если событие E случиться непременно тогда P(E) = 1.
c) Вероятность того, что событие Е произойдет это число от 0 до 1: 0 ≤ P(E) ≤ 1.

Например, в бросании монеты, событие, когда монета упадет на ребро имеет нулевую вероятность. Вероятность того, что монета либо на орел или решку имеет вероятность 1.

Пример 10 Предположим, что вытягиваются 2 карты из колоды с 52-мя картами. Какова вероятность того, что обе из них пики?

Решение Число путей n вытягивания 2 карт из хорошо перемешанной колоды с 52 картами есть 52 C 2 . Так как 13 из 52 карт являются пиками, число способов m вытягивания 2-х пик есть 13 C 2 . Тогда,
P(вытягивания 2-х пик)= m/n = 13 C 2 / 52 C 2 = 78/1326 = 1/17.

Пример 11 Предположим, что 3 человека выбираются случайно из группы, состоящей из 6-ти мужчин и 4-х женщин. Какова вероятность того, что будут выбраны 1 мужчина и 2 женщины?

Решение Число способов выбора троих человек из группы 10 человек 10 C 3 . Один мужчина может быть выбран 6 C 1 способами, и 2 женщины могут быть выбраны 4 C 2 способами. Согласно фундаментальному принципу подсчета, число способов выбора 1-го мужчины и 2-х женщин 6 C 1 . 4 C 2 . Тогда, вероятность что будет выбраны 1-го мужчины и 2-х женщин есть
P = 6 C 1 . 4 C 2 / 10 C 3 = 3/10.

Пример 12 Бросание игральных кубиков. Какая вероятность выбрасывания в сумме 8 на двух игральных кубиках?

Решение На каждом игральном кубике есть 6 возможных исходов. Исходы удваиваются, то есть существует 6.6 или 36 возможных способа, в котором могут выпасть цифры на двух кубиках. (Лучше, если кубики разные, скажем один красный а второй голубой - это поможет визуализировать результат.)

Пары цифр, в сумме составляющие 8, показаны на рисунке внизу. Есть 5 возможных способов получения суммы, равной 8, отсюда вероятность равна 5/36.

Это отношение количества тех наблюдений, при которых рассматриваемое событие наступило, к общему количеству наблюдений. Такая трактовка допустима в случае достаточно большого количества наблюдений или опытов. Например, если среди встреченных на улице людей примерно половина - женщины, то можно говорить, что вероятность того, что встреченный на улице человек окажется женщиной, равна 1/2. Другими словами, оценкой вероятности события может служить частота его наступления в длительной серии независимых повторений случайного эксперимента .

Вероятность в математике

В современном математическом подходе классическая (то есть не квантовая) вероятность задаётся аксиоматикой Колмогорова . Вероятностью называется мера P , которая задаётся на множестве X , называемом вероятностным пространством . Эта мера должна обладать следующими свойствами:

Из указанных условий следует, что вероятностная мера P также обладает свойством аддитивности : если множества A 1 и A 2 не пересекаются, то . Для доказательства нужно положить все A 3 , A 4 , … равными пустому множеству и применить свойство счётной аддитивности.

Вероятностная мера может быть определена не для всех подмножеств множества X . Достаточно определить её на сигма-алгебре , состоящей из некоторых подмножеств множества X . При этом случайные события определяются как измеримые подмножества пространства X , то есть как элементы сигма-алгебры .

Вероятность смысле

Когда мы находим, что основания для того, чтобы какой-нибудь возможный факт произошел в действительности, перевешивают противоположные основания, мы считаем этот факт вероятным , в противном случае - невероятным . Этот перевес положительных оснований над отрицательными, и наоборот, может представлять неопределённое множество степеней, вследствие чего вероятность невероятность ) бывает большею или меньшею .

Сложные единичные факты не допускают точного вычисления степеней своей вероятности, но и здесь важно бывает установить некоторые крупные подразделения. Так, например, в области юридической , когда подлежащий суду личный факт устанавливается на основании свидетельских показаний, он всегда остаётся, строго говоря, лишь вероятным, и необходимо знать, насколько эта вероятность значительна; в римском праве здесь принималось четверное деление: probatio plena (где вероятность практически переходит в достоверность ), далее - probatio minus plena , затем - probatio semiplena major и, наконец, probatio semiplena minor .

Кроме вопроса о вероятности дела, может возникать, как в области права, так и в области нравственной (при известной этической точке зрения) вопрос о том, насколько вероятно, что данный частный факт составляет нарушение общего закона. Этот вопрос, служащий основным мотивом в религиозной юриспруденции Талмуда , вызвал и в римско-католическом нравственном богословии (особенно с конца XVI века) весьма сложные систематические построения и огромную литературу, догматическую и полемическую (см. Пробабилизм) .

Понятие вероятности допускает определенное численное выражение в применении лишь к таким фактам, которые входят в состав определенных однородных рядов. Так (в самом простом примере), когда кто-нибудь бросает сто раз кряду монету, мы находим здесь один общий или большой ряд (сумма всех падений монеты), слагающийся из двух частных или меньших, в данном случае численно равных, рядов (падения «орлом» и падения «решкой»); Вероятность, что в данный раз монета упадет решкой, то есть что этот новый член общего ряда будет принадлежать к этому из двух меньших рядов, равняется дроби, выражающей численное отношение между этим малым рядом и большим, именно 1/2, то есть одинаковая вероятность принадлежит к тому или другому из двух частных рядов. В менее простых примерах заключение не может быть выведено прямо из данных самой задачи, а требует предварительной индукции . Так, например, спрашивается: какая вероятность существует для данного новорожденного дожить до 80 лет? Здесь должно составить общий, или большой, ряд из известного числа людей, рожденных в подобных же условиях и умирающих в различном возрасте (это число должно быть достаточно велико, чтобы устранить случайные отклонения, и достаточно мало, чтобы сохранялась однородность ряда, ибо для человека, рождённого, например, в Санкт-Петербурге в обеспеченном культурном семействе, всё миллионное население города, значительная часть которого состоит из лиц разнообразных групп, могущих умереть раньше времени - солдат, журналистов, рабочих опасных профессий, - представляет группу слишком разнородную для настоящего определения вероятности); пусть этот общий ряд состоит из десяти тысяч человеческих жизней; в него входят меньшие ряды, представляющие число доживающих до того или другого возраста; один из этих меньших рядов представляет число доживающих до 80 лет. Но определить численность этого меньшего ряда (как и всех других) невозможно a priori ; это делается чисто индуктивным путем, посредством статистики . Положим, статистические исследования установили, что из 10000 петербуржцев среднего класса до 80 лет доживают только 45; таким образом, этот меньший ряд относится к большому, как 45 к 10000, и вероятность для данного лица принадлежать к этому меньшему ряду, то есть дожить до 80 лет, выражается дробью 0,0045. Исследование вероятности с математической точки зрения составляет особую дисциплину - теорию вероятностей .

См. также

Примечания

Литература

  • Альфред Реньи. Письма о вероятности / пер. с венг. Д.Сааса и А.Крамли под ред. Б. В. Гнеденко. М.: Мир. 1970
  • Гнеденко Б. В. Курс теории вероятностей. М., 2007. 42 с.
  • Купцов В. И. Детерминизм и вероятность. М., 1976. 256 с.

Wikimedia Foundation . 2010 .

Синонимы :

Антонимы :

Смотреть что такое "Вероятность" в других словарях:

    Общенаучная и филос. категория, обозначающая количественную степень возможности появления массовых случайных событий при фиксированных условиях наблюдения, характеризующую устойчивость их относительных частот. В логике семантическая степень… … Философская энциклопедия

    ВЕРОЯТНОСТЬ, число в интервале от нуля до единицы включительно, представляющее возможность свершения данного события. Вероятность события определяется как отношение числа шансов того, что событие может произойти, к общему количеству возможных… … Научно-технический энциклопедический словарь

    По всей вероятности.. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. вероятность возможность, вероятие, шанс, объективная возможность, маза, допустимость, риск. Ant. невозможность… … Словарь синонимов

    вероятность - Мера того, что событие может произойти. Примечание Математическое определение вероятности: «действительное число в интервале от 0 до 1, относящееся к случайному событию». Число может отражать относительную частоту в серии наблюдений… … Справочник технического переводчика

    Вероятность - «математическая, числовая характеристика степени возможности появления какого либо события в тех или иных определенных, могущих повторяться неограниченное число раз условиях». Если исходить из этого классического… … Экономико-математический словарь

    - (probability) Возможность наступления какого либо события или определенного результата. Может быть представлена в виде шкалы с делениями от 0 до 1. При нулевой вероятности события его наступление невозможно. При вероятности, равной 1, наступление … Словарь бизнес-терминов