Значение слова «вероятность. Классическая вероятность

как онтологическая категория отражает меру возможности возникновения какого-либо сущего в каких-либо условиях. В отличие от математических и логической интерпретации этого понятия онтологическая В. не связывает себя с обязательностью количетвенного выражения. Значение В. раскрывается в контексте понимания детерминизма и характера развития в целом.

Отличное определение

Неполное определение ↓

ВЕРОЯТНОСТЬ

понятие, характеризующее количеств. меру возможности появления нек-рого события при определ. условиях. В науч. познании встречаются три интерпретации В. Классическая концепция В., возникшая из математич. анализа азартных игр и наиболее полно разработанная Б. Паскалем, Я. Бернулли и П. Лапласом, рассматривает В. как отношение числа благоприятствующих случаев к общему числу всех равновозможных. Напр., ири бросании игральной кости, имеющей 6 граней, выпадение каждой из них можно ожидать с В., равной 1/6, т. к. ни одна грань не имеет преимуществ перед другой. Подобная симметричность исходов опыта специально учитывается при организации игр, но сравнительно редко встречается при исследовании объективных событий в науке и практике. Классич. интерпретация В. уступила место статистич. концепции В., в основе к-рой лежат действит. наблюдения появления нек-рого события в ходе длит. опыта при точно фиксированных условиях. Практика подтверждает, что чем чаще происходит событие, тем больше степень объективной возможности его появления, или В. Поэтому статистич. интерпретация В. опирается на понятие относит. частоты, к-рое может быть определено опытным путем. В. как теоретич. понятие никогда не совпадает с эмпирически определяемой частотой, однако во мн. случаях она практически мало отличается от относит. частоты, найденной в результате длит. наблюдений. Многие статистики рассматривают В. как «двойник» относит. частоты, к-рая определяется при статистич. исследовании результатов наблюдений

или экспериментов. Менее реалистичным оказалось определение В. как предела относит. частот массовых событий, или коллективов, предложенное Р. Мизесом. В качестве дальнейшего развития частотного подхода к В. выдвигается диспозиционная, или пропенситивная, интерпретация В. (К. Поппер, Я. Хэккинг, М. Бунге, Т. Сетл). Согласно этой интерпретации, В. характеризует свойство порождающих условий, напр. эксперимент. установки, для получения последовательности массовых случайных событий. Именно такая установка порождает физич. диспозиции, или предрасположенности, В. к-рых может быть проверена с помощью относит. частот.

Статистич. интерпретация В. доминирует в науч. познании, ибо она отражает специфич. характер закономерностей, присущих массовым явлениям случайного характера. Во многих физич., биологич., экономич., демографич. и др. социальных процессах приходится учитывать действие множества случайных факторов, к-рые характеризуются устойчивой частотой. Выявление этой устойчивой частоты и количеств. ее оценка с помощью В. дает возможность вскрыть необходимость, к-рая прокладывает себе путь через совокупное действие множества случайностей. В этом находит свое проявление диалектика превращения случайности в необходимость (см. Ф. Энгельс, в кн.: Маркс К. и Энгельс Ф., Соч., т. 20, с. 535-36).

Логическая, или индуктивная, В. характеризует отношение между посылками и заключением недемонстративного и, в частности, индуктивного рассуждения. В отличие от дедукции, посылки индукции не гарантируют истинности заключения, а лишь делают его в той или иной степени правдоподобным. Это правдоподобие при точно сформулированных посылках иногда можно оценивать с помощью В. Значение этой В. чаще всего определяется посредством сравнит. понятий (больше, меньше или равно), а иногда и численным способом. Логич. интерпретацию часто используют для анализа индуктивных рассуждений и построения различных систем вероятностных логик (Р. Карнап, Р. Джефри). В семантич. концепции логич. В. часто определяется как степень подтверждения одного высказывания другими (напр., гипотезы ее эмпирич. данными) .

В связи с развитием теорий принятия решений и игр все большее распростраиение получает т. н. персоналистская интерпретация В. Хотя В. при этом выражает степень веры субъекта и появление нек-рого события, сами В. должны выбираться с таким расчетом, чтобы удовлетворялись аксиомы исчисления В. Поэтому В. при такой интерпретации выражает не столько степень субъективной, сколько разумной веры. Следовательно, решения, принимаемые на основе такой В., будут рациональными, ибо они не учитывают психологич. особенностей и склонностей субъекта.

С гносеологич. т. зр. различие между статистич., логич. и персоналистской интерпретациями В. состоит в том, что если первая дает характеристику объективным свойствам и отношениям массовых явлений случайного характера, то последние две анализируют особенности субъективной, познават. деятельности людей в условиях неопределенности.

ВЕРОЯТНОСТЬ

одно из важнейших понятий науки, характеризующее особое системное видение мира, его строения, эволюции и познания. Специфика вероятностного взгляда на мир раскрывается через включение в число базовых понятий бытия понятий случайности, независимости и иерархии (идеи уровней в структуре и детерминации систем).

Представления о вероятности зародились еще в древности и относились к характеристике нашего знания, при этом признавалось наличие вероятностного знания, отличающегося от достоверного знания и от ложного. Воздействие идеи вероятности на научное мышление, на развитие познания прямо связано с разработкой теории вероятностей как математической дисциплины. Зарождение математического учения о вероятности относится к 17 в., когда было положено начало разработке ядра понятий, допускающих. количественную (числовую) характеристику и выражающих вероятностную идею.

Интенсивные приложения вероятности к развитию познания приходятся на 2-ю пол. 19- 1-ю пол. 20 в. Вероятность вошла в структуры таких фундаментальных наук о природе, как классическая статистическая физика, генетика, квантовая теория, кибернетика (теория информации). Соответственно вероятность олицетворяет тот этап в развитии науки, который ныне определяется как неклассическая наука. Чтобы раскрыть новизну, особенности вероятностного образа мышления, необходимо исходить из анализа предмета теории вероятностей и оснований ее многочисленных приложений. Теорию вероятностей обычно определяют как математическую дисциплину, изучающую закономерности массовых случайных явлений при определенных условиях. Случайность означает, что в рамках массовости бытие каждого элементарного явления не зависит и не определяется бытием других явлений. В то же время сама массовость явлений обладает устойчивой структурой, содержит определенные регулярности. Массовое явление вполне строго делится на подсистемы, и относительное число элементарных явлений в каждой из подсистем (относительная частота) весьма устойчиво. Эта устойчивость сопоставляется с вероятностью. Массовое явление в целом характеризуется распределением вероятностей, т. е. заданием подсистем и соответствующих им вероятностей. Язык теории вероятностей есть язык вероятностных распределений. Соответственно теорию вероятностей и определяют как абстрактную науку об оперировании распределениями.

Вероятность породила в науке представления о статистических закономерностях и статистических системах. Последние суть системы, образованные из независимых или квазинезависимых сущностей, их структура характеризуется распределениями вероятностей. Но как возможно образование систем из независимых сущностей? Обычно предполагается, что для образования систем, имеющих целостные характеристики, необходимо, чтобы между их элементами существовали достаточно устойчивые связи, которые цементируют системы. Устойчивость статистическим системам придает наличие внешних условий, внешнего окружения, внешних, а не внутренних сил. Само определение вероятности всегда опирается на задание условий образования исходного массового явления. Еще одной важнейшей идеей, характеризующей вероятностную парадигму, является идея иерархии (субординации). Эта идея выражает взаимоотношения между характеристиками отдельных элементов и целостными характеристиками систем: последние как бы надстраиваются над первыми.

Значение вероятностных методов в познании заключается в том, что они позволяют исследовать и теоретически выражать закономерности строения и поведения объектов и систем, имеющих иерархическую, «двухуровневую» структуру.

Анализ природы вероятности опирается на частотную, статистическую ее трактовку. Вместе с тем весьма длительное время в науке господствовало такое понимание вероятности, которое получило название логической, или индуктивной, вероятности. Логическую вероятность интересуют вопросы обоснованности отдельного, индивидуального суждения в определенных условиях. Можно ли оценить степень подтверждения (достоверности, истинности) индуктивного заключения (гипотетического вывода) в количественной форме? В ходе становления теории вероятностей такие вопросы неоднократно обсуждались, и стали говорить о степенях подтверждения гипотетических заключений. Эта мера вероятности определяется имеющейся в распоряжении данного человека информацией, его опытом, воззрениями на мир и психологическим складом ума. Во всех подобных случаях величина вероятности не поддается строгим измерениям и практически лежит вне компетенции теории вероятностей как последовательной математической дисциплины.

Объективная, частотная трактовка вероятности утверждалась в науке со значительными трудностями. Первоначально на понимание природы вероятности оказали сильное воздействие те философско-методологические взгляды, которые были характерны для классической науки. Исторически становление вероятностных методов в физике происходило под определяющим воздействием идей механики: статистические системы трактовались просто как механические. Поскольку соответствующие задачи не решались строгими методами механики, то возникли утверждения, что обращение к вероятностным методам и статистическим закономерностям есть результат неполноты наших знаний. В истории развития классической статистической физики предпринимались многочисленные попытки обосновать ее на основе классической механики, однако все они потерпели неудачу. Основания вероятности состоят в том, что она выражает собою особенности структуры определенного класса систем, иного, чем системы механики: состояние элементов этих систем характеризуется неустойчивостью и особым (не сводящимся к механике) характером взаимодействий.

Вхождение вероятности в познание ведет к отрицанию концепции жесткого детерминизма, к отрицанию базовой модели бытия и познания, выработанных в процессе становления классической науки. Базовые модели, представленные статистическими теориями, носят иной, более общий характер: они включают в себя идеи случайности и независимости. Идея вероятности связана с раскрытием внутренней динамики объектов и систем, которая не может быть всецело определена внешними условиями и обстоятельствами.

Концепция вероятностного видения мира, опирающаяся на абсолютизацию представлений о независимости (как и прежде парадигма жесткой детерминации), в настоящее время выявила свою ограниченность, что наиболее сильно сказывается при переходе современной науки к аналитическим методам исследования сложноорганизованных систем и физико-математических основ явлений самоорганизации.

Отличное определение

Неполное определение ↓

Ясно, что каждое событие обладает той или иной степенью возможности своего наступления (своей реализации). Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определенное число, которое тем больше, чем более возможно событие. Такое число называется вероятностью события.

Вероятность события – есть численная мера степени объективной возможности наступления этого события.

Рассмотрим стохастический эксперимент и случайное событие А, наблюдаемое в этом эксперименте. Повторим этот эксперимент n раз и пусть m(A) – число экспериментов, в которых событие А произошло.

Отношение (1.1)

называется относительной частотой события А в проведенной серии экспериментов.

Легко убедиться в справедливости свойств:

если А и В несовместны (АВ= ), то ν(А+В) = ν(А) + ν(В) (1.2)

Относительная частота определяется только после проведения серии экспериментов и, вообще говоря, может меняться от серии к серии. Однако опыт показывает, что во многих случаях при увеличении числа опытов относительная частота приближается к некоторому числу. Этот факт устойчивости относительной частоты неоднократно проверялся и может считаться экспериментально установленным.

Пример 1.19. . Если бросить одну монету, никто не сможет предсказать, какой стороной она упадет кверху. Но если бросить две тонны монет, то каждый скажет, что примерно одна тонна упадет кверху гербом, то есть относительная частота выпадения герба примерно равна 0,5.

Если при увеличении числа опытов относительная частота события ν(А) стремится к некоторому фиксированному числу, то говорят, что событие А статистически устойчиво , а это число называют вероятностью события А.

Вероятностью события А называется некоторое фиксированное число Р(А), к которому стремится относительная частота ν(А) этого события при увеличении числа опытов, то есть,

Это определение называют статистическим определением вероятности .

Рассмотрим некий стохастический эксперимент и пусть пространство его элементарных событий состоит из конечного или бесконечного (но счетного) множества элементарных событий ω 1 , ω 2 , …, ω i , … . предположим, что каждому элементарному событию ω i прописан некоторое число - р i , характеризующее степень возможности появления данного элементарного события и удовлетворяющее следующим свойствам:

Такое число p i называется вероятностью элементарного события ω i .

Пусть теперь А- случайное событие, наблюдаемое в этом опыте, и ему соответствует некоторое множество

В такой постановке вероятностью события А называют сумму вероятностей элементарных событий, благоприятствующих А (входящих в соответствующее множество А):


(1.4)

Введенная таким образом вероятность обладает теми же свойствами, что и относительная частота, а именно:

И если АВ= (А и В несовместны),

то P(А+В) = P(А) + P(В)

Действительно, согласно (1.4)

В последнем соотношении мы воспользовались тем, что ни одно элементарное событие не может благоприятствовать одновременно двум несовместным событиям.

Особо отметим, что теория вероятностей не указывает способов определения р i , их надо искать из соображений практического характера или получать из соответствующего статистического эксперимента.

В качестве примера рассмотрим классическую схему теории вероятностей. Для этого рассмотрим стохастический эксперимент, пространство элементарных событий которого состоит из конечного (n) числа элементов. Предположим дополнительно, что все эти элементарные события равновозможны, то есть вероятности элементарных событий равны p(ω i)=p i =p. Отсюда следует, что

Пример 1.20 . При бросании симметричной монеты выпадение герба и «решки» равновозможны, их вероятности равны 0,5.

Пример 1.21 . При бросании симметричного кубика все грани равновозможны, их вероятности равны 1/6.

Пусть теперь событию А благоприятствует m элементарных событий, их обычно называют исходами, благоприятствующими событию А . Тогда

Получили классическое определение вероятности : вероятность Р(А) события А равна отношению числа исходов, благоприятствующих событию А, к общему числу исходов

Пример 1.22 . В урне лежит m белых шаров и n черных. Чему равна вероятность вытащить белый шар?

Решение . Всего элементарных событий m+n. Они все равновероятны. Благоприятствующих событию А из них m. Следовательно, .

Из определения вероятности вытекают следующие ее свойства:

Свойство 1 . Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует собы­тию. В этом случае т=п, следовательно,

P(A)=m/n=n/n=1. (1.6)

Свойство 2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае т = 0, следовательно, P(A)=m/n=0/n=0. (1.7)

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испы­тания. То есть, 0≤m≤n, значит, 0≤m/n≤1, следовательно, вероятность любого события удовлетворяет двойному неравенству 0≤P(A) 1. (1.8)

Сопоставляя определения вероятности (1.5) и относительной частоты (1.1), заключаем: определение вероятности не требует, чтобы испытания производились в действительности; определение же относительной частоты предполагает, что испытания были произведены фактически . Другими словами, вероятность вычисляют до опыта, а относительную частоту - после опыта.

Однако, вычисление вероятности требует наличия предварительной информации о количестве или вероятностях благоприятствующих данному событию элементарных исходов. В случае отсутствия такой предварительной информации для определения вероятности прибегают к эмпирическим данным, то есть, по результатам стохастического эксперимента определяют относительную частоту события.

Пример 1.23 . Отдел технического контроля обнаружил 3 нестандартных детали в партии из 80 случайно отобранных деталей. Относительная частота появления нестандартных деталей r (А) = 3/80.

Пример 1.24 . По цели.произвели 24 выстрела, причем было зарегистрировано 19 попаданий. Относительная частота поражения цели. r (А) =19/24.

Длительные наблюдения показали, что если в одинаковых условиях производят опыты, в каждом из которых число испытаний достаточно велико, то относительная частота обнаруживает свойство устойчивости. Это свойство состоит в том, что в различных опытах относительная частота изменяется мало (тем меньше, чем больше произведено испытаний), колеблясь около некоторого постоянного числа. Оказалось, что это постоянное число можно принять за приближенное значение вероятности.

Подробнее и точнее связь между относительной частотой и вероятностью будет изложена далее. Теперь же проиллюстрируем свойство устойчивости на примерах.

Пример 1.25 . По данным шведской статистики, относительная частота рождения девочек за 1935 г. по месяцам характеризуется сле­дующими числами (числа расположены в порядке следования месяцев, начиная с января): 0,486; 0,489; 0,490; 0.471; 0,478; 0,482; 0.462; 0,484; 0,485; 0,491; 0,482; 0,473

Относительная частота колеблется около числа 0,481, которое можно принять за приближеннее значение вероятности рождения девочек.

Заметим, что статистические данные различных стран дают примерно то же значение относительной частоты.

Пример 1.26. Многократно проводились опыты бросания монеты, в которых подсчитывали число появление «герба». Результаты нескольких опытов приведены в таблице.

Итак, поговорим на тему, которая интересует очень многих. В данной статье я вам отвечу на вопрос о том, как рассчитать вероятность события. Приведу формулы для такого расчета и несколько примеров, чтобы было понятнее, как это делается.

Что такое вероятность

Начнем с того, что вероятность того, что то или иное событие произойдет – некая доля уверенности в конечном наступлении какого-то результата. Для этого расчета разработана формула полной вероятности, позволяющая определить, наступит интересующее вас событие или нет, через, так называемые, условные вероятности. Эта формула выглядит так: Р = n/m, буквы могут меняться, но на саму суть это никак не влияет.

Примеры вероятности

На простейшем примере разберем эту формулу и применим ее. Допустим, у вас есть некое событие (Р), пусть это будет бросок игральной кости, то есть равносторонний кубик. И нам требуется подсчитать, какова вероятность выпадения на нем 2 очков. Для этого нужно число положительных событий (n), в нашем случае – выпадение 2 очков, на общее число событий (m). Выпадение 2 очков может быть только в одном случае, если на кубике будет по 2 очка, так как по другому, сумма будет больше, из этого следует, что n = 1. Далее подсчитываем число выпадения любых других цифр на кости, на 1 кости – это 1, 2, 3, 4, 5 и 6, следовательно, благоприятных случаев 6, то есть m = 6. Теперь по формуле делаем нехитрое вычисление Р = 1/6 и получаем, что выпадение на кости 2 очков равно 1/6, то есть вероятность события очень мала.

Еще рассмотрим пример на цветных шарах, которые лежат в коробке: 50 белых, 40 черных и 30 зеленых. Нужно определить какова вероятность вытащить шар зеленого цвета. И так, так как шаров этого цвета 30, то есть, положительных событий может быть только 30 (n = 30), число всех событий 120, m = 120 (по общему количеству всех шаров), по формуле рассчитываем, что вытащить зеленый шар вероятность равна будет Р = 30/120 = 0,25, то есть 25 % из 100. Таким же образом, можно вычислить и вероятность вытащить шар другого цвета (черного она будет 33%, белого 42%).

Фактически формулы (1) и (2) это краткая запись условной вероятности на основе таблицы сопряженности признаков. Вернемся к примеру, рассмотренному (рис. 1). Предположим, что нам стало известно, будто некая семья собирается купить широкоэкранный телевизор. Какова вероятность того, что эта семья действительно купит такой телевизор?

Рис. 1. Поведение покупателей широкоэкранных телевизоров

В данном случае нам необходимо вычислить условную вероятность Р (покупка совершена | покупка планировалась). Поскольку нам известно, что семья планирует покупку, выборочное пространство состоит не из всех 1000 семей, а только из тех, которые планируют покупку широкоэкранного телевизора. Из 250 таких семей 200 действительно купили этот телевизор. Следовательно, вероятность того, что семья действительно купит широкоэкранный телевизор, если она это запланировала, можно вычислить по следующей формуле:

Р (покупка совершена | покупка планировалась) = количество семей, планировавших и купивших широкоэкранный телевизор / количество семей, планировавших купить широкоэкранный телевизор = 200 / 250 = 0,8

Этот же результат дает формула (2):

где событие А заключается в том, что семья планирует покупку широкоформатного телевизора, а событие В - в том, что она его действительно купит. Подставляя в формулу реальные данные, получаем:

Дерево решений

На рис. 1 семьи разделены на четыре категории: планировавшие покупку широкоэкранного телевизора и не планировавшие, а также купившие такой телевизор и не купившие. Аналогичную классификацию можно выполнить с помощью дерева решений (рис. 2). Дерево, изображенное на рис. 2, имеет две ветви, соответствующие семьям, которые планировали приобрести широкоэкранный телевизор, и семьям, которые не делали этого. Каждая из этих ветвей разделяется на две дополнительные ветви, соответствующие семьям, купившим и не купившим широкоэкранный телевизор. Вероятности, записанные на концах двух основных ветвей, являются безусловными вероятностями событий А и А’ . Вероятности, записанные на концах четырех дополнительных ветвей, являются условными вероятностями каждой комбинации событий А и В . Условные вероятности вычисляются путем деления совместной вероятности событий на соответствующую безусловную вероятность каждого из них.

Рис. 2. Дерево решений

Например, чтобы вычислить вероятность того, что семья купит широкоэкранный телевизор, если она запланировала сделать это, следует определить вероятность события покупка запланирована и совершена , а затем поделить его на вероятность события покупка запланирована . Перемещаясь по дереву решения, изображенному на рис. 2, получаем следующий (аналогичный предыдущему) ответ:

Статистическая независимость

В примере с покупкой широкоэкранного телевизора вероятность того, что случайно выбранная семья приобрела широкоэкранный телевизор при условии, что она планировала это сделать, равна 200/250 = 0,8. Напомним, что безусловная вероятность того, что случайно выбранная семья приобрела широкоэкранный телевизор, равна 300/1000 = 0,3. Отсюда следует очень важный вывод. Априорная информация о том, что семья планировала покупку, влияет на вероятность самой покупки. Иначе говоря, эти два события зависят друг от друга. В противоположность этому примеру, существуют статистически независимые события, вероятности которых не зависят друг от друга. Статистическая независимость выражается тождеством: Р(А|В) = Р(А) , где Р(А|В) - вероятность события А при условии, что произошло событие В , Р(А) - безусловная вероятность события А.

Обратите внимание на то, что события А и В Р(А|В) = Р(А) . Если в таблице сопряженности признаков, имеющей размер 2×2, это условие выполняется хотя бы для одной комбинации событий А и В , оно будет справедливым и для любой другой комбинации. В нашем примере события покупка запланирована и покупка совершена не являются статистически независимыми, поскольку информация об одном событии влияет на вероятность другого.

Рассмотрим пример, в котором показано, как проверить статистическую независимость двух событий. Спросим у 300 семей, купивших широкоформатный телевизор, довольны ли они своей покупкой (рис. 3). Определите, связаны ли между собой степень удовлетворенности покупкой и тип телевизора.

Рис. 3. Данные, характеризующие степень удовлетворенности покупателей широкоэкранных телевизоров

Судя по этим данным,

В то же время,

Р (покупатель удовлетворен) = 240 / 300 = 0,80

Следовательно, вероятность того, что покупатель удовлетворен покупкой, и того, что семья купила HDTV-телевизор, равны между собой, и эти события являются статистически независимыми, поскольку никак не связаны между собой.

Правило умножения вероятностей

Формула для вычисления условной вероятности позволяет определить вероятность совместного события А и В . Разрешив формулу (1)

относительно совместной вероятности Р(А и В) , получаем общее, правило умножения вероятностей. Вероятность события А и В равна вероятности события А при условии, что наступило событие В В :

(3) Р(А и В) = Р(А|В) * Р(В)

Рассмотрим в качестве примера 80 семей, купивших широкоэкранный HDTV-телевизор (рис. 3). В таблице указано, что 64 семьи удовлетворены покупкой и 16 - нет. Предположим, что среди них случайным образом выбираются две семьи. Определите вероятность, что оба покупателя окажутся довольными. Используя формулу (3), получаем:

Р(А и В) = Р(А|В) * Р(В)

где событие А заключается в том, что вторая семья удовлетворена своей покупкой, а событие В - в том, что первая семья удовлетворена своей покупкой. Вероятность того, что первая семья удовлетворена своей покупкой, равна 64/80. Однако вероятность того, что вторая семья также удовлетворена своей покупкой, зависит от ответа первой семьи. Если первая семья после опроса не возвращается в выборку (выбор без возвращения), количество респондентов снижается до 79. Если первая семья оказалась удовлетворенной своей покупкой, вероятность того, что вторая семья также будет довольна, равна 63/79, поскольку в выборке осталось только 63 семьи, удовлетворенные своим приобретением. Таким образом, подставляя в формулу (3) конкретные данные, получим следующий ответ:

Р(А и В) = (63/79)(64/80) = 0,638.

Следовательно, вероятность того, что обе семьи довольны своими покупками, равна 63,8%.

Предположим, что после опроса первая семья возвращается в выборку. Определите вероятность того, что обе семьи окажутся довольными своей покупкой. В этом случае вероятности того, что обе семьи удовлетворены своей покупкой одинаковы, и равны 64/80. Следовательно, Р(А и В) = (64/80)(64/80) = 0,64. Таким образом, вероятность того, что обе семьи довольны своими покупками, равна 64,0%. Этот пример показывает, что выбор второй семьи не зависит от выбора первой. Таким образом, заменяя в формуле (3) условную вероятность Р(А|В) вероятностью Р(А) , мы получаем формулу умножения вероятностей независимых событий.

Правило умножения вероятностей независимых событий. Если события А и В являются статистически независимыми, вероятность события А и В равна вероятности события А , умноженной на вероятность события В .

(4) Р(А и В) = Р(А)Р(В)

Если это правило выполняется для событий А и В , значит, они являются статистически независимыми. Таким образом, существуют два способа определить статистическую независимость двух событий:

  1. События А и В являются статистически независимыми друг от друга тогда и только тогда, когда Р(А|В) = Р(А) .
  2. События А и B являются статистически независимыми друг от друга тогда и только тогда, когда Р(А и В) = Р(А)Р(В) .

Если в таблице сопряженности признаков, имеющей размер 2×2, одно из этих условий выполняется хотя бы для одной комбинации событий А и B , оно будет справедливым и для любой другой комбинации.

Безусловная вероятность элементарного события

(5) Р(А) = P(A|B 1)Р(B 1) + P(A|B 2)Р(B 2) + … + P(A|B k)Р(B k)

где события B 1 , B 2 , … B k являются взаимоисключающими и исчерпывающими.

Проиллюстрируем применение этой формулы на примере рис.1. Используя формулу (5), получаем:

Р(А) = P(A|B 1)Р(B 1) + P(A|B 2)Р(B 2)

где Р(А) - вероятность того, что покупка планировалась, Р(В 1) - вероятность того, что покупка совершена, Р(В 2) - вероятность того, что покупка не совершена.

ТЕОРЕМА БАЙЕСА

Условная вероятность события учитывает информацию о том, что произошло некое другое событие. Этот подход можно использовать как для уточнения вероятности с учетом вновь поступившей информации, так и для вычисления вероятности, что наблюдаемый эффект является следствием некоей конкретной причины. Процедура уточнения этих вероятностей называется теоремой Байеса. Впервые она была разработана Томасом Байесом в 18 веке.

Предположим, что компания, упомянутая выше, исследует рынок сбыта новой модели телевизора. В прошлом 40% телевизоров, созданных компанией, пользовались успехом, а 60% моделей признания не получили. Прежде чем объявить о выпуске новой модели, специалисты по маркетингу тщательно исследуют рынок и фиксируют спрос. В прошлом успех 80% моделей, получивших признание, прогнозировался заранее, в то же время 30% благоприятных прогнозов оказались неверными. Для новой модели отдел маркетинга дал благоприятный прогноз. Какова вероятность того, что новая модель телевизора будет пользоваться спросом?

Теорему Байеса можно вывести из определений условной вероятности (1) и (2). Чтобы вычислить вероятность Р(В|А), возьмем формулу (2):

и подставим вместо Р(А и В) значение из формулы (3):

Р(А и В) = Р(А|В) * Р(В)

Подставляя вместо Р(А) формулу (5), получаем теорему Байеса:

где события B 1 , В 2 , … В k являются взаимоисключающими и исчерпывающими.

Введем следующие обозначения: событие S - телевизор пользуется спросом , событие S’ - телевизор не пользуется спросом , событие F - благоприятный прогноз , событие F’ - неблагоприятный прогноз . Допустим, что P(S) = 0,4, P(S’) = 0,6, P(F|S) = 0,8, P(F|S’) = 0,3. Применяя теорему Байеса получаем:

Вероятность спроса на новую модель телевизора при условии благоприятного прогноза равна 0,64. Таким образом, вероятность отсутствия спроса при условии благоприятного прогноза равна 1–0,64=0,36. Процесс вычислений представлен на рис. 4.

Рис. 4. (а) Вычисления по формуле Байеса для оценки вероятности спроса телевизоров; (б) Дерево решения при исследовании спроса на новую модель телевизора

Рассмотрим пример применения теоремы Байеса для медицинской диагностики. Вероятность того, что человек страдает от определенного заболевания, равна 0,03. Медицинский тест позволяет проверить, так ли это. Если человек действительно болен, вероятность точного диагноза (утверждающего, что человек болен, когда он действительно болен) равна 0,9. Если человек здоров, вероятность ложноположительного диагноза (утверждающего, что человек болен, когда он здоров) равна 0,02. Допустим, что медицинский тест дал положительный результат. Какова вероятность того, что человек действительно болен? Какова вероятность точного диагноза?

Введем следующие обозначения: событие D - человек болен , событие D’ - человек здоров , событие Т - диагноз положительный , событие Т’ - диагноз отрицательный . Из условия задачи следует, что Р(D) = 0,03, P(D’) = 0,97, Р(T|D) = 0,90, P(T|D’) = 0,02. Применяя формулу (6), получаем:

Вероятность того, что при положительном диагнозе человек действительно болен, равна 0,582 (см. также рис. 5). Обратите внимание на то, что знаменатель формулы Байеса равен вероятности положительного диагноза, т.е. 0,0464.

Если события H 1 , H 2 , …, H n образуют полную группу, то для вычисления вероятности произвольного события можно использовать формулу полной вероятности:

P(А) = P(A/H 1)·P(H 1)+P(A/H 2)·P(H 2)

В соответствии с которой вероятность наступления события А может быть представлена как сумма произведений условных вероятностей события А при условии наступления событий H i на безусловные вероятности этих событий H i . Эти события H i называют гипотезами.

Из формулы полной вероятности следует формула Байеса :

Вероятности P(H i) гипотез H i называют априорными вероятностями - вероятности до проведения опытов.
Вероятности P(A/H i) называют апостериорными вероятностями – вероятности гипотез H i , уточненных в результате опыта.

Назначение сервиса . Онлайн-калькулятор предназначен для вычисления полной вероятности с оформлением всего хода решения в формате Word (см. примеры решения задач).

Количество объектов 2 3 4 5
Задано количество изделий Заданы вероятности бракованных изделий
Завод №1: P(H1) = . Вероятность стандартных изделий: P(A|H1) =
Завод №2: P(H2) = . Вероятность стандартных изделий: P(A|H2) =
Завод №3: P(H3) = . Вероятность стандартных изделий: P(A|H3) =
Завод №4: P(H4) = . Вероятность стандартных изделий: P(A|H4) =
Завод №5: P(H5) = . Вероятность стандартных изделий: P(A|H5) =

Если исходные данные представлены в процентах (%), то их необходимо представить в виде доли. Например, 60% : 0.6 .

Пример №1 . Магазин получает электролампочки с двух заводов, причем доля первого завода составляет 25%. Известно, что доля брака на этих заводах равна соответственно 5 % и 10 % от всей выпускаемой продукции. Продавец наугад берет одну лампочку. Какова вероятность того, что она окажется бракованной?
Решение: Обозначим через А событие - «лампочка окажется бракованной». Возможны следующие гипотезы о происхождении этой лампочки: H 1 - «лампочка поступила с первого завода». H 2 - «лампочка поступила со второгозавода». Так как доля первого завода составляет 25 %, то вероятности этих гипотез равны соответственно ; .
Условная вероятность того, что бракованная лампочка выпущена первым заводом – , вторым заводом - p(A/H 2) = искомую вероятность того, что продавец взял бракованную лампочку, находим по формуле полной вероятности
0,25·0,05+0,75·0,10=0,0125+0,075=0.0875
Ответ: р(А) = 0,0875.

Пример №2 . Магазин получил две равные по количеству партии одноименного товара. Известно что, 25% первой партии и 40% второй партии составляет товар первого сорта. Какова вероятность того, что наугад выбранная единица товара будет не первого сорта?
Решение:
Обозначим через А событие - «товар окажется первого сорта». Возможны следующие гипотезы о происхождении этого товара: H 1 - «товар из первой партии». H 2 - «товар из второй партии». Так как доля первой партии составляет 25%, то вероятности этих гипотез равны соответственно ; .
Условная вероятность того, что товар из первой партии – , из второй партии - искомую вероятностьтого, что наугад выбранная единица товара будет первого сорта
р(А) = P(H 1)· p(A/H 1)+P(H 2)·(A/H 2)= 0,25·0,5+0,4·0,5=0,125+0,2=0.325
Тогда, вероятность того, что наугад выбранная единица товара будет не первого сорта будет равна: 1- 0.325 = 0,675
Ответ: .

Пример №3 . Известно, что 5% мужчин и 1% женщин - дальтоники. Наугад выбранный человек оказалась не дальтоником. Какова вероятность, что это мужчина (считать, что мужчины и женщины поровну).
Решение .
Событие A - наугад выбранный человек оказалась не дальтоником.
Найдем вероятность появления этого события.
P(A) = P(A|H=мужчина) + P(A|H=женщина) = 0.95*0.5 + 0.99*0.5 = 0.475 + 0.495 = 0.97
Тогда вероятность, что это мужчина составит: p = P(A|H=мужчина) / P(A) = 0.475/0.97 = 0.4897

Пример №4 . В спортивной олимпиаде принимают участие 4 студента с первого курса, с второго - 6, с третьей - 5. Вероятности того, что студент с первого, второго, третьего курса победит на олимпиаде, равны соответственно 0,9; 0,7 и 0,8.
а) Найдите вероятность победы наугад выбранным ее участником.
б) В условиях данной задачи один студент победил на олимпиаде. К какой группе он вероятнее всего принадлежит?
Решение .
Событие A - победа наугад выбранного участника.
Здесь P(H1) = 4/(4+6+5) = 0.267, P(H2) = 6/(4+6+5) = 0.4, P(H3) = 5/(4+6+5) = 0.333,
P(A|H1) = 0.9, P(A|H2) = 0.7,P(A|H3) = 0.8
а) P(A) = P(H1)*P(A|H1) + P(H2)*P(A|H2) + P(H3)*P(A|H3) = 0.267*0.9 + 0.4*0.7 + 0.333*0.8 = 0.787
б) Решение можно получить, используя этот калькулятор.
p1 = P(H1)*P(A|H1)/P(A)
p2 = P(H2)*P(A|H2)/P(A)
p3 = P(H3)*P(A|H3)/P(A)
Из p1, p2, p3 выбрать максимальную.

Пример №5 . На предприятии имеется три станка одного типа. Один из них дает 20% общей продукции, второй – 30%, третий – 50 %. При этом первый станок производит 5% брака, второй 4%, третий – 2%. Найти вероятность того, что случайно отобранное негодное изделие выпущено первым станком.