Органическая химия опыты. Организация химического эксперимента по органической химии в профильном классе

Образовательный центр «Парамита» представляет большое собрание видеоматериалов по химии. Наряду с проведением лабораторных практикумов в Центре, учащимся предлагаются химические программы (видео), интересные опыты - для возможности дополнительной самостоятельной подготовки и лучшего запоминания тематического материала. Идея с созданием такой интерактивной программы была воплощена в 2010 году преподавателями нашего центра.

Для удобства поиска на сайте химические опыты и программы поделены на три раздела: «Общая химия», «Неорганическая химия» и «Органическая химия». В каждом разделе собран весь видеоматериал, который используется в ходе изучения курса химии.

Интересное видео по химии для учеников 9 классов представлено опытами по курсу неорганичной химии. На сайте собраны . Это занимательные видеоуроки по химии - демонстрация химических реакций основных классов неорганических соединений: оснований, кислот, оксидов и солей. Например, достаточно популярен видеоопыт с хромом, который преставляет собой совокупность цветных реакций.

Опыты классифицированы в том порядке, в котором они рассматриваются в учебной программе по химии. Видео опыты по химии 9 класса включают характерные химические реакции элементов, в соответствии с которыми названы подразделы опытов на сайте: Водород, Галогены, Кислород, Сера, Азот, Фосфор, Углерод, Кремний, Щелочные и щелочноземельные металлы, Алюминий, Железо, Медь, Серебро, Хром и Марганец.

Видео опыты по химии. представлены материалом по курсу органической химии. Соответственно каждому классу органических соединений разделы размещены по порядку: Алканы, Алкены, Алкины, Ароматические углеводороды, Спирты, Фенолы, Альдегиды и кетоны, Амины, Аминокислоты и Белки, Жирные кислоты, Углеводы и Полимеры.

Фактически, демонстрационные видеоматериалы сайта - это видеорепетитор по химии для абитуриента - уроки и опыты для самостоятельного обучения по курсу химии. Этот курс изучается в 8-11 классах общеобразовательных школ. Видео уроки по химии для ЕГЭ- это раздел на сайте центра Парамита, посвященный демонстрации экспериментов, которые проводятся с целью ознакомления учащихся с общими закономерностями и свойствами веществ (неорганических и органических). Видеоопыты по химии знакомят и с основными принципами и признаками химических реакций, что необходимо не только в процессе успешной подготовки к ЕГЭ/ГИА и к олимпиадам, но в формировании научно-практической базы для глубокого понимания химии.

Методика химического эксперимента в средней школе.

Виды химического эксперимента

Химический эксперимент имеет важное значение при изучении химии. Различают учебный демонстрационный эксперимент, выполняемый в основном преподавателем на демонстрационном столе, и ученический эксперимент - практические работы, лабораторные опыты и экспериментальные задачи, которые проводят учащиеся на своих рабочих местах. Своеобразным видом эксперимента является мысленный эксперимент.

Демонстрационный эксперимент проводится главным образом при изложении нового материала для создания у школьников конкретных представлений о веществах, химических явлениях и процессах, а затем для формирования химических понятий. Он позволяет за небольшой промежуток времени сделать понятными важные выводы или обобщения из области химии, научить выполнять лабораторные опыты и отдельные приемы и операции. Внимание учащихся направлено на выполнение опыта и изучение его результатов. Они не будут пассивно наблюдать проведение опытов и воспринимать излагаемый материал, если преподаватель, демонстрируя опыт, сопровождает его объяснениями. Тем самым он сосредоточивает внимание на опыте, приучает наблюдать явление во всех подробностях. В этом случае все приемы и действия преподавателя воспринимаются не как волшебные манипуляции, а как необходимость, без которой выполнить опыт практически невозможно. При демонстрационных опытах по сравнению с лабораторными наблюдения явлений проходят более организованно. Но демонстрации не вырабатывают необходимые экспериментальные умения и навыки, поэтому должны дополняться лабораторными опытами, практическими работами и экспериментальными задачами.

Демонстрационный эксперимент проводится в следующих случаях:

В распоряжение учащихся невозможно предоставить необходимое количество оборудования;

Опыт сложный, его не могут провести сами школьники;

Учащиеся не владеют нужной техникой для проведения данного опыта;

Опыты с небольшим количеством веществ или в небольшом масштабе не дают должного результата;

Опыты представляют опасность (работа с щелочными металлами, с применением электрического тока высокого напряжения и др.);

Необходимо увеличить темп работы на уроке.

Естественно, что каждый демонстрационный опыт имеет свои особенности в зависимости от характера изучаемого явления и конкретной учебно-воспитательной задачи. В то же время химический демонстрационный эксперимент должен отвечать следующим требованиям:

Быть наглядным (все, что делается на демонстрационном столе, должно быть хорошо видно всем учащимся);

Быть простым по технике проведения и доступным для понимания;

Проходить удачно, без срывов;

Заранее подготавливаться преподавателем так, чтобы ребята легко воспринимали его содержание;

Быть безопасным.

Педагогическая эффективность демонстрационного эксперимента, влияние его на знания и экспериментальные умения и навыки зависят от техники эксперимента. Под этим понимается совокупность приборов и устройств, специально созданных и применяемых в демонстрационном эксперименте. Преподавателю следует изучить оборудование кабинета в целом и каждый прибор в отдельности, отработать технику демонстрирования. Последняя представляет собой совокупность приемов обращения с приборами и аппаратами в процессе подготовки и проведения демонстраций, которые обеспечивают их успешность и выразительность. Методика демонстрирования - совокупность приемов, обеспечивающих эффективность демонстрации, наилучшее ее восприятие. Методика и техника демонстрирования тесно связаны между собой и могут быть названы технологией демонстрационного эксперимента.

Очень важное значение при проведении демонстрационных опытов имеет предварительная проверка каждого опыта с точки зрения техники выполнения, качества реактивов, хорошей видимости учащимися приборов и явлений, в них происходящих, гарантии безопасности. Иногда целесообразно на демонстрационный стол выставлять два прибора: один - собранный и готовый к действию, другой - в разобранном виде, чтобы, используя его, лучше объяснить устройство прибора, например аппарат Киппа, холодильник и др.

Нужно всегда помнить, что всякий неудавшийся при демонстрации опыт подрывает авторитет преподавателя.

Лабораторные опыты - вид самостоятельной работы, предполагающий выполнение химических опытов на любом этапе урока для более продуктивного усвоения материала и получения конкретных, осознанных и прочных знаний. Кроме того, во время лабораторных опытов совершенствуются экспериментальные умения и навыки, т. к. ученики работают в основном самостоятельно. Выполнение опытов занимает не весь урок, а только часть его.

Лабораторные опыты проводят чаще всего для знакомства с физическими и химическими свойствами веществ, а также для конкретизации теоретических понятий или положений, реже - для получения новых знаний. Последние всегда содержат определенную познавательную задачу, которую учащиеся должны решить экспериментально. Это вносит элемент исследования, активизирующий мыслительную деятельность школьников.Лабораторные опыты в отличие от практических работ знакомят с небольшим количеством фактов. Кроме того, они не полностью овладевают вниманием учащихся, как практические занятия, т. к. после непродолжительного по времени самостоятельного выполнения работы (опыта) ученики должны быть снова готовы к восприятию объяснения преподавателя.

Лабораторные опыты сопровождают изложение учебного материала преподавателем и так же, как и демонстрации, создают у учащихся наглядные представления о свойствах веществ и химических процессах, приучают обобщать наблюдаемые явления. Но в отличие от демонстрационных экспериментов они вырабатывают также экспериментальные умения и навыки. Однако не всякий опыт может быть проведен как лабораторный (например, синтез аммиака и др.). И не всякий лабораторный опыт эффективнее демонстрационного - на проведение многих лабораторных опытов требуется больше времени, причем продолжительность непосредственно зависит от качества сформированных экспериментальных умений и навыков. Задача лабораторных опытов - как можно быстрее познакомить учащихся с изучаемым конкретным явлением (веществом). Применяемая при этом техника сводится к выполнению учениками 2-3 операций, что, естественно, ограничивает возможности формирования практических умений и навыков.

Подготовка лабораторных опытов должна проводиться более тщательно, чем демонстрационных. Это связано с тем, что всякая небрежность и упущение может привести к нарушению дисциплины всего класса.

Нужно стремиться к тому, чтобы лабораторную работу выполнял каждый ученик в отдельности. В крайнем случае можно допускать, чтобы один комплект оборудования приходился не больше чем на двоих. Это способствует лучшей организованности и активности детей, а также достижению цели лабораторной работы.

После выполнения опытов должен быть проведен их анализ и сделана краткая запись проделанной работы.

Практическая работа - вид самостоятельной работы, когда ученики выполняют химические опыты на определенном уроке после изучения темы или раздела курса химии. Она способствует закреплению полученных знаний и развитию умения применять эти знания, а также формированию и усовершенствованию экспериментальных умений и навыков.

Практическая работа требует от учащихся большей самостоятельности, чем лабораторные опыты. Это связано с тем, что ребятам предлагается дома познакомиться с содержанием работ и порядком их выполнения, повторить теоретический материал, имеющий непосредственное отношение к работе. Практическую работу ученик выполняет самостоятельно, что способствует повышению дисциплины, собранности и ответственности. И только в отдельных случаях, при недостатке оборудования, можно разрешать работать группами по два человека, но желательно не более.

Роль преподавателя на практических работах заключается в наблюдении за правильностью выполнения опытов и правил техники безопасности, за порядком на рабочем столе, в оказании индивидуально-дифференцированной помощи.

Во время практической работы учащиеся записывают результаты опытов, а в конце урока делают соответствующие выводы и обобщения.

Методика демонстрационного эксперимента по органической химии [Цветков Л.А., 2000]

Характерными чертами демонстрационного эксперимента в органической химии являются следующие:

Эксперимент в преподавании органической химии в большой степени является средством "спрашивать природу", т.е. средством опытного исследования изучаемых вопросов, а не только иллюстрацией сведений о веществах, сообщаемых учителем. Это определяется как особенностями самого учебного предмета, так и тем обстоятельством, что органическая химия изучается уже на базе значительной химической подготовки учащихся.

Наиболее существенные демонстрационные опыты в большинстве случаев оказываются более продолжительными во времени, чем опыты по неорганической химии. Иногда они занимают почти целый урок, а в отдельных случаях и не вмещаются в рамки 45-минутного урока.

Демонстрационные опыты в ряде случаев менее наглядны и выразительны, чем в курсе неорганической химии, так как в наблюдаемых процессах мало внешних изменений, а получаемые вещества часто не имеют резких отличий в свойствах от исходных веществ.

В опытах по органической химии большое значение имеют условия протекания реакций: даже незначительное изменение этих условий может привести к изменению направления реакции и получению совершенно других веществ.

При постановке опытов по органической химии есть значительная опасность недостаточного осмысления их учащимися. Это объясняется тем, что опыты протекают часто длительное время, а иногда ставится параллельно несколько демонстраций, что заставляет учащихся распределять свое внимание одновременно на несколько объектов. К тому же путь от явления к сущности здесь часто сложнее, чем при изучении неорганической химии.

В связи с тем, что в школьных условиях значительное число важных химических процессов не может быть продемонстрировано, неизбежно ознакомление учащихся с целым рядом фактов без демонстрации опытов, по рассказу учителя, по схемам, рисункам и т.п.

Рассмотрим в этой последовательности, какие методические выводы отсюда следуют.

1. Эксперимент органической химии дает весьма благодарный материал для умственного развития учащихся и воспитания творческих способностей к решению выдвигаемых проблем. Если эти возможности мы хотим использовать, демонстрируемые опыты не могут сводиться лишь к наглядной иллюстрации слов учителя. Такое преподавание едва ли способно пробудить самостоятельную мысль учащихся. Эксперимент особенно ценен как средство изучения природы и поскольку он является источником знаний, он развивает наблюдательность учащихся и стимулирует их мыслительную деятельность, а также заставляет сопоставлять и анализировать факты, создавать гипотезы и находить пути их проверки, уметь приходить к правильным выводам и обобщениям. С этой точки зрения приобретают большое значение опыты, показывающие генетическую связь классов органических веществ; опыты, проверяющие предположения о свойствах веществ и способах их получения на основании теории строения; опыты, ведущие к заключению о том или ином строении молекулы вещества.

Чтобы демонстрационные опыты дали надлежащие результаты, необходимо стремиться выполнять следующие условия: а) четко поставить проблему, требующую экспериментального решения, и разработать с учащимися основную идею опыта; цель и идею опыта учащиеся должны усвоить до эксперимента и во время эксперимента руководствоваться ими; б) учащиеся должны быть подготовлены к эксперименту, т.е. должны обладать необходимым запасом знаний и представлений для правильного наблюдения и дальнейшего обсуждения опыта; в) учащиеся должны знать назначение отдельных частей прибора, свойства используемых веществ, что наблюдать во время опыта, по каким признакам можно судить о процессе и о появлении новых веществ; г) правильно должна быть построена цепь рассуждений на материале опыта, и к необходимым выводам на основе опытов учащиеся должны подойти сами под руководством учителя.

Особенно важно обеспечить сознательное и активное участие учащихся в проведении опыта и обсуждении его результатов. Это может достигаться системой вопросов, которые ставит учитель в связи с экспериментом, например: "Что мы хотим узнать при помощи этого опыта?", "Какие вещества мы должны взять для опыта?", "Почему мы применяем в приборе ту или иную деталь?", "Что наблюдали в этом опыте?", "По каким признакам мы можем судить, что шла химическая реакция?", "Какие условия необходимы для реакции"?, "Почему вы думаете, что получилось такое-то вещество?", "Как на основании этого опыта можно сделать тот или иной вывод?", "Можно ли сделать такой-то вывод?" и т.д. Такая методика химического эксперимента приучает учащихся правильно наблюдать, воспитывает устойчивое внимание, строгость суждений, способствует прочному закреплению правильных представлений, развивает интерес к предмету.

2. Большой методической тщательности требуют опыты по органической химии ввиду длительности их во времени. Из числа опытов, рекомендуемых программой и учебниками, свыше 60% являются "длительными", требующими на свою постановку от 10 мин до 1 ч, а в отдельных случаях и больше. Среди таких опытов можно назвать следующие: фракционная перегонка нефти, получение бромбензола, брожение глюкозы, получение бромэтана, нитрование клетчатки, синтез нитробензола и анилина, получение ацетальдегида из ацетилена, полимеризация метилметакрилата или другого мономера, количественные опыты в связи с доказательством структурных формул и др.

Одни учителя стараются избегать длительных опытов, боясь задержать темп прохождения курса, другие в постановке таких опытов допускают существенные методические неточности, третьи, наоборот, высоко ценят эти опыты, характерные для органической химии и не отходят от начатого эксперимента. При этом утомительно тянется урок в ожидании результата опыта, т.е. происходит расточительная трата времени, и педагогическая ценность урока снова оказывается невысокой.

Как же строить урок с использованием длительного эксперимента? Там, где возможно, следует стремиться прежде всего к сокращению времени на проведение опыта. Это может быть достигнуто различными путями. Иногда можно ограничиться получением небольшого количества вещества, достаточного лишь для его распознавания, или не извлекать продукт в чистом виде, если он с убежденностью может быть опознан в результате реакции. Можно рекомендовать предварительное нагревание реакционной смеси или разумно уменьшать количество исходных веществ.

Значительное сокращение времени дают также следующие приемы. Поставив тот или иной опыт, можно не дожидаться его окончания на данном уроке, а, отметив начало реакции, показать готовые продукты, с тем, чтобы на следующем уроке представить и вещества, полученные в начатом опыте, или, начав опыт на уроке, воспользоваться аналогичным опытом, заготовленным заранее, где реакция уже в значительной степени прошла, и здесь на уроке поставить извлечение полученных веществ. Подобная организация опытов не будет означать уход от наглядности в догматизм, так как основные стадии процесса здесь сохраняются и находят необходимое объяснение. Учащиеся видят медлительность протекания процесса и с полным доверием относятся к демонстрации конечной стадии опыта. С особой тщательностью ставятся опыты, которые указанными выше способами не могут быть сколько-нибудь значительно сокращены во времени. Вот один из возможных вариантов методического оформления подобных опытов. В классе обсуждается строение этилового спирта. Перед учащимися ставится вопрос: "Какой реакцией можно подтвердить наличие гидроксильной группы в молекуле спирта?" Путем наводящих вопросов о том, какие гидроксилсодержащие вещества изучались в неорганической химии и с какими веществами они реагировали, учитель вызывает со стороны учащихся предложение провести реакцию с соляной или бромистоводородной кислотой. В случае наличия гидроксильной группы можно ждать образования воды и известного учащимся хлористого (бромистого) этила. Называются исходные вещества, объясняется устройство прибора и ставится соответствующий опыт. Составляется предположительное уравнение реакции.

Во время опыта ставится вопрос: "В какие реакции еще может вступать спирт установленного нами строения?" Учащиеся вспоминают получение этилена. Учитель спрашивает, как ставился в классе этот опыт, и предлагает составить уравнение реакции. Далее учитель требует суммировать химические свойства спирта. Вызванный ученик указывает реакцию спирта с натрием, реакцию получения этилена, приводит соответствующие уравнения, пишет уравнение реакции с бромистым водородом, называет образующийся при этом продукт. В этот момент учитель привлекает внимание класса к опыту. В приемнике собралось уже значительное количество бромистого этила. Учитель отделяет его от воды (без промывки) и обносит по классу. Одновременно он спрашивает: "Как называется это вещество и как оно получено?" В подобных случаях учащиеся должны очень хорошо знать цель опыта, исходные вещества, направление опыта, чтобы при возвращении к нему после некоторого отвлечения им не пришлось с напряжением вспоминать, какие вещества реагируют в данном случае и что следует ожидать. Опыт должен настолько прочно войти в сознание, чтобы учащиеся в любое время могли обращаться к нему, уделяя, однако, основное свое внимание тому вопросу, который обсуждается в классе.

При правильной постановке длительные опыты воспитывают у учащихся умение держать в поле своего зрения одновременно несколько объектов, что бесспорно важно в дальнейшем обучении и в жизни. В высшем учебном заведении уже на первых лекциях требуется умение распределять внимание между слушанием лекции и ее записью, между усвоением содержания лекции, ее записью и наблюдением демонстрируемых опытов.

3. Многие опыты органической химии значительно проигрывают в связи с малой наглядностью процессов и получаемых веществ. В самом деле, при бронировании бензола учащимся издали не видно ни проявления реакции, ни образующегося бромбензола; при гидролизе сахарозы, крахмала, клетчатки не видно ни реакции, ни новых веществ (наличие которых удается определить лишь позднее косвенным путем); при получении эфира из бесцветной смеси веществ отгоняется такая же бесцветная жидкость; при демонстрации получения сложных эфиров в реагирующей смеси не происходит никаких видимых для учащихся изменений и т.д. При неправильной постановке подобных опытов у учащихся могут не только не создаться нужные представления, но легко могут образоваться превратные представления. Поэтому при наблюдении расслоения жидкостей можно подкрашивать одну из них так, чтобы линия раздела ясно обозначалась. Точно так же можно окрашивать воду при собирании газов над водой и в опытах, идущих с изменением объемов газов. Окрашивание жидкостей допустимо, однако, лишь в том случае, если учитель обеспечит четкое понимание учащимися искусственности этого приема. При перегонке жидкостей падение капель в приемник можно сделать более заметным с помощью подсвета, белого или черного экрана и т.п.; следует резко подчеркивать, какими свойствами различаются внешне подобные исходные и получающиеся вещества, и сразу же демонстрировать это различие. Там, где о ходе реакции можно судить по образованию побочных продуктов, следует сделать последние ясно видимыми учащимся (поглощение бромистого водорода щелочным раствором фенолфталеина при получении бромбензола и т.п.).

4. Особо следует отметить, что для реакций в органической химии решающее значение имеют условия их протекания. В неорганической химии эти условия играет меньшую роль, так как многие процессы идут уже при обычных условиях и протекают практически однозначно. Наблюдение химических реакций без четкого уяснения условий их протекания отрицательно сказывается на качестве и прочности знаний. Когда недостаточно выясняются условия реакции, у учащихся может создаться неверное представление, будто направление реакций ничем не обусловлено, совершенно произвольно и не подчиняется никаким закономерностям. Так, например, вскоре после ознакомления с получением этилена из спирта учащиеся встречаются с получением этилового эфира из той же по существу смеси веществ (спирта и концентрированной серной кислоты). Им совершенно непонятно, почему здесь получается эфир, а не этилен. Чтобы разъяснить это и, таким образом, не допустить недоверия к науке, приходится возвращаться к опыту с этиленом и теперь сообщать условия его получения. Если бы эти условия были подчеркнуты своевременно, с ними можно было бы сопоставить условия образования эфира и в этом сопоставлении прочней закрепить знание. Поэтому, при демонстрации опытов следует обращать внимание на условия протекания реакции и затем требовать в опытах учащихся непременного указания этих условий. Такой подход организует наблюдение учащихся в процессе экспериментирования, дает правильное направление изучению материала по книге и способствует закреплению в памяти конкретных представлений о явлениях. Это помогает, и проверить качество усвоения материала учащимися. Постоянное подчеркивание условий опыта, показ на некоторых примерах отрицательных результатов несоблюдения условий опыта, признание неполноценным ответа, когда приводится уравнение реакций без описания самого явления, - все эти приемы помогают правильному изучению химии. Даже в выполнении упражнений и решении задач всякий раз, где это возможно и целесообразно, следует указывать те условия, при которых соответствующий процесс происходит.

5. Современная теория строения органических соединений позволяет глубже, чем это имело место при изучении неорганической химии, вскрывать сущность химических явлений. От наблюдений явлений ученик должен переходить к представлению о порядке соединения атомов в молекуле, о расположении их в пространстве, о взаимном влиянии атомов или групп атомов на свойства вещества в целом и о перегруппировке этих атомов при реакции. При неправильном использовании эксперимента может оказаться, что, несмотря на полное, казалось бы, соблюдение принципа наглядности, учебный материал будет излагаться в значительной степени догматично, оторвано от эксперимента, и знания учащихся могут оказаться формальными. Такое положение может быть, например, в тех случаях, когда учитель стремится начинать изучение каждого вещества всегда строго по определенной схеме.

Изучается тема "Этилен". Учитель намерен описать физические свойства этилена, затем показать его реакции. В самом начале он заявляет учащимся: "Для того чтобы можно было наблюдать этилен и ознакомиться с его реакциями, получим его в лаборатории". Ставится опыт получения этилена из этилового спирта с помощью серной кислоты. Казалось бы, что в таком случае нужно было объяснить устройство прибора, указать, какие вещества взяты для реакции и т.д. Но по плану учителя получение этилена должно изучаться после изучения свойств, и он от этого плана здесь не отступает. Учащиеся томительно ожидают, пока идет нагревание смеси. Что должно получиться в опыте, за чем следить, что наблюдать - учащиеся не знают. Лишь, после того как в пробирке над водой начал собираться газ, учитель сообщает учащимся, что собой представляет этилен по физическим свойствам. Таким образом, без пользы потеряна часть времени - учащиеся смотрели на непонятный прибор и ничего по существу не видели. При таком плане изучения, конечно, целесообразней было бы заготовить этилен заранее в цилиндрах, чтобы на уроке сразу приступить к его демонстрации.

6. При изучении органической химии нет ни возможности, ни необходимости демонстрировать все явления, о которых идет речь на уроке. Это утверждение уже достаточно обосновано выше. Здесь важно рассмотреть, как подходить к отбору опытов, обязательных для демонстрирования, и как определять, о каких опытах учащиеся могут составить представление по схемам, рисункам, рассказам учителя и т.д.

Прежде всего, следует считать, что учащиеся, безусловно, должны в натуре наблюдать все вещества, указанные в программе, их важнейшие химические реакции. При этом нет необходимости воспроизводить многократно изучаемые реакции. Ознакомив учащихся с реакцией серебряного зеркала на одном представителе альдегидов, можно далее использовать эту реакцию для практического распознавания веществ (например, для определения альдегидной группы в глюкозе), и после этого уже нет нужды демонстрировать эту реакцию всякий раз, когда о ней заходит речь на уроке.

В каждом новом случае упоминание о ней вызывает у учащихся достаточно яркий образ явления. Продемонстрировав взрыв метана и этилена с кислородом, нет особой нужды демонстрировать взрыв ацетилена.

Достаточно будет сослаться на предыдущие опыты, указав при этом, что взрыв ацетилена происходит с еще большей силой. Точно так же, показав окисление этилового и метилового спирта, нет необходимости подвергать окислению другие спирты, чтобы создать у учащихся нужное понятие. Если показаны реакции уксусной кислоты, можно не повторять все реакции при изучении других кислот и т.д.

Однако в тех случаях, когда вещество является прямым объектом изучения (бутан и изобутан рассматривались ради понятия изомерии), нельзя ограничиться ссылкой на его физические свойства, не знакомя с самим веществом. Например, нельзя не показать бензол на том основании, что учащиеся представляют себе бесцветную жидкость, замерзающую при +5°С, легко кипящую и т.д. Для образования достаточно полного понятия о бензоле надо ознакомиться еще с его запахом, консистенцией, с его отношением к другим веществам и т.д. Было бы абсурдом не показать учащимся реакцию серебряного зеркала на том основании, что они имеют представление о зеркале вообще. Нельзя, например, не показать получение и собирание метана или этилена над водой на том основании, что прежде учащиеся наблюдали получение кислорода, собирали оксиды азота и т.п. Объектом изучения здесь является не собирание газа, а способ получения вещества, его свойства, под этим углом зрения и демонстрируется соответствующий опыт.

В отдельных случаях приходится ограничиваться словесным описанием опыта без демонстрации его, хотя учащиеся не имеют еще необходимой базы для правильного представления процесса. Это бывает необходимо в тех случаях, когда новое изучаемое явление не может быть воспроизведено в школе (например, когда процесс требует применения высокого давления или когда изменение условий для целей школьного преподавания исказило бы картину изучаемого производственного процесса).

Из сказанного следует, что методика демонстрации опытов требует тщательного продумывания к каждому уроку. Любой опыт должен быть так вплетен в канву логической структуры урока, чтобы каждый учащийся мог в максимальной степени понять смысл и уяснить значение опыта. В таком случае в более полной мере будут использованы все возможности эксперимента для постановки правильного изучения веществ, явлений, теорий и законов данной пауки.

В заключение здесь следует еще раз напомнить, что, поскольку основы демонстрационного эксперимента по органической химии являются общими с экспериментом неорганической химии и даже с экспериментом других родственных наук, на него в полной мере распространяются те общие требования, которые предъявляются ко всякому учебному эксперименту. Укажем в виде перечисления хотя бы некоторые из этих требований.

Эксперимент должен быть "безотказен", т.е. получаться наверняка и давать при этом ожидаемый, а не неожиданный результат. Для этого каждый опыт проверяется до урока с теми реактивами, которые будут применяться в классе. Надежность реактивов здесь часто имеет большее значение, чем в химии неорганической. Эксперимент должен быть выразительным, ярко представляющим то, что от него хотят получить. Для этого опыт должен быть поставлен в соответствующем масштабе, без загромождения прибора лишними деталями и без побочных явлений, отвлекающих внимание учащихся: опыт должен быть, как говорят, "обнаженным". Разумеется, что освобождение от излишних деталей должно быть целесообразным. Если надо, например, показать почти бесцветное пламя метана, то нельзя не пропустить газ хотя бы через одну промывалку со щелочью, прежде чем зажечь его у отводной трубки. Эксперимент должен быть безопасным при постановке в классе. При наличии той или иной опасности (синтез ацетилена, получение нитроклетчатки) он должен выполняться только учителем и с соблюдением надлежащих мер предосторожности.

Название: Эксперимент по органической химии в средней школе. 2000.

В пособии основное внимание уделено методике эксперимента, используемого при изучении органической химии в школе. В нем даны рекомендации по демонстрационному и лабораторному эксперименту, а также полезные советы при постановке практических работ.

Пособие предназначено для учителей общеобразовательных школ и специализированных классов, лицеев, гимназий и других средних учебных заведений. Оно может быть рекомендовано и студентам педагогических ВУЗов биолого-химического профиля.

По вопросам эксперимента в преподавании неорганической химии в школе имеется ряд ценных пособий. Среди них выдающимся является замечательный труд покойного Вадима Никандровича Верховского «Техника и методика химического эксперимента в школе». Специальное пособие по вопросам эксперимента в органической химии, рассчитанное на школьную программу, отсутствует.
Вследствие этого учителя в процессе преподавания органической химии вынуждены часто ограничиваться химическими опытами, описанными в приложении к стабильному учебнику. Но опыты в учебнике рассчитаны на выполнение их учащимися в классе и поэтому не могут в полной мере обеспечить демонстрационный эксперимент и тем более внеклассную работу по химии.
Существенным является также то обстоятельство, что техника и методика эксперимента по органической химии в ряде случаев оказываются более сложными, чем в неорганической химии. Это обусловлено некоторыми особенностями опытов с органическими веществами, например: затратой часто значительного времени на осуществление реакций, не всегда достаточной внешней выразительностью процессов и т.д.

СОДЕРЖАНИЕ:
ЧАСТЬ I
ОБЩИЕ ВОПРОСЫ МЕТОДИКИ ШКОЛЬНОГО ЭКСПЕРИМЕНТА ПО ОРГАНИЧЕСКОЙ ХИМИИ

Учебно-воспитательное значение школьного курса органической химии (6). Научный и учебный эксперимент в органической химии (8). Задачи и содержание эксперимента в преподавании органической химии (11). Разновидности учебного эксперимента (14). Методика демонстрационного эксперимента по органической химии (17).
ЧАСТЬ II
ТЕХНИКА И МЕТОДИКА ШКОЛЬНЫХ ОПЫТОВ ПО ОРГАНИЧЕСКОЙ ХИМИИ

Г л а в а I. Предельные углеводороды
Метан (26). Получение метана в лаборатории (27). Метан легче воздуха (29). Горение метана (29). Определение качественного состава метана (30). Взрыв смеси метана с кислородом (31). Замещение в метане водорода хлором (32). Другие способы получения метана (33). Опыты с природным газом (35).
Гомологи метана. Опыты с пропаном (36). Доказательство качественного состава высших углеводородов (38).
Галогенопроизводные предельных углеводородов. Взаимодействие галогенопроизводных с нитратом серебра (38). Вытеснение галогенами друг друга из соединений (39). Термическое разложение йодоформа (39). Открытие галогенов в органических веществах (39).
Гл а в а II. Непредельные углеводороды
Этилен (40). Горение этилена (41). Взрыв смеси этилена с кислородом (41). Реакция этилена с бромом (42). Окисление этилена раствором перманганата (45). Реакция этилена с хлором (реакция присоединения) (45). Горение этилена в хлоре (46). Получение этилена из этилового спирта в присутствии серной кислоты (46). Получение этилена из дибромэтана (49). Опыты с полиэтиленом (49). Опыты с другими углеводородами, содержащими двойную связь (50).
Ацетилен (50). Получение ацетилена (51). Растворение ацетилена в воде (52). Растворение ацетилена в ацетоне (52). Горение ацетилена (52). Взрыв ацетилена с кислородом (52). Реакция ацетилена с бромом и раствором перманганата калия (53). Горение ацетилена в хлоре (53). Опыты с полихлорвинилом (54).
Каучук (54). Отношение каучука и резины к растворителям (55). Взаимодействие каучука с бромом (55). Разложение каучука при нагревании (55). Опыты с резиновым клеем (56). Открытие серы в вулканизированном каучуке (56). Извлечение каучука из млечного сока растений (56).
Гл а в а III. Ароматические углеводороды
Бензол (57). Растворимость бензола (57). Бензол как растворитель (57). Температура замерзания бензола (58). Горение бензола (58). Отношение бензола к бромной воде и раствору перманганата калия (58). Бромирование бензола (59). Нитрование бензола (61). Присоединение хлора к бензолу (62). Получение бензола из бензойной кислоты и ее солей (63).
Гомологи бензола. Окисление толуола (64). Галогенирование толуола (64). Подвижность атомов галогена в бензольном ядре и в боковой цепи (65). Синтез гомологов бензола (66).
Нафталин. Возгонка нафталина (67).
Стирол. Непредельные свойства стирола (67). Получение стирола из полистирола (68). Опыты с полистиролом (68). Полимеризация стирола (69).
Г л а в а IV. Нефть
Удельный вес и растворимость нефти (69). Сравнительная летучесть нефтепродуктов (69). Бензин и керосин как растворители (70). Горение высших углеводородов (70). Взрыв паров бензина с воздухом (70). Отношение углеводородов нефти к химическим реагентам (71). Фракционная перегонка нефти (71). Очистка бензина и керосина (73).
Гл а в а V. Спирты. Фенол. Простые эфиры
Этанол (этиловый спирт) (74). Удельный вес спирта и изменение объема при смешении с водой (74). Обнаружение воды в спирте (74). Обнаружение высших спиртов (сивушного масла) в спирте (74). Концентрирование раствора спирта (75). Получение абсолютного спирта (75). Спирт-растворитель (76). Горение спирта (76). Обнаружение спирта в вине или пиве (76). Взаимодействие спирта с натрием (77). Дегидратация этанола (77). Взаимодействие спирта с бромоводородом (79). Получение иодэтана (79). Качественная реакция на спирт (81). Получение этилового спирта из бромэтана (82). Получение этилового спирта брожением сахара (82). Получение этанола из этилена в присутствии серной кислоты (83).
Метанол. Взаимодействие метанола с хлороводородом (85). Получение метанола при сухой перегонке дерева (86). Сравнение свойств одноатомных спиртов (88).
Глицерин. Растворимость глицерина в воде (88). Понижение точки замерзания водных растворов глицерина (89). Гигроскопичность глицерина (89). Горение глицерина (89). Реакция глицерина с натрием (89). Реакция с гидроксидом меди (90).
Фенол. Растворимость фенола в воде и щелочах (90). Фенол - слабая кислота (91). Реакция фенола с бромной водой (91). Качественная реакция фенола (92). Дезинфицирующее действие фенола (92). Нитрование фенола (92). Получение фенола из салициловой кислоты (92).
Простые эфиры. Низкая температура кипения эфира (93). Охлаждение при испарении эфира (93). Пары эфира тяжелее воздуха (94). Взаимная растворимость эфира и воды (94). Эфир как растворитель (95). Получение эфира из спирта (95). Проверка чистоты эфира (96). Сравнение свойств диэтилового эфира и бутанола (97).
Гл а в а VI. Альдегиды и кетоны
Формальдегид (метаналь). Запах формальдегида (98). Горючесть формальдегида (98). Получение формальдегида (98). Взаимодействие формальдегида с оксидом серебра (99). Окисление формальдегида гидроксидом меди (II) (101). Дезинфицирующее действие формальдегида (102). Полимеризация и деполимеризация альдегида (102). Взаимодействие формальдегида с аммиаком (102). Получение фенолформальдегидных смол (103).
Уксусный альдегид (этаналь). Получение уксусного альдегида окислением этанола (105). Получение уксусного альдегида гидратацией ацетилена (106).
Бензойный альдегид. Запах бензальдегида и окисление кислородом воздуха (108). Реакция серебряного зеркала (108).
Ацетон (диметилпроланон). Горение ацетона (109). Растворимость ацетона в воде (109). Ацетон как растворитель смол и пластмасс (109). Отношение к аммиачному раствору оксида серебра (109). Окисление ацетона (109). Получение бромацетона (110). Получение ацетона (III).
Гл а в а VII. Карбоновые кислоты
Уксусная кислота. Кристаллизация уксусной кислоты (112). Горение уксусной кислоты (113). Отношение уксусной кислоты к окислителям (113). Действие уксусной кислоты на индикаторы (113). Взаимодействие кислоты с метилами (113). Взаимодействие с основаниями (113). Взаимодействие с солями (114). Уксусная кислота - кислота слабая (114). Основности уксусной кислоты (115). Количественное получение метана и* солей уксусной кислоты (115). Получение кислоты окислением этанола (116). Получение уксусной кислоты из ее солей (118). Получение кислоты из продуктов сухой перегонки дерева (118). Получение уксусного ангидрида (118). Получение хлористого ацетила (119). Исследование образца уксусной кислоты (120).
Муравьиная кислота. Разложение муравьиной кислоты на оксид углерода (II) и воду (121). Окисление муравьиной кислоты (122). Получение муравьиной кислоты (122). Взаимодействие формиата натрия с натронной известью (124).
Стеариновая кислота. Свойства стеариновой кислоты (124). Стеариновая кислота - кислота слабая (125). Получение мыла (стеарата натрия) из стеарина (125). Получение стеариновой кислоты из мыла (125). Моющее действие мыла (126). Действие жесткой воды на мыло (126).
Непредельные кислоты. Получение метакриловой кислоты (127). Свойства метакриловой кислоты (128). Непредельность олеиновой кислоты (128).
Щавелевая кислота. Получение щавелевой кислоты из муравьиной (129). Разложение щавелевой кислоты при нагревании с серной кислотой (129). Окисление щавелевой кислоты (130). Образование кислых и средних солей щавелевой кислоты (131).
Бензойная кислота. Растворимость бензойной кислоты в воде (131). Растворимость бензойной кислоты в щелочах (132). Возгонка бензойной кислоты (132). Получение бензойной кислоты окислением бензальдегида (132). Получение бензола из бензойной кислоты (132).
Молочная и салициловая кислоты. Свойства молочной кислоты (133). Опыты с салициловой кислотой (133).
Гл а в а VIII. Сложные эфиры. Жиры
Сложные эфиры (134). Синтез этилового эфира уксусной кислоты (этилацетата) (135). Получение этилового эфира бензойной кислоты (этилбензоата) (137). Синтез аспирина (137). Гидролиз сложных эфиров (138). Гидролиз аспирина (139). Получение метилового эфира метакриловой кислоты (метилметакрилата) из органического стекла (140). Получение полиметилметакрилата (141). Опыты с гюлиметилметакрилатом (141).
Жиры. Растворимость жиров (141). Экстрагирование жиров и масел (142). Плавление и затвердевание жиров (143). Реакция непредельных жиров (масел) (144). Определение степени непредельности жиров (144). Определение содержания кислот в жирах (145). Омыление жиров (145).
Гл а в а IX. Углеводы
Глюкоза. Физические свойства глюкозы (147). Реакция спиртовых групп глюкозы (148). Реакция альдегидной группы (149). Обнаружение глюкозы во фруктах и ягодах (150). Брожение глюкозы (150).
Сахароза. Изменение сахара при нагревании (150). Обугливание сахара концентрированной серной кислотой (151). Обнаружение гидроксильных групп в сахаре (151). Отношение сахарозы к раствору оксида серебра и гпдроксида меди (II) (152). Гидролиз сахарозы (152). Получение сахара из свеклы (153).
Крахмал. Приготовление крахмального клейстера (1.55). Реакция крахмала с йодом (155). Исследование различных продуктов на присутствие крахмала (156). Гидролиз крахмала (156). Получение патоки и глюкозы из крахмала (158). Получение крахмала из картофеля (159).
Клетчатка (целлюлоза). Гидролиз клетчатки до глюкозы (160), Нитрование клетчатки и опыты с нитроклетчаткой (162).
Гл а в а X. Амины. Красители
Жирные амины. Получение аминов из селедочного рассола (164). Получение метиламина из хлористоводородной соли и опыты с ним (165).
Анилин (166). Отношение анилина к индикаторам (167). Взаимодействие анилина с кислотами (167). Взаимодействие анилина с бромной водой (168). Окисление анилина (168). Получение анилина (169).
Красители (171). Синтез диметиламиноазобензола (171). Синтез гелиантина (метилоранжа) (173).
Гл а в а XI. Амиды кислот
Карбамид. Гидролиз карбамида (175). Взаимодействие карбамида с азотной кислотой (175). Взаимодействие карбамида с щавелевой кислотой (176). Образование биурета (176).
Капрон. Распознавание полимеров. Опыты с капроном (177). Распознавание пластмасс (177).
Белки. Открытие в белках азота (178). Открытие в белках серы (179). Денатурация белков при нагревании (179). Денатурация белков при действии различных веществ (179). Цветные реакции белков (180). Ксантопротеиновая реакция (180). Биуретовая реакция (181). Горение как способ распознавания белковых материалов (181).

Особенности проведения эксперимента по органической химии.

При обучении органической химии учителю предоставляются широкие возможности для решения отдельных образовательных задач и более эффективного развития и воспитания учащихся. Учебный эксперимент, как и в неорганической химии, в преподавании органической химии имеет целью способствовать решению основных учебно-воспитательных задач.

Рассмотрение явлений с веществами при изучении органической химии помогает ученикам лучше понимать процессы, происходящие в окружающем растительном и животном мире, познавать сущность и закономерности жизни. Характерной чертой органической химии является зависимость химических свойств веществ от внутреннего строения молекул, а не только от качественного и количественного состава.

Выполнение учащимися опытов по органической химии, часто более сложных, чем опыты с неорганическими веществами, способствуют выработке умений применять знания по практике и навыки обращения с веществами и лабораторной техникой, что также имеет значение в профессиональной ориентации учащихся.

Эксперимент по органической химии способствует развитию у учащихся внимания, аккуратности, наблюдательности, настойчивости в преодолении трудностей и ряда других качеств.

Чисто описательное изучение органической химии, когда от учащихся требуют лишь перечислить сведения об отдельных веществах и написать уравнения химических реакций, представляется им нагромождением бесконечного количества случайных фактов. Структурные формулы, введённые догматически, становятся для учащихся лишь схемами, которые надо заучивать и уметь чертить

В общем, если техника учебного школьного эксперимента при изучении органической химии и становится несколько сложнее, чем при изучении неорганической химии, то методика его использования в учебно-воспитательном процессе существенно не отличается. Исключать из учебного процесса химический эксперимент по органической химии ни в коем случае нельзя.

В начале изучения органической химии полезно опытным путем доказать, что в составе органических веществ присутствуют элементы водород и углерод.

Открытие углерода и водорода в составе органических веществ. Кусочек парафина величиной с горошину разотрите в ступке с равной по объему порцией порошка оксида меди. Для опыта лучше всего подойдет свежеполученный тонкодисперсный порошок оксида, полученный прокаливанием малахита.

Смесь поместите в пробирку, насыпьте поверх еще немного порошка CuO и укрепите пробирку почти горизонтально в штативе, чуть наклонив ее в сторону отверстия, у края которого поместите щепотку безводного сульфата меди. Закройте пробирку пробкой с газоотводной трубкой, конец которой опустите в стакан с известковой водой

Рисунок 1. Открытие водорода и углерода в органических соединениях

  1. CuO с анализируемым веществом
  2. Безводный CuSO 4
  3. Cтакан с известковой водой.

Нагрейте смесь в пробирке и наблюдайте образование капель жидкости на стенках пробирки, изменение цвета сульфата меди, выделение газа и помутнение известковой воды. Объясните эти явления, напишите соответствующие уравнения реакций, сделайте выводы.

С целью формирования понятий о свойствах углеводородов и других органических соединений удобно и методически правильно использовать единый подход при их объяснении. Одновременно с получением изучаемого вещества демонстрируются его физические свойства, отношение к окислителям (водный раствор KMnO 4), взаимодействие с галогенами в водных растворах, проба на взрывоопасность и реакция горения. В целях большей безопасности в газоотводные трубки вставляются медные спирали. Отдельно ставится эксперимент по изучению особых свойств изучаемых веществ.

Учитель заранее готовит к уроку запас посуды и реактивов. Вследствие того, что метан, этилен и ацетилен являются газообразными веществами, и опыты с ними проводятся в момент получения, времени для обсуждения каждого свойства после его демонстрации не остается. Поэтому необходимо подготовить учащихся к восприятию всех опытов, быстро провести эти опыты, затем записать соответствующие наблюдения, уравнения реакций и выводы. Такую подготовку учащихся целесообразно провести, зарисовав предварительно на доске таблицу в соответствии с названием того вещества, которое изучается на данном уроке.

Получение и свойства метана. В ступке перемешайте смесь обезвоженного ацетата натрия и натронной извести в объемном отношении 1:3. Вместо натронной извести с таким же успехом можно взять перемешанную в ступке смесь из равных объёмов обезвоженного ацетата натрия, гидроксида натрия и карбоната кальция (мела). Полученной смесью заполните большую сухую пробирку на 1/4 часть. Пробирку закройте пробкой с газоотводной трубкой с оттянутым концом, в которую поместите медную спираль и закрепите её в лапке штатива, с небольшим наклоном в сторону пробки

Рисунок 2. Установка для получения метана.

Непосредственно перед получением метана приготовьте 4 стакана объемом 50 мл. Налейте в них, соответственно, по 30 мл чистой воды, разбавленного раствора перманганата калия (светло-розовый цвет), иодной воды (соломенно-желтый цвет) и 10 мл пенообразующего раствора (раствор мыла, шампуня, стирального порошка) для пробы на взрывоопасность.

Для получения метана равномерно прогрейте всю пробирку, а затем сильно нагревайте ту ее часть, где находится основная часть смеси. Вначале из пробирки будет вытесняться воздух, затем начнёт выделяться метан:

CH 3 COONa + NaOH CH 4 + Na 2 CO 3 .

Физические свойства метана. Пропускайте метан с помощью газоотводной трубки, через чистую воду. Наблюдаются пузырьки бесцветного газа – метана. Обычно метан собирают по способу вытеснения воды, что дает ученикам основание предположить, что этот газ нерастворим в воде. Учитель подтверждает это заключение. Доказать, что метан легче воздуха быстрее и нагляднее всего путем наполнения этим газом уравновешенной на весах вверх дном колбы, как это показано на рисунке.

Рисунок 3. Доказательство относительной легкости метана.

Отношение метана к водному раствору перманганата калия и иодной воде. Газоотводную трубку введите в стаканчик с раствором перманганата калия и пропускайте метан в течение нескольких секунд. Затем ту же процедуру проведите с иодной водой. Примечание. В связи с тем, что в числе побочных продуктов реакции получения метана могут быть непредельные углеводороды, не следует слишком долго проводить эти опыты. Растворы не изменяют своей окраски, что свидетельствует о том, что метан при комнатной температуре не взаимодействует с водным раствором перманганата калия и иодной водой.

Проба на взрывоопасность (проверка метана на чистоту). Опустите газоотводную трубку в пенообразующий раствор, так чтобы выделяющийся газ образовал пену. Когда стакан наполнится пеной, уберите газоотводную трубку и поднесите к пене горящую лучинку. Наблюдается воспламенение и быстрое сгорание метана. Если вспышка сопровождается резким звуком, то значит выделяющийся из прибора метан содержит примеси кислорода воздуха. В этом случае поджигать газ у газоотводной трубки опасно. Поэтому проверку на чистоту нужно повторить через некоторое время еще раз. Только чистый метан (как и водород), без примеси воздуха можно поджигать в ходе эксперимента.

Горение метана в воздухе. Подожгите метан у конца газоотводной трубки, он загорится несветящимся голубоватым пламенем:

СН 4 + 2О 2 -> СО 2 + 2Н 2 О.

Если внести в пламя метана фарфоровую чашку, то чёрного пятна от сажи на ней не образуется. Цвет пламени становится оранжевым из-за присутствия ионов натрия в стекле, из которого изготовлена трубка.

Горение метана в хлоре. Заранее в высоком прозрачном сосуде получите хлор. Отверстие сосуда закройте ватным тампоном, смоченным раствором тиосульфата натрия. Для демонстрации взаимодействия метана с хлором замените прямую газоотводную трубку трубкой с изогнутым концом, подожгите газ, и внесите в сосуд с хлором, как показано на рисуноке 4.

Рисунок 4. Горение метана в хлоре.

Весь эксперимент при должной подготовке занимает около 5 минут. После чего проводится обсуждение результатов эксперимента, заполняется таблица и делаются выводы о соответствии свойств метана строению его молекулы.

Свойства гомологов метана. Налейте в пробирку 3 мл воды, добавьте 1 мл гексана (можно взять другой насыщенный углеводород или их смесь). Отметьте физические свойства вещества, его нерастворимость в воде и относительную плотность сравнительно с плотностью воды.

Добавьте в смесь несколько капель раствора перманганата калия и убедитесь в отсутствии взаимодействия. Прилейте к иодной воде (3 мл) немного гексана и встряхните пробирку, отметьте отсутствие взаимодействия углеводорода с галогеном. Однако вследствие лучшей растворимости иода в гексане происходит экстракция галогена в слой углеводорода.

Для демонстрирования горючести гексана налейте несколько капель его в фарфоровую чашку и подожгите длинной горящей лучинкой. Обсудите результаты эксперимента, напишите соответствующие уравнения реакций и сделайте выводы о свойствах гомологов метана, обусловленных строением молекул.

Получение и свойства этилена. В пробирку налейте 2–3 мл 96%-го этилового спирта и медленно добавьте 6–9 мл концентрированной серной кислоты. Осторожно перемешайте. Во избежание толчков при кипении туда же добавьте щепотку сухого сульфата кальция или сульфата бария для равномерного кипения. Смесь для получения этилена можно приготовить заранее и хранить длительное время. Пробирку закройте пробкой с газоотводной трубкой.

Рисунок 5. Установка для получения этилена.

Перед получением этилена приготовьте в четырех стаканах растворы реактивов, как это было рекомендовано выше для демонстрации свойств метана.

Осторожно нагрейте сначала всю пробирку, а затем нагревайте ту ее часть, где находится верхняя граница жидкости. Температура должна быть выше 140 о С.

Физические свойства этилена. С помощью газоотводной трубки пропускайте этилен через чистую воду, опустив трубку до дна стакана. Наблюдаются пузырьки бесцветного газа – этилена. Этилен собирают по способу вытеснения воды, что дает ученикам основание предположить, что этот газ нерастворим в воде. Учитель подтверждает это заключение.

Отношение этилена к водному раствору перманганата калия и иодной воде. Газоотводную трубку опустите до дна стаканчика со светло-розовым раствором перманганата калия. Выделяющийся газ проходит через раствор перманганата калия и постепенно обесцвечивает его:

3Н 2 С=СН 2 + 2KMnO 4 + 4Н 2 O -> 2KOH + 2MnO 2 + 3CH 2 (OH)-CH 2 (OH).

Аналогичным образом пропускайте получаемый этилен через соломенно-желтый раствор иодной воды. Раствор обесцвечивается:

Н 2 С=СН 2 + I 2 -> С 2 Н 4 I 2 .

Проба на взрывоопасность (проверка этилена на чистоту). Демонстрация этого опыта проводится, как описано выше для метана.

Горение этилена в воздухе и хлоре. Для этих опытов поднесите пламя горящей лучинки к концу газоотводной трубки. Этилен загорается и горит светящимся пламенем. При внесении в пламя фарфоровой чашки на ней образуется чёрное пятно сажи, появление которой можно объяснить бoльшим содержанием (%) углерода в молекуле этилена и его неполным окислением:

Н 2 С=СН 2 + О 2 -> СО 2 ; С; Н 2 О

При внесении изогнутой трубки с горящим этиленом в цилиндр с хлором (см. опыты с метаном), он продолжает гореть с выделением еще большего количества копоти:

С 2 Н 4 + Cl 2 = 2С + 4HCl

Весь эксперимент занимает всего несколько минут. После чего проводится обсуждение результатов эксперимента, заполняется таблица и делаются выводы о соответствии свойств этилена строению его молекулы (в сопоставлении со строением и свойствами метана).

Получение и свойства ацетилена. Для получения ацетилена поместите 8-10 кусочков карбида кальция величиной с горошину в колбу прибора. Подсоедините к тубусу гибкий шланг, на конце которого должна быть стеклянная трубка с оттянутым концом и с медной спиралью внутри, как на рисунке рисуноке 6. Прилейте из делительной воронки несколько миллилитров разбавленного (1:20) раствора серной кислоты, (реакция протекает при этом более спокойно):

Рисунок 6. Установка для получения ацетилена.

CaC 2 + 2Н 2 О -> С 2 H 2 + Са(OH) 2 .

Перед получением ацетилена приготовьте 4 стакана объемом 50 мл с растворами как для опытов с метаном и этиленом.

Физические свойства ацетилена. С помощью газоотводной трубки пропускайте выделяющийся газ через воду, опустив конец трубки до стакана. Наблюдаются пузырьки бесцветного газа – ацетилена. Ацетилен собирают по способу вытеснения воды, что дает ученикам основание предположить, что этот газ нерастворим или плохо растворим в воде. Учитель подтверждает это заключение.

Примечание. Ацетилен немного растворим в воде. Для подтверждения этого факта можно в стакан с водой, через которую пропускали ацетилен, добавить 1-2 капли иодной воды, которая обесцвечивается.

Отношение ацетилена к водному раствору перманганата калия и иодной воде. Выделяющийся газ пропустите последовательно через разбавленный раствор (розовый) перманганата калия, а затем через светло-желтый раствор иода:

НССН + 4O -> COOH-COOH (щавелевая кислота);

НССН + 2I 2 -> С 2 Н 2 I 4 (тетраиодэтан).

Наблюдается обесцвечивание растворов. Примечание . Реакции протекают относительно медленнее, чем в случае с этиленом, поэтому растворы веществ для опыта должны быть очень разбавлены, с едва заметной окраской.

Проба на взрывоопасность (проверка ацетилена на чистоту). Демонстрация этого опыта проводится, как описано выше для метана. Наблюдается воспламенение и быстрое сгорание ацетилена с выделением копоти.

Горение ацетилена в воздухе. Когда опыты сделаны, и ацетилен выделяется из прибора без примеси воздуха, поднесите пламя горящей лучинки к концу газоотводной трубки. Ацетилен загорается и горит светящимся коптящим пламенем.

Взаимодействие ацетилена с хлором. В высокий сосуд, заранее наполненный хлором (см. опыты с метаном), внесите ложечку для сжигания веществ с кусочком карбида кальция, смоченным разбавленным раствором серной кислоты (осторожно! ). Выделяющийся ацетилен вспыхивает в атмосфере хлора и сгорает с выделением большого количества копоти:

С 2 Н 2 + Cl 2 -> 2С + 2HCl.

Весь эксперимент занимает несколько минут. После чего проводится обсуждение результатов эксперимента, заполняется таблица и делаются выводы о соответствии свойств этилена строению его молекулы (в сопоставлении со строением и свойствами метана и этилена).

Исследование свойств бензола. В отличие от рассмотренных выше представителей углеводородов, бензол – это жидкость, и он не требует опытов по его получению на уроке. Поэтому можно последовательно изучать его свойства, после каждого опыта проводить обсуждение, а затем записывать уравнение реакции.

Физические свойства бензола. В пробирку с 3–4 мл воды прилейте 1–2 мл бензола и перемешайте жидкости. Жидкости не смешиваются, следовательно бензол не растворяется в воде. Слой бензола собирается над поверхностью воды (видна граница раздела фаз), следовательно плотность бензола меньше единицы (0,874 при 20 о С). Эту же пробирку опустите в чашку с охлаждающей смесью (например, смесь нитрата калия или мочевины с таящим льдом или снегом). Через некоторое время (2–3 минуты) выньте пробирку. Бензол затвердел, а вода осталась жидкой. Следовательно температура затвердевания бензола выше 0 о С (+5,4 о С). Затем эту же пробирку нагревайте (не сильно) в пламени горелки. Верхний слой (бензол) начнет кипеть, а нижний (вода) нет. Следовательно температура кипения бензола ниже 100 о С (80,4 о С).

Отношение бензола к раствору перманганата калия и иодной воде (или доказательство отсутствия у бензола реакции на непредельность). В пробирку налейте 1–2 мл бензола, а затем - немного раствора перманганата калия (светло-розовый). Смесь взболтайте. Обесцвечивания не происходит (даже при нагревании). Аналогичным образом проведите опыт с иодной водой. Обесцвечивания также не происходит, но наблюдается явление экстракции (иод переходит в верхний слой бенозла и окрашивает его).

Горение бензола в воздухе. Опустите стеклянную палочку в склянку с бензолом, затем выньте ее и с каплей бензола внесите в пламя. Бензол воспламеняется и сгорает сильно коптящим пламенем. Появление копоти объясняется так же, как и в опыте с ацетиленом.

Нитрование бензола. В пробирку налейте 1 мл бензола и прилейте равный объем нитрующей смеси (смесь концентрированных серной и азотной кислот в объемном отношении 2:1). Нагрейте смесь до кипения, затем охладите, перелив ее в стаканчик (30–50 мл). В полученной смеси легко обнаружить нитробензол по запаху горького миндаля:.

С 6 Н 6 + HONO 2 -> С 6 Н 5 NО 2 + Н 2 О.

Окисление гомологов бензола. Налейте в пробирку 2-3 мл разбавленного раствора перманганата калия, подкислите его 2-3 каплями разбавленной серной кослоты, прилейте к смеси около 1 мл толуола и хорошо встряхните. Нагрейте смесь и наблюдайте обесцвечивание раствора вследствие окисления толуола в бензойную кислоту: С 6 Н 5 СН 3 + 3О -> С 6 Н 5 СООН + H 2 O.

Аналогично проведите реакцию окисления ксилола; при этом образуется двухосновная фталевая кислота С 6 Н 4 (СООН) 2 .

Примечание. При изучении каждого последующего представителя углеводородов обсуждаются сходство и различие с ранее изученными веществами. Делается вывод о зависимости свойств от строения веществ. Осуществляя, таким образом, единый подход к изучению свойств углеводородов, учитель добивается более четкого осознания учениками особенностей разных групп углеводородов, и как следствие – более прочного закрепления материала в памяти учащихся.

Дополнительный эксперимент для выполнения на занятиях химического кружка, при проведении элективных курсов

Определение галогенов пробой Бейльштейна. Медную проволочку прокалите в пламени горелки до прекращения окрашивания пламени. Концом проволоки (можно горячим) коснитесь анализируемого вещества (хлороформ, бромбензол, хлоруксусная кислота, иодоформ, полихлорвинил и т.д.) и внесите в бесцветное пламя (можно в фарфоровой чашечке зажечь немного этанола). Если анализируемое вещество содержит хлор или бром, то пламя окрашивается в красивый изумрудно-зеленый цвет, если иод – пламя приобретает зеленую окраску. Метод предложен в 1872 г. Ф.Бейльштейном (1838-1906).

Состав природного или сжиженного газа. Поставьте на газовую плиту большую кастрюлю с холодной водой (3–5 л) и подожгите газ. Через некоторое время вы увидите, что на наружной холодной поверхности кастрюли появился капельки жидкости. Это вода. Откуда она появилась? Очевидно, что при горении газа выделяется оксид водорода. Значит, одним из компонентов природного газа является водород.

Ополосните стеклянную банку известковой водой, слейте ее избыток так, чтобы на стенках сосуда остались крупные капли раствора. Подержите банку над пламенем газовой горелки (берегитесь ожога! ), и вы увидите, что капельки известковой воды помутнели. Это говорит о наличии диоксида углерода. Значит, вторым компонентом газа является углерод.

Кроме этого, в составе соединений, образующих природный газ, имеются в незначительных количествах азот, кислород, сера.

Химическая связь между водородом и серой прочнее, чем между водородом и углеродомПоместите в сосуд небольшой кусочек парафина величиной с пшеничное зерно и столько же серы. Смесь нагрейте. При этом выделяются сероводород (нюхать осторожно! ) и свободный углерод.

Свойства бензина.а) В пробирку с 2 мл воды добавьте каплю иодной настойки и равный объем бензина. Смесь хорошо встряхните. После расслоения жидкости возможны два варианта. Первый – окраска исчезла, следовательно, образец представляет собой крекинг-бензин и содержит в своем составе непредельные углеводороды. Второй – иод экстрагировался в верхнем бензиновом слое. Это значит, что у вас бензин прямой перегонки (не содержит непредельных соединений). Кроме того, вы убедились, что иод лучше растворяется в бензине, чем в воде.

б) Разотрите несколько семян подсолнечника или кусочек грецкого ореха с 2-3 мл бензина. Слейте прозрачную жидкость и одну каплю капните на фильтровальную бумагу. После испарения бензина на бумаге остается жирное пятно. С помощью бензина на маслоэкстракционных заводах извлекают (экстрагируют) масло из семян масличных культур. Бензином очищают одежду от пятен жира. Несколько капель бензина налейте на дно сухой и чистой металлической консервной банки и подожгите длинной лучинкой. (Сосуд с бензином должен при этом стоять на несгораемой подставке.) Бензин очень легко воспламеняется и быстро сгорает без копоти.

Возгонка нафталина. На дно стеклянной бутылки с широким горлом (из-под кетчупа) или другого аналогичного сосуда поместите нафталин. Затем опустите в бутылку сухую разветвленную веточку. Горлышко сосуда закройте кусочком ваты. Теперь поставьте бутылку на холодную песчаную баню и начните нагрев (опыт делать в вытяжном шкафу). При нагревании (50 о С) происходит возгонка нафталина и его конденсация на холодных стенках и веточке в виде блестящих чешуек (когда возгонка начнется, прекратите нагрев). Обратите внимание, что возгонкой можно воспользоваться для очистки вещества. Сделайте предположение о типе кристаллической решетки нафталина.

Определение количественных отношений в реакциях горения газообразных углеводородов в кислороде. Соберите в эвдиометре <рисунок 7> кислород и один из газообразных углеводородов в различных объемных соотношениях.

Рисунок 7. Эвдиометр.

Подожгите смесь, после установления исходной температуры отмечайте объем газа над жидкостью в эвдиометре и делайте соответствующие выводы в соответствии с законом объемных отношений Гей-Люссака.

Вопросы и задания для закрепления, уточнения и систематизации темы

Любые эксперименты на уроках химии необходимо обсуждать с точки зрения теоретических положений, с позиции использования рассмотренных свойств веществ на практике; предлагаем несколько вариантов вопросов для обсуждения.

  1. Выясните наличие природных источников углеводородов в вашем регионе. Какова их современная роль и перспектива использования в экономике региона?
  2. Выясните, какой объем природного или сжиженного газа потребляет ваша семья в год. Вычислите объем кислорода, необходимого для сжигания этого количества газа и объем углекислого газа, выделяющегося при этом. Обсудите полученные результаты. Какое количество теплоты при этом образуется?
  3. Если в вашем жилье используют другие энергоносители, например, электроэнергию, сделайте предположение, какой источник дешевле и экологически чище.
  4. В автомобильном транспорте в качестве моторного топлива широко используется сжатая пропан-бутановая смесь в баллонах. Почему для этих целей не используется боле дешевый и доступный природный газ или метан?
  5. Изучая физические свойства простейших предельных углеводородов, вы убедились, что они не обладают запахом. Почему же бытовой газ (природный или в баллонах) обладает запахом?
  6. С увеличением числа атомов углерода в молекулах углеводородов, увеличивается число их изомеров. Например, для декана С 10 Н 22 число возможных изомеров равно 75; для боле сложных соединений это число достигает сотен и тысяч. Как вы думаете, можно ли все эти изомеры получить практически?
  7. Рассмотрите внимательно обычную зажигалку. Уясните для себя значение каждой его детали. Обратите внимание на принцип ее работы, строение пламени, возможность его регулирования. Напишите "Трактат о зажигалке". Кроме описания внешнего вида, укажите состав и свойства горючего и веществ, из которых сделаны детали, а также физические и химические процессы, протекающие при использовании современного огнива.

P.S. Описание других учебных опытов можно найти в работе: Штремплер Г.И. МЕТОДИКА УЧЕБНОГО ХИМИЧЕСКОГО ЭКСПЕРИМЕНТА В ШКОЛЕ.Учебно-методическое пособие для студентов химических специальностей. 2008 год. 284 с. Опубликовано на сайте химфака Саратовского госуниверситета: http://www.sgu.ru/faculties/chemical/uch/ped/default.php.