Определение равновеликих фигур. Всегда ли можно доказать равенство фигур

При вычислении площадей многоугольников используется простой прием, называемый методом разбиения. Рассмотрим многоугольники и , изображенные на рис. 1, где показано, как разбить эти многоугольники на одинаковое число соответственно равных частей (равные части отмечены одинаковыми цифрами). О многоугольниках и говорят, что они равносоставлены. Вообще, многоугольники и называются равносоставленными, если, определенным образом разрезав многоугольник на конечное число частей, можно, располагая эти части иначе, составить из них многоугольник . Легко видеть, что справедлива следующая теорема: равносоставленные многоугольники имеют одинаковую площадь, или, как говорят, равновелики. Например, параллелограмм равносоставлен с прямоугольником (рис. 2), и потому, зная формулу площади прямоугольника, находим, что площадь параллелограмма равна произведению длин его стороны и соответствующей высоты.

Этот пример иллюстрирует метод разбиения, состоящий в том, что для вычисления площади многоугольника пытаются разбить его на конечное число частей таким образом, чтобы из этих частей можно было составить более простой многоугольник, площадь которого нам уже известна. Например, треугольник равносоставлен с параллелограммом, имеющим то же основание и вдвое меньшую высоту (рис. 3); из этого легко выводится формула площади треугольника. Этот способ вычисления площадей многоугольников был известен еще Евклиду, который жил более 2000 лет назад.

Замечательно, что для приведенной выше теоремы справедлива и обратная теорема: если два многоугольника равновелики, то они равносоставлены. Эту теорему, доказанную в первой половине XIX в. венгерским математиком Ф. Бойяи и немецким офицером и любителем математики П. Гервином, можно пояснить так: если имеется пряник в форме многоугольника и многоугольная коробка совершенно другой формы, но той же площади, то можно так разрезать пряник на конечное число кусков, что их удастся вложить в эту коробку.

В связи с теоремой Бойяи-Гервина возникает вопрос о наложении дополнительных ограничений на число или расположение частей, из которых составляются равновеликие многоугольники. Например, представим себе плоскость в виде листа цветной бумаги, у которого одна сторона красная, а другая - белая. Если из такой бумаги вырезаны два равновеликих красных многоугольника, то возникает вопрос, можно ли один из них разрезать на части, из которых удастся сложить красный многоугольник, равный второму. Части разрешается перекладывать, не переворачивая их на белую, изнаночную сторону. Ответ на этот вопрос также утвердителен.

Вариант этой задачи был предложен на одной из московских математических олимпиад в следующей шуточной форме. Чудак-кондитер испек торт (а у торта, в отличие от пряника, верхняя сторона покрыта кремом) в форме разностороннего треугольника. Сделали и коробку к торту, но по недосмотру склеили ее неверно, так что торт и коробка оказались симметричными друг другу (рис. 4). Нужно (по возможности экономно) разрезать торт на части, которые удалось бы уложить в эту коробку. Разумеется, части торта нельзя укладывать кремом вниз.

Интересный результат, связанный с наложением дополнительных требований на расположение частей, был получен в 1952 г. швейцарскими математиками Г. Хадвигером и П. Глюром: равносоставленность двух равновеликих многоугольников может быть установлена при помощи таких разбиений, в которых соответствующие части имеют параллельные стороны. На первый взгляд это кажется даже неправдоподобным: трудно поверить, что два равных треугольника, повернутые друг относительно друга на произвольный угол (рис. 5), всегда можно разбить на равные части с соответственно параллельными сторонами. Тем не менее существует такое разбиение этих треугольников, что части, на которые разбит один треугольник, получаются из соответствующих частей второго треугольника параллельными переносами или центральными симметриями. То же справедливо для любых двух равновеликих многоугольников. Однако одними только параллельными переносами частей обойтись не удается. Например, как бы мы ни разрезали параллелограмм на части, невозможно параллельными переносами составить из этих частей треугольник.

Интерес к этим вопросам был пробужден знаменитым докладом «Математические проблемы», который был прочитан выдающимся математиком Д. Гильбертом на Втором Международном конгрессе математиков, состоявшемся на рубеже XIX и XX вв. Из двадцати трех поставленных Гильбертом проблем большинство относится к новым, быстро развивающимся разделам математики. И лишь одна проблема – третья - связана с вопросами школьной геометрии. Гильберт обращает внимание на то, что при вычислении объема треугольной пирамиды еще со времен Евклида используется довольно сложный предельный переход (см. Предел) (а в настоящее время - интегрирование), тогда как при вычислении площади треугольника мы обходимся без аналогичного предельного перехода. Существо проблемы Гильберта состоит в том, чтобы обосновать использование этого «лишнего» (по сравнению с планиметрией) предельного перехода, т.е. доказать, что без него теория объемов многогранников не может быть построена. В 1900 г. М. Ден решил третью проблему Гильберта, доказав, что правильный тетраэдр и равновеликий ему куб не равносоставлены. Гильберт предвидел, что этот вопрос может привести к созданию математически интересной и богатой результатами теории равносоставленности многоугольников и многогранников. Предвидение Гильберта блестяще оправдалось; красивое здание современной теории равносоставленности является достойным памятником ученому.






















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: Повторить тему «Площадь параллелограмма». Вывести формулу площади треугольник, ввести понятие равновеликих фигур. Решение задач по теме «Площади равновеликих фигур».

Ход урока

I. Повторение.

1) Устно по готовому чертежу вывести формулу площади параллелограмма.

2) Какова зависимость между сторонами параллелограмма и высотами, опущенными на них?

(по готовому чертежу)

зависимость обратно пропорциональная.

3) Найти вторую высоту (по готовому чертежу)

4) Найти площадь параллелограмма по готовому чертежу.

Решение:

5) Сравните площади параллелограммов S1, S2, S3 . (Они имеют равные площади, у всех основание a и высота h).

Определение: Фигуры, имеющие равные площади, называются равновеликими.

II. Решение задач.

1) Доказать, что всякая прямая, проходящая через точку пересечения диагоналей, делит его на 2 равновеликие части.

Решение:

2) В параллелограмме ABCD CF и CE высоты. Доказать, что AD ∙ CF = AB ∙ CE.

3) Дана трапеция с основаниями a и 4a. Можно ли через одну из её вершин провести прямые, разбивающие трапецию на 5 равновеликих треугольников?

Решение: Можно. Все треугольники равновеликие.

4) Доказать, что если на стороне параллелограмма взять точку A и соединить её с вершинами, то площадь получившегося треугольника ABC равна половине площади параллелограмма.

Решение:

5) Торт имеет форму параллелограмма. Малыш и Карлсон делят его так: Малыш указывает на поверхности торта точку, а Карлсон по прямой, проходящей через эту точку, разрезает торт на 2 куска и один из кусков забирает себе. Каждый хочет получить кусок побольше. Где Малыш должен поставить точку?

Решение: В точке пересечения диагоналей.

6) На диагонали прямоугольника выбрали точку и провели через неё прямые, параллельные сторонам прямоугольника. По разные стороны образовались 2 прямоугольника. Сравните их площади.

Решение:

III. Изучение темы «Площадь треугольника»

начать с задачи:

«Найти площадь треугольника, у которого основание a, а высота h».

Ребята, используя понятие равновеликих фигур, доказывают теорему.

Достроим треугольник до параллелограмма.

Площадь треугольника равна половине площади параллелограмма.

Задание: Начертите равновеликие треугольники.

Используется модель (из бумаги вырезаны 3 цветных треугольника и склеены у оснований).

Упражнение №474. «Сравните площади двух треугольников, на которые разделяется данный треугольник его медианой».

У треугольников одинаковые основания a и одна и та же высота h. Треугольники имеют одинаковую площадь

Вывод: Фигуры, имеющие равные площади, называются равновеликими.

Вопросы к классу:

  1. Равновелики ли равные фигуры?
  2. Сформулируйте обратное утверждение. Верно ли оно?
  3. Верно ли:
    а) Равносторонние треугольники равновелики?
    б) Равносторонние треугольники с равными сторонами равновелики?
    в) Квадраты с равными сторонами равновелики?
    г) Докажите, что параллелограммы, образованные при пересечении двух полос одинаковой ширины под разными углами наклона друг к другу, равновелики. Найдите параллелограмм наименьшей площади, образующийся при пересечении двух полос одинаковой ширины. (Показать на модели: полоски одинаковой ширины)

IV. Шаг вперёд!

На доске написаны задания по выбору:

1. «Разрежьте треугольник двумя прямыми линиями так, чтобы можно было из частей сложить прямоугольник».

Решение:

2. «Разрежьте прямоугольник по прямой линии на 2 части, из которых можно сложить прямоугольный треугольник».

Решение:

3) В прямоугольнике проведена диагональ. В одном из получившихся треугольников проведена медиана. Найдите соотношения между площадями фигур .

Решение:

Ответ:

3. Из олимпиадных задач:

«В четырёхугольнике ABCD точка E- середина AB, соединена с вершиной D, а F – середина CD, с вершиной B. Доказать, что площадь четырёхугольника EBFD в 2 раза меньше площади четырёхугольника ABCD.

Решение: провести диагональ BD.

Упражнение №475.

«Начертите треугольник ABC. Через вершину В проведите 2 прямые так, чтобы они разделили этот треугольник на 3 треугольника, имеющие равные площади».

Использовать теорему Фалеса (разделить АC на 3 равные части).

V. Задача дня.

Для неё отвела крайнюю правую часть доски, на которой пишу задачу сегодняшнего дня. Ребята могут решать её, а могут и не решать. На уроке данную задачу мы сегодня не решаем. Просто те, кому они интересны, могут списать её, решить её дома или в перемену. Обычно уже в перемену многие ребята начинают решать задачу, если решили, то показывают решение, и я фиксирую это в специальной таблице. На следующем уроке к этой задаче обязательно возвращаемся, уделяя её решению небольшую часть урока (а на доске может быть записана новая задача).

«В параллелограмме вырезан параллелограмм. Разделите оставшуюся часть на 2 равновеликие фигуры».

Решение: Секущая AB проходит через точку пересечения диагоналей параллелограммов O и O1.

Дополнительные задачи (из олимпиадных задач):

1) «В трапеции ABCD (AD || BC) вершины A и B соединены с точкой M – серединой стороны CD. Площадь треугольника ABM равна m. Найти площадь трапеции ABCD».

Решение:

Треугольники ABM и AMK – равновеликие фигуры, т.к. AM – медиана.
S ∆ABK = 2m, ∆BCM = ∆MDK, S ABCD = S ∆ABK = 2m.

Ответ: S ABCD = 2m.

2) «В трапеции ABCD (AD || BC) диагонали пересекаются в точке O. Доказать, что треугольники AOB и COD равновеликие».

Решение:

S ∆BCD = S ∆ABC , т.к. у них общее основание BC и одинаковая высота .

3) Сторона АВ произвольного треугольника АВС продолжена за вершину В так, что ВР = АВ, сторону АС за вершину А так, что АМ = СА, сторону ВС за вершину С так, что КС = ВС. Во сколько раз площадь треугольника РМК больше площади треугольника АВС?

Решение:

В треугольнике МВС : МА = АС, значит, площадь треугольника ВАМ равна площади треугольника АВС. В треугольнике АРМ : ВР = АВ, значит, площадь треугольника ВАМ равна площади треугольника АВР. В треугольнике АРС : АВ = ВР, значит, площадь треугольника ВАС равна площади треугольника ВРС. В треугольнике ВРК : ВС = СК, значит, площадь треугольника ВРС равна площади треугольника РКС. В треугольнике АВК : ВС = СК, значит, площадь треугольника ВАС равна площади треугольника АСК. В треугольнике МСК: МА = АС, значит, площадь треугольника КАМ равна площади треугольника АСК. Получаем 7 равновеликих треугольников. Значит,

Ответ: Площадь треугольника МРК в 7 раз больше площади треугольника АВС.

4) Сцепленные параллелограммы.

2 параллелограмма расположены так, как показано на рисунке: они имеют общую вершину и ещё по одной вершине у каждого из параллелограммов лежит на сторонах другого параллелограмма. Доказать, что площади параллелограммов равны.

Решение:

и , значит,

Список использованной литературы :

  1. Учебник «Геометрия 7-9» (авторы Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев (Москва, «Просвещение», 2003).
  2. Олимпиадные задачи разных лет, в частности из учебного пособия «Лучшие задачи математических олимпиад» (составитель А.А. Корзняков, Пермь, «Книжный мир», 1996).
  3. Подборка задач, накопленных за много лет работы.

Геометрические фигуры считаются равными, если они являются точной копией друг друга, то есть должны выполняться следующие условия:

  1. фигуры имеют одинаковую форму;
  2. у фигур одинаковые размеры;
  3. существует такое наложение (движение) одной фигуры на другую, что они совпадают во всех своих точках.

Что значит одинакова форма фигур

Говоря о форме фигуре, подразумевается в первую очередь класс геометрических фигур, а так же количество углов, направление выпуклостей (вогнутостей) и прочие визуальные детали контура плоской фигуры.

Например, овал и прямоугольник имеют явно различную форму. А если взять фигуры одного класса, допустим 2 треугольника, то нужно сравнить элементы, составляющие контур. В данном случае речь идет об углах и сторонах. Так, если у одного треугольника есть прямой угол, а у другого нет, то сразу заметно - они имеют различную форму. Если длины трех сторон одного треугольника не сильно отличаются друг от друга, а у другого одна сторона значительно больше двух других, мы тоже с первого взгляда заметим, что их формы различны.

Почему важно совпадение размеров фигур

Что, если отличия в размерах визуально мало заметны? Тогда необходимо произвести точные замеры обоих фигур. Также равенство размеров разделяет понятия подобных и равных фигур. К примеру, 2 квадрата с разной площадью будут подобными, но не равными (имеется ввиду, когда один больше другого).

Что понимается под «наложением» фигур друг на друга

Иногда сделать точные замеры сложно. Особенно, если фигура образована замкнутой произвольной кривой или ломаной линией. Тогда нужно найти способ, чтобы наложить одну фигуру на другую.

Так, если они нарисованы на листе бумаги, нужно вырезать одну из них точно по контуру и положить поверх другой. Можно ее поворачивать в любом направлении и даже переворачивать. Если найдется способ совместить эти фигуры так, чтобы они совпали точно по контурам, значит они равны.

Всегда ли можно доказать равенство фигур

Иногда сделать это не возможно. Например, если речь идет о прямых. Все они бесконечны. То же касается и лучей.

Равными называются такие фигуры, которые можно совместить, воспользовавшись каким-либо видом движения (центральная и осевая симметрия, поворот и параллельный перенос).

В таких фигурах все стороны и углы соответственно равны.

Например, если даны треугольники ABC и A₁B₁C₁, то они равны в том случае, если соблюдается равенство сторон (AB = A₁B₁, BC = B₁C₁, AC = A₁C₁) и углов (угол A = угол A₁, угол B = угол B₁, угол C = угол C₁).

Также в равных фигурах равны и соответствующие точки и линии. Например, в тех же равных треугольниках ABC и A₁B₁C₁ будут равны биссектрисы, медианы, высоты, радиусы вписанной и описанной окружностей, центроиды и т.д.

VIII класс: Тема 3. Площади фигур. Теорема Пифагора.

1. Понятие площади. Равновеликие фигуры.

Если длина – это числовая характеристика линии, то площадь – это числовая характеристика замкнутой фигуры. Несмотря на то, что с понятием площади мы хорошо знакомы из повседневной жизни, строгое определение этому понятию дать непросто. Оказывается, что площадью замкнутой фигуры можно назвать любую неотрицательную величину, обладающую следующими свойствами измерения площадей фигур:

Равные фигуры имеют равные площади. Если данную замкнутую фигуру разбить на несколько замкнутых фигур, то площадь фигуры равна сумме площадей составляющих ее фигур (фигура на рисунке 1 разбита на n фигур; в этом случае площадь фигуры , где Si – площадь i -ой фигуры).

В принципе, можно было бы придумать множество величин, обладающих сформулированными свойствами, а значит, характеризующих площадь фигуры. Но наиболее привычной и удобной является величина, характеризующая площадь квадрата как квадрат его стороны. Назовем эту «договоренность» третьим свойством измерения площадей фигур:

Площадь квадрата равна квадрату его стороны (рисунок 2).

При таком определении площадь фигур измеряют в квадратных единицах (см 2, км 2, га =100м 2).

Фигуры , имеющие равные площади, называются равновеликими .

Замечание: Равные фигуры имеют равные площади, то есть равные фигуры равновелики. Но равновеликие фигуры далеко не всегда равны (например, на рисунке 3 изображены квадрат и равнобедренный треугольник, составленные из равных прямоугольных треугольников (кстати, такие фигуры называют равносоставленными ); понятно, что квадрат и треугольник равновелики, но не равны, поскольку не совмещаются наложением).

Далее выведем формулы для вычисления площадей всех основных видов многоугольников (в том числе всем известную формулу для нахождения площади прямоугольника), опираясь на сформулированные свойства измерения площадей фигур.

2. Площадь прямоугольника. Площадь параллелограмма.

Формула для вычисления площади прямоугольника: Площадь прямоугольника равна произведению двух его смежных сторон (рисунок 4).

Дано:

ABCD - прямоугольник;

AD =a , AB =b .

Доказать : SABCD =a ×b .

Доказательство:

1. Удлиним сторону AB на отрезок BP =a , а сторону AD – на отрезок DV =b . Построим параллелограмм APRV (рисунок 4). Поскольку ÐA =90°, APRV – прямоугольник. При этом AP =a +b =AV , Þ APRV – квадрат со стороной (a +b ).

2. Обозначим BC ÇRV =T , CD ÇPR =Q . Тогда BCQP – квадрат со стороной a , CDVT – квадрат со стороной b , CQRT – прямоугольник со сторонами a и b .

Формула для вычисления площади параллелограмма: Площадь параллелограмма равна произведению его высоты на основание (рисунок 5).

Замечание: Основанием параллелограмма принято называть ту сторону, к которой проведена высота; понятно, что основанием может служить любая сторона параллелограмма.

Дано:

ABCD – п/г;

BH ^AD , H ÎAD .

Доказать: SABCD =AD ×BH .

Доказательство:

1. Проведем к основанию AD высоту CF (рисунок 5).

2. BC ïêHF , BH ïêCF , Þ BCFH - п/г по определению. ÐH =90°, ÞBCFH – прямоугольник.

3. BCFH – п/г, Þ по свойству п/г BH =CF , Þ DBAH =DCDF по гипотенузе и катету (AB =CD по св-ву п/г, BH =CF ).

4. SABCD =SABCF +S DCDF =SABCF +S DBAH =SBCFH =BH ×BC =BH ×AD . #

3. Площадь треугольника.

Формула для вычисления площади треугольника: Площадь треугольника равна половине произведения его высоты на основание (рисунок 6).

Замечание: Основанием треугольника в данном случае называют сторону, к которой проведена высота. Любая из трех сторон треугольника может служить его основанием.

Дано:

BD ^AC , D ÎAC .

Доказать: .

Доказательство:

1. Достроим DABC до п/г ABKC путем проведения через вершину B прямой BK ïêAC , а через вершину C – прямой CK ïêAB (рисунок 6).

2. DABC =DKCB по трем сторонам (BC – общая, AB =KC и AC =KB по св-ву п/г), Þ https://pandia.ru/text/78/214/images/image014_34.gif" width="107" height="36">).

Следствие 2: Если рассмотреть п/у DABC с высотой AH , проведенной к гипотенузе BC , то . Таким образом, в п/у D-ке высота, проведенная к гипотенузе, равна отношению произведения его катетов к гипотенузе . Это соотношение достаточно часто используется при решении задач.

4. Следствия из формулы для нахождения площади треугольника: отношение площадей треугольников с равными высотами или основаниями; равновеликие треугольники в фигурах; свойство площадей треугольников, образованных диагоналями выпуклого четырехугольника.

Из формулы для вычисления площади треугольника элементарным образом вытекают два следствия:

1. Отношение площадей треугольников с равными высотами равно отношению их оснований (на рисунке 8 ).

2. Отношение площадей треугольников с равными основаниями равно отношению их высот (на рисунке 9 ).

Замечание: При решении задач очень часто встречаются треугольники с общей высотой. При этом, как правило, их основания лежат на одной прямой, а вершина, противолежащая основаниям – общая (к примеру, на рисунке 10 S 1:S 2:S 3=a :b :c ). Следует научиться видеть общую высоту таких треугольников.

Также из формулы для вычисления площади треугольника вытекают полезные факты, позволяющие находить равновеликие треугольники в фигурах:

1. Медиана произвольного треугольника разбивает его на два равновеликих треугольника (на рисунке 11 у DABM и DACM высота AH – общая, а основания BM и CM равны по определению медианы; отсюда следует, что DABM и DACM равновелики).

2. Диагонали параллелограмма разбивают его на четыре равновеликих треугольника (на рисунке 12 AO – медиана треугольника ABD по свойству диагоналей п/г, Þ в силу предыдущего св-ва треугольники ABO и ADO равновелики; т. к. BO – медиана треугольника ABC , треугольники ABO и BCO равновелики; т. к. CO – медиана треугольника BCD , треугольники BCO и DCO равновелики; таким образом, S DADO =S DABO =S DBCO =S DDCO ).

3. Диагонали трапеции разбивают ее на четыре треугольника; два из них, прилежащие к боковым сторонам, равновелики (рисунок 13).

Дано:

ABCD – трапеция;

BC ïêAD ; AC ÇBD =O .

Доказать : S DABO =S DDCO .

Доказательство:

1. Проведем высоты BF и CH (рисунок 13). Тогда у DABD и DACD основание AD – общее, а высоты BF и CH равны; Þ S DABD =S DACD .

2. S DABO =S DABD S DAOD =S DACD S DAOD =S DDCO . #

Если провести диагонали выпуклого четырехугольника (рисунок 14), образуется четыре треугольника, площади которых связаны очень простым для запоминания соотношением. Вывод этого соотношения опирается исключительно на формулу для вычисления площади треугольника; однако, в литературе оно встречается достаточно редко. Будучи полезным при решении задач, соотношение, которое будет сформулировано и доказано ниже, заслуживает пристального внимания:

Свойство площадей треугольников, образованных диагоналями выпуклого четырехугольника: Если диагонали выпуклого четырехугольника ABCD пересекаются в точке O , то (рисунок 14).

ABCD – выпуклый четырехугольник;

https://pandia.ru/text/78/214/images/image025_28.gif" width="149" height="20">.

Доказательство:

1. BF – общая высота DAOB и DBOC ; Þ S DAOB :S DBOC =AO :CO .

2. DH – общая высота DAOD и DCOD ; Þ S DAOD :S DCOD =AO :CO .

5. Отношение площадей треугольников, имеющих по равному углу.

Теорема об отношении площадей треугольников, имеющих по равному углу: Площади треугольников, имеющих по равному углу, относятся как произведения сторон, заключающих эти углы (рисунок 15).

Дано :

DABC , DA 1B 1C 1;

ÐBAC B 1A 1C 1.

Доказать:

.

Доказательство:

1. Отложим на луче AB отрезок AB 2=A 1B 1, а на луче AC – отрезок AC 2=A 1C 1 (рисунок 15). Тогда DAB 2C 2=DA 1B 1C 1 по двум сторонам и углу между ними (AB 2=A 1B 1 и AC 2=A 1C 1 по построению, а ÐB 2AC 2=ÐB 1A 1C 1 по условию). Значит, .

2. Соединим точки C и B 2.

3. CH – общая высота DAB 2C и DABC , Þ https://pandia.ru/text/78/214/images/image033_22.gif" width="81" height="43 src=">.

6. Свойство биссектрисы треугольника.

С использованием теорем об отношении площадей треугольников, имеющих по равному углу, и об отношении площадей треугольников с равными высотами, просто доказывается исключительно полезный при решении задач факт, не имеющий непосредственного отношения к площадям фигур:

Свойство биссектрисы треугольника: Биссектриса треугольника делит сторону, к которой она проведена, на отрезки, пропорциональные прилежащим к ним сторонам.

Дано:

https://pandia.ru/text/78/214/images/image036_22.gif" width="61" height="37">.

Доказательство:

1..gif" width="72 height=40" height="40">.

3. Из пунктов 1 и 2 получаем: , Þ https://pandia.ru/text/78/214/images/image041_19.gif" width="61" height="37">. #

Замечание: Поскольку в верной пропорции можно менять местами крайние члены или средние члены, свойство биссектрисы треугольника удобнее запоминать в следующем виде (рисунок 16): .

7. Площадь трапеции.

Формула для вычисления площади трапеции: Площадь трапеции равна произведению ее высоты на полусумму оснований.

Дано:

ABCD – трапеция;

BC ïêAD ;

BH – высота.

https://pandia.ru/text/78/214/images/image044_21.gif" width="127" height="36">.

Доказательство:

1. Проведем диагональ BD и высоту DF (рисунок 17). BHDF – прямоугольник, Þ BH = DF .

Следствие: Отношение площадей трапеций с равными высотами равно отношению их средних линий (или отношению сумм оснований).

8. Площадь четырехугольника с взаимно перпендикулярными диагоналями.

Формула для вычисления площади четырехугольника с взаимно перпендикулярными диагоналями: Площадь четырехугольника с взаимно перпендикулярными диагоналями равна половине произведения его диагоналей.

ABCD – четырехугольник;

AC ^BD .

https://pandia.ru/text/78/214/images/image049_20.gif" width="104" height="36">.

Доказательство:

1. Обозначим AC ÇBD =O . Поскольку AC ^BD , AO – высота DABD , а CO – высота DCBD (рисунки 18а и 18б для случаев выпуклого и невыпуклого четырехугольников соответственно).

2.
(знаки «+» или «-» соответствуют случаям выпуклого и невыпуклого четырехугольников соответственно). #

Теорема Пифагора играет исключительно важную роль в решении самых разнообразных задач; она позволяет находить неизвестную сторону прямоугольного треугольника по двум известным его сторонам. Известно множество доказательств теоремы Пифагора. Приведем наиболее простое из них, опирающееся на формулы для вычисления площадей квадрата и треугольника:

Теорема Пифагора: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Дано:

DABC – п/у;

ÐA =90°.

Доказать:

BC 2=AB 2+AC 2.

Доказательство:

1. Обозначим AC =a , AB =b . Отложим на луче AB отрезок BP =a , а на луче AC – отрезок CV =b (рисунок 19). Проведем через точку P прямую PR ïêAV , а через точку V – прямую VR ïêAP . Тогда APRV - п/г по определению. При этом поскольку ÐA =90°, APRV – прямоугольник. А т. к. AV =a +b =AP , APRV – квадрат со стороной a +b , и SAPRV =(a +b )2. Далее поделим сторону PR точкой Q на отрезки PQ =b и QR =a , а сторону RV – точкой T на отрезки RT =b и TV =a .

2. DABC =DPQB =DRTQ =DVCT по двум катетам, Þ ÐACB PBQ RQT VTC , BC =QB =TQ =CT , и https://pandia.ru/text/78/214/images/image055_17.gif" width="115" height="36">.

3. Т. к. BC =QB =TQ =CT , CBQT – ромб. При этом ÐQBC =180°-(ÐABC PBQ )=180°-(ÐABC ACB )=ÐBAC =90°; Þ CBQT – квадрат, и SCBQT =BC 2.

4. . Итак, BC 2=AB 2+AC 2. #

Обратная теорема Пифагора является признаком прямоугольного треугольника, т. е. позволяет по трем известным сторонам треугольника проверить, является ли он прямоугольным.

Обратная теорема Пифагора: Если квадрат стороны треугольника равен сумме квадратов двух других его сторон, то этот треугольник прямоугольный, а его большая сторона является гипотенузой.

Дано:

BC 2=AB 2+AC 2.

Доказать: DABC – п/у;

ÐA =90°.

Доказательство:

1. Построим прямой угол A 1 и на его сторонах отложим отрезки A 1B 1=AB и A 1C 1=AC (рисунок 20). В полученном п/у DA 1B 1C 1 по теореме Пифагора B 1C 12=A 1B 12+A 1C 12=AB 2+AC 2; но по условию AB 2+AC 2=BC 2; Þ B 1C 12=BC 2, Þ B 1C 1=BC .

2. DABC =DA 1B 1C 1 по трем сторонам (A 1B 1=AB и A 1C 1=AC по построению, B 1C 1=BC из п.1), Þ ÐA A 1=90°, Þ DABC - п/у. #

Прямоугольные треугольники, длины сторон которых выражаются натуральными числами, называются пифагоровыми треугольниками , а тройки соответствующих натуральных чиселпифагоровыми тройками . Пифагоровы тройки полезно помнить (большее из этих чисел равно сумме квадратов двух других). Приведем некоторые пифагоровы тройки:

3, 4, 5;

5, 12, 13;

8, 15, 17;

7, 24, 25;

20, 21, 29;

12, 35, 37;

9, 40, 41.

Прямоугольный треугольник со сторонами 3, 4, 5 использовался в Египте для построения прямых углов, в связи с чем такой треугольник называют египетским .

10. Формула Герона.

Формула Герона позволяет находить площадь произвольного треугольника по трем его известным сторонам и является незаменимой при решении многих задач.

Формула Герона: Площадь треугольника со сторонами a , b и c вычисляется по следующей формуле: , где ‑ полупериметр треугольника.

Дано :

BC =a ; AC =b ; AB =c .). Тогда .

4. Подставим полученное выражение для высоты в формулу для вычисления площади треугольника: . #

Какие фигуры называются равными?

    Равными называют фигуры , которые совпадают при наложении.

    Частой ошибкой на этот вопрос является ответ, в котором упоминаются равные стороны и углы геометрической фигуры. Однако при этом не принимается в учет, что стороны геометрической фигуры не обязательно бывают прямыми. Поэтому только совпадение геометрических фигур при наложении может быть признаком их равенства.

    На практике это легко проверить с помощью наложения, они должны совпасть.

    Все очень просто и доступно, обычно равные фигуры видно сразу.

    Равными называются те фигуры, у которых совпадают параметры геометрии. Эти параметры: длина сторон, величина углов, толщина.

    Проще всего понять что фигуры равны можно с помощью наложения. Если величины фигур одинаковы - их называют равными.

    Равными называют только те геометрические фигуры, которые имеют абсолютно одинаковые параметры:

    1) периметр;

    2) площадь;

    4) размеры.

    То есть, если одну фигуру наложить на другую, то они совпадут.

    Ошибочно полагать, что если фигуры имеют одинаковые периметр или площадь, то они равны. На самом деле, геометрические фигуры, у которых равна площадь называются равновеликими.

    Фигуры называются равными, если они совпадают при наложении друг на друга.Равные фигуры имеют одинаковые размеры, форму, площадь и периметр. А вот равные по площади фигуры могут быть и не равными между собой.

    В геометрии, по правилам, равные фигуры должны иметь одинаковую площадь и периметр, то есть у них должны быть абсолютно одиноковые формы и размеры. И они должны полностью совпадать при их наложении друг на друга. Если же есть какие-то расхождения, то эти фигуры уже нельзя будет назвать равными.

    Фигуры можно назвать равными при условии, если они полностью совпадают при наложении друг на друга, т.е. они имеют одинаковые размеры, форму и следовательно площадь и периметр, а также другие характеристики. В противном случае говорить о равности фигур нельзя.

    В самом слове равные заложена суть.

    Это фигуры которые полностью идентичные друг другу. То есть полностью совпадают. Если фигуру положить одну на одну тогда фигуры будут перекрывать себя со всех сторон.

    Они одинаковые то есть равные.

    В отличие от равных треугольников (для определения которых достаточно выполнения одного из условий - признаков равенства), равными фигурами называют такие, которые имеют одинаковую не только форму, но и размеры.

    Определить, равна ли одна фигура другой, можно методом наложения. При этом фигуры должны совпасть и сторонами и углами. Это и будут равные фигуры.

    Равными могут быть только такие фигуры, которые при их наложении полностью совпадут сторонами и углами. На самом деле для всех простейших многоугольников равенство их площади свидетельствует и о равенстве самих фигур. Пример: квадрат со стороной а всегда будет равен другому квадрату с той же стороной а. Тоже касается и прямоугольников и ромбов - если их стороны равны сторонам другого прямоугольника, они равны. Более сложный пример: треугольники будут равными, если у них равны стороны и соответствующие углы. Но это только частные случаи. В более общих случаях, равенство фигур доказывается все-таки наложением, а это наложение в планиметрии высокопарно именуют движением.