Находить расстояние между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми: определение и примеры нахождения

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

РАССТОЯНИЕ МЕЖДУ СКРЕЩИВАЮЩИМИСЯ ПРЯМЫМИ Координатным и векторным способом Алферова Наталья Васильевна, учитель математики МКОУ «Горячеключевская СОШ» Омского района Омской области

2 слайд

Описание слайда:

Основные понятия Расстоянием между скрещивающимися прямыми называется длина общего перпендикуляра к данным прямым Расстоянием между скрещивающимися прямыми называется расстояние от точки одной прямой до плоскости параллельной данной прямой и содержащей вторую прямую.

3 слайд

Описание слайда:

В единичном кубе ABCDA1B1C1D1 найдите расстояние между прямыми BA1 и DB1. х y z Точки A1 (1;0;1), B (1;1;0) Вектор A1B {0;1;-1} Точки D (0;0;0), B1 (1;1;1) Вектор DB1 {1;1;1} Пусть КМ ┴А1В и КМ┴DВ1, значит КМ – искомое расстояние. Пусть точка К лежит на прямой A1B, а точка М на прямой DB1. Рассмотрим векторы А1К и DM, сонаправленные с направляющими векторами данных прямых. По лемме о коллинеарных векторах вектор А1К = а · А1В, т.е. вектор А1К{0;a;-a}, вектор DM = b · DB1, т.е. вектор DM {b;b;b}. Тогда К(1;а;1-а), М(b;b;b) и вектор КМ {b-1;b-a;b-1+a}. К М

4 слайд

Описание слайда:

Решим систему из условия перпендикулярности двух векторов KM·A1B=0 0·(b-1)+1·(b-a)-1·(b-1+a) = 0, KM·DB1=0 1·(b-1)+1·(b-a)+1·(b-1+a) = 0 Решив систему получаем a=1/2, b=2/3, подставим эти значения в координаты вектора КМ: КМ { -1/3; 1/6; 1/6}. Найдём длину вектора |КМ| =√х²+y²+z², |КМ| =√1/9+1/36+1/36=√6/6. Ответ: √6/6 a·b = x1x2+y1y2+z1z2 = 0

5 слайд

Описание слайда:

В единичном кубе ABCDA1B1C1D1 найдите расстояние между прямыми BA1 и DB1. K M x y z KM=MB1+BB1+BK=a·DB1+B1B+b·BA1 DB1{1;1;1}, BA1 {0;-1;1}, B1B{0;0;1} KM = {a; a ;a} + {0; 0; 1} + {0; -b ; b}= = {a; a- b; a+1+b} KM·BA1=0 0·a-1·(a-b) +1·(a+1+b)=0, KM·DB1=0 1·a+1·(a-b)+1·(a+1+b) = 0 b= -½, a= -⅓ KM {-1/3; 1/6;1/6} |KM|= √1/9+1/36+1/36 =√6/6

6 слайд

Описание слайда:

В правильной треугольной призме АВСА1В1С1, все ребра которой равны 1, найдите расстояние между прямыми АВ и СВ1 z y x Рассмотрим плоскость (А1В1С), содержащую прямую В1С и параллельную прямой АВ. Расстоянием между скрещивающимися прямыми будет расстояние от точки прямой АВ, например от А, до плоскости (А1В1С). Введём прямоугольную систему координат ОХУZ так, чтобы ось ОХ была параллельна высоте ВН основания, ось ОУ совпадала с АС, ось ОZ совпадала с АА1. Н

7 слайд

Описание слайда:

Рассмотрим ∆АВС в плоскости ОХУ x y A C B H ∆ ABC – правильный, АВ=ВС=АС=1, ВН=√3/2. Составим уравнение плоскости (А1В1С): Ax+By+Cz+D=0. A1(0;0;1), B1(√3/2; 1/2 ;1), C(0;1;0) , подставляем координаты точек в уравнение плоскости, получим систему: 0A+0B+1C+D=0, (√3/2)A+(1/2)B+1C+D=0, 0A+1B+0C+D=0. Получаем C=-D, B=-D, A= (√3/3)D. Уравнение плоскости (А1В1С1): (√3/3)Dx-Dy-Dz+D=0, (√3/3)x-1y-1z+1=0, Формула расстояния от точки до плоскости: d= где (х0;у0;z0)- координаты точки A, d = |√3/3·0-1·0-1·0 +1| / √ (√3/3)²+1+1 =√21/7. Ответ: √21/7. х у z H

Статья нацелена на нахождение расстояния между скрещивающимися прямыми методом координат. Будет рассмотрено определение расстояния между этими прямыми, получим алгоритм при помощи которого преобразуем нахождение расстояния между скрещивающимися прямыми. Закрепим тему решением подобных примеров.

Yandex.RTB R-A-339285-1

Предварительно необходимо доказать теорему, которая определяет связь между заданными скрещивающимися прямыми.

Раздел взаимного расположения прямых в пространстве говорит о том, что если две прямые называют скрещивающимися, если их расположение не в одной плоскости.

Теорема

Через каждую пару скрещивающихся прямых может проходить плоскость, параллельная данной, причем только одна.

Доказательство

По условию нам даны скрещивающиеся прямые a и b . Необходимо доказать проходимость единственной плоскости через прямую b , параллельную данной прямой a . Аналогичное доказательство необходимо применять для прямой a , через которую проходит плоскость, параллельная данной прямой b .

Для начала необходимо отметить точку Q на прямой b . Если следовать из определения параллельности прямых, то получаем, что через точку пространства можно провести прямую, параллельную заданной прямой, причем только одну. Значит, через точку Q проходит только одна прямая, параллельная прямой a . Примем обозначение а а 1 .

Раздел способов задания плоскости было говорено о том, что прохождение единственной плоскости возможно через две пересекающиеся прямые. Значит, получаем, что прямые b и а 1 – пересекающиеся прямые, через которые проходит плоскость, обозначаемая χ .

Исходя из признака параллельности прямой с плоскостью, можно сделать вывод, что заданная прямая a параллельна относительно плоскости χ , потому как прямая a параллельна прямой а 1 , расположенной в плоскости χ .

Плоскость χ является единственной, так как прямая, проходящая через заданную прямую, находящуюся в пространстве, параллельна заданной прямой. Рассмотрим на рисунке, предоставленном ниже.

При переходе от определения расстояния между скрещивающимися прямыми определяем расстояние через расстояние между прямой и параллельной ей плоскостью.

Определение 1

Называют расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.

То есть расстояние между прямой и плоскостью является расстоянием от заданной точки к плоскости. Тогда применима формулировка определения расстояния между скрещивающимися прямыми.

Определение 2

Расстоянием между скрещивающимися прямыми называют расстояние от некоторой точки скрещивающихся прямых к плоскости, проходящей через другую прямую, параллельную первой прямой.

Произведем подробное рассмотрение прямых a и b . Точка М 1 располагается на прямой a , через прямую b проводится плоскость χ , параллельная прямой a . Из точки М 1 проводим перпендикуляр М 1 Н 1 к плоскости χ . Длина этого перпендикуляра является расстоянием между скрещивающимися прямыми a и b . Рассмотрим на рисунке, приведенном ниже.

Нахождение расстояния между скрещивающимися прямыми – теория, примеры, решения

Расстояния между скрещивающимися прямыми находятся при построении отрезка. Искомое расстояние равняется длине этого отрезка. По условию задачи его длина находится по теореме Пифагора, по признакам равенства или подобия треугольников или другим.

Когда имеем трехмерное пространство с системой координат О х у z с заданными в ней прямыми a и b , то вычисления следует проводить, начиная с расстояния между заданными скрещивающимися при помощи метода координат. Произведем подробное рассмотрение.

Пусть по условию χ является плоскостью, проходящей через прямую b , которая параллельна прямой a . Искомое расстояние между скрещивающимися прямыми a и b равняется расстоянию от точки М 1 , расположенной на прямой a , к плоскости _ χ . Для того, чтобы получить нормальное уравнение плоскости χ , необходимо определить координаты точки M 1 (x 1 , y 1 , z 1) , расположенной на прямой a . Тогда получим cos α · x + cos β · y + cos γ · z - p = 0 , которое необходимо для определения расстояния M 1 H 1 от точки M 1 x 1 , y 1 , z 1 к плоскости χ . Вычисления производятся по формуле M 1 H 1 = cos α · x 1 + cos β · y 1 + cos γ · z 1 - p . Необходимое расстояние равняется искомому расстоянию между скрещивающимися прямыми.

Данная задача предполагает получение координат точки М 1 , которая располагается на прямой a , нахождение нормального уравнения плоскости χ .

Определение координат точки М 1 необходимо и возможно при знании основных видов уравнений прямой в пространстве. Чтобы получить уравнение плоскости χ , необходимо остановиться подробней на алгоритме вычисления.

Если координаты x 2 , y 2 , z 2 будут определены при помощи точки М 2 , через которую проведена плоскость χ , получаем нормальный вектор плоскости χ в виде вектора n → = (A , B , C) . Следуя из этого, можно записать общее уравнение плоскости χ в виде A · x - x 2 + B · (y - y 2) + C · (z - z 2) = 0 .

Вместо точки М 2 может быть взята любая другая точка, принадлежащая прямой b , потому как плоскость χ проходит через нее. Значит, координаты точки М 2 найдены. Необходимо перейти к нахождению нормального вектора плоскости χ .

Имеем, что плоскость χ проходит через прямую b , причем параллельна прямой a . Значит, нормальный вектор плоскости χ перпендикулярен направляющему вектору прямой a , обозначим a → , и направляющему вектору прямой b , обозначим b → . Вектор n → будет равняться векторному произведению a → и b → , что значит, n → = a → × b → . После определения координат a x , a y , a z и b x , b y , b z направляющих векторов заданных прямых a и b , вычисляем

n → = a → × b → = i → j → k → a x a y a z b x b y b z

Отсюда находим значение координат A , B , C нормального вектора к плоскости χ .

Знаем, что общее уравнение плоскости χ имеет вид A · (x - x 2) + B · (y - y 2) + C · (z - z 2) = 0 .

Необходимо привести уравнение к нормальному виду cos α · x + cos β · y + cos γ · z - p = 0 . После чего нужно произвести вычисления искомого расстояния между скрещивающимися прямыми a и b , исходя из формулы M 1 H 1 = cos α · x 1 + cos β · y 1 + cos γ · z 1 - p .

Чтобы найти расстояние между скрещивающимися прямыми a и b , необходимо следовать алгоритму:

  • определение координат (x 1 , y 1 , z 1) и x 2 , y 2 , z 2 точек М 1 и М 2 , расположенных на прямых a и b соответственно;
  • получение координат a x , a y , a z и b x , b y , b z , принадлежащим направляющим векторам прямых a и b ;
  • нахождение координат A , B , C , принадлежащим вектору n → на плоскости χ , проходящей через прямую b , расположенную параллельно a , по равенству n → = a → × b → = i → j → k → a x a y a z b x b y b z ;
  • запись общего уравнения плоскости χ в виде A · x - x 2 + B · (y - y 2) + C · (z - z 2) = 0 ;
  • приведение полученного уравнения плоскости χ к уравнению нормального вида cos α · x + cos β · y + cos γ · z - p = 0 ;
  • вычисление расстояния M 1 H 1 от M 1 x 1 , y 1 , z 1 к плоскости χ , исходя из формулы M 1 H 1 = cos α · x 1 + cos β · y 1 + cos γ · z 1 - p .
Пример 1

Имеются две скрещивающиеся прямые в прямоугольной системе координат О х у z трехмерного пространства. Прямая a определена параметрическим уравнением прямой в пространстве x = - 2 y = 1 + 2 · λ z = 4 - 3 · λ , прямая b при помощи канонического уравнения прямой в пространстве x 1 = y - 1 - 2 = z + 4 6 . Найти расстояние между скрещивающимися прямыми.

Решение

Понятно, что прямая а пересекает точку M 1 (- 2 , 1 , 4) с направляющим вектором a → = (0 , 2 , - 3) , а прямая b пересекает точку M 2 (0 , 1 , - 4) с направляющим вектором b → = (1 , - 2 , 6) .

Для начала следует произвести вычисление направляющих векторов a → = (0 , 2 , - 3) и b → = (1 , - 2 , 6) по формуле. Тогда получаем, что

a → × b → = i → j → k → 0 2 - 3 1 - 2 6 = 6 · i → - 3 · j → - 2 · k →

Отсюда получаем, что n → = a → × b → - это вектор плоскости χ , который проходит через прямую b параллельно a с координатами 6 , - 3 , - 2 . Получим:

6 · (x - 0) - 3 · (y - 1) - 2 · (z - (- 4)) = 0 ⇔ 6 x - 3 y - 2 z - 5 = 0

Находим нормирующий множитель для общего уравнения плоскости 6 x - 3 y - 2 z - 5 = 0 . Вычислим по формуле 1 6 2 + - 3 2 + - 2 2 = 1 7 . Значит, нормальное уравнение примет вид 6 7 x - 3 7 y - 2 7 z - 5 7 = 0 .

Необходимо воспользоваться формулой, чтобы найти расстояние от точки M 1 - 2 , 1 , 4 до плоскости, заданной уравнением 6 7 x - 3 7 y - 2 7 z - 5 7 = 0 . Получаем, что

M 1 H 1 = 6 7 · (- 2) - 3 7 · 1 - 2 7 · 4 - 5 7 = - 28 7 = 4

Отсюда следует, что искомым расстоянием является расстояние между заданными скрещивающимися прямыми, является значение 4 .

Ответ: 4 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Стереометрия Расстояние между скрещивающимися прямыми

Общим перпендикуляром двух скрещивающихся прямых называют отрезок с концами на этих прямых, являющийся перпендикуляром к каждой из них. a b A B Расстоянием между скрещивающимися прямыми называют длину их общего перпендикуляра.

Способы вычисления расстояния между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми равно расстоянию от любой точки одной из этих прямых до плоскости, проходящей через вторую прямую параллельно первой прямой.

Способы вычисления расстояния между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми равно расстоянию между двумя параллельными плоскостями, содержащими эти прямые.

№ 1 В единичном кубе найдите

№ 2 В единичном кубе найдите

№ 3 В единичном кубе найдите

№ 4 В единичном кубе найдите

Общий перпендикуляр двух скрещивающихся прямых и есть отрезок, соединяющий середины отрезков и Е – середина F – середина

№ 5 В единичном кубе найдите ~

Способы вычисления расстояния между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми равно расстоянию между их проекциями на плоскость, перпендикулярную одной из них.

№ 5 В единичном кубе найдите O – проекция прямой АС на плоскость

№ 6 Дана правильная пирамида PABC c боковым ребром PA = 3 и стороной основания 2 . Найдите

Прямоугольный - прямоугольный - прямоугольный

№ 7 В единичном кубе найдите расстояние между прямыми и


По теме: методические разработки, презентации и конспекты

Угол между скрещивающимися прямыми

Презентация для подготовки к сдаче ЕГЭ по математике по теме "Угол между скрещивающимися прямыми"...

Разработана совместно с учащимися 11 класса. Рассмотрены различные методы решения задач по данной теме....

Пусть плоскость `alpha` параллельна плоскости `beta`, прямая `b` лежит в плоскости `beta`, точка `B` лежит на прямой `b`. Очевидно, что расстояние от точки `B` до плоскости `alpha` равно расстоянию от прямой `b` до плоскости `alpha` и равно расстоянию между плоскостями `alpha` и `beta`.

Рассмотрим две скрещивающиеся прямые `a` и `b`. Проведём через прямую `a` плоскость, параллельную прямой `b`. Через прямую `b` проведём плоскость, перпендикулярную плоскости `alpha`, пусть линия пересечения этих плоскостей `b_1` (эта прямая есть проекция прямой `b` на плоскость `alpha`). Точку пересечения прямых `a` и `b_1` обозначим `A`. Точка `A` является проекцией некоторой точки `B` прямой `b`. Из того, что `AB_|_alpha`, следует, что `AB_|_a` и `AB_|_b_1`; кроме того `b``||``b_1`, значит `AB_|_b` - . Прямая `AB` пересекает скрещивающиеся прямые `a` и `b` и перпендикулярна и той, и другой. Отрезок `AB` называется общим перпендикуляром двух скрещивающихся прямых.

Длина общего перпендикуляра скрещивающихся прямых равна расстоянию от любой точки прямой `b` до плоскости `alpha`.

* Расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Пусть в пространстве задана прямая `l_1` с известным направляющим вектором `veca_1` (направляющим вектором прямой называется ненулевой вектор, параллельный этой прямой), прямая `l_2` с известным направляющим вектором `veca_2`, точки `A_1` и `A_2`, лежащие соответственно на `l_1` и `l_2`, кроме того, известен вектор `vec(A_1A_2)=vecr`. Пусть отрезок `P_1P_2` - общий перпендикуляр к `l_1` и `l_2` (см. рис. 9). Задача заключается в нахождении длины этого отрезка. Представим вектор `vec(P_1P_2)` в виде суммы `vec(P_1A_1)+vec(A_1A_2)+vec(A_2P_2)`. Затем, пользуясь коллинеарностью векторов `vec(P_1A_1)` и `veca_1`, `vec(A_2P_2)` и `veca_2`, получим для вектора `vec(P_1P_2)` представление `vec(P_1P_2)=xveca_1+yveca_2+vecr`, где `x` и `y` - неизвестные пока числа. Эти числа можно найти из условия перпендикулярности вектора `vec(P_1P_2)` векторам `veca_1` и `veca_2`, т. е. из следующей системы линейных уравнений:

x a → 1 + y a → 2 + r → · a → 1 = 0 , x a → 1 + y a → 2 + r → · a → 2 = 0 . \left\{\begin{array}{l}\left(x{\overrightarrow a}_1+y{\overrightarrow a}_2+\overrightarrow r\right)\cdot{\overrightarrow a}_1=0,\\\left(x{\overrightarrow a}_1+y{\overrightarrow a}_2+\overrightarrow r\right)\cdot{\overrightarrow a}_2=0.\end{array}\right.

После этого находим длину вектора `vec(P_1P_2):`

`P_1P_2=sqrt((xveca_1+yveca_2+vecr)^2)`.

Вычислить расстояние между скрещивающимися диагоналями двух соседних граней куба с ребром `a`.

Пусть дан куб `A...D_1` c ребром `a`. Найдём расстояние между прямыми `AD_1` и `DC_1` (рис. 10). Введём базис `veca=vec(DA)`, `vecb=vec(DC)`, `vecc=vec(DD_1)`. За направляющие векторы прямых `AD_1` и `DC_1` можно взять `vec(AD_1)=vecc-veca` и `vec(DC_1)=vecb+vecc`. Если `P_1P_2` - общий перпендикуляр к рассматриваемым прямым, то `vec(P_1P_2)=x(vecc-veca)+y(vecb+vecc)+veca`.

Составим систему уравнений для нахождения неизвестных чисел `x` и `y`:

x c → - a → + y b → + c → + a → · c → - a → = 0 , x c → - a → + y b → + c → + a → · b → + c → = 0 . \left\{\begin{array}{l}\left(x\left(\overrightarrow c-\overrightarrow a\right)+y\left(\overrightarrow b+\overrightarrow c\right)+\overrightarrow a\right)\cdot\left(\overrightarrow c-\overrightarrow a\right)=0,\\\left(x\left(\overrightarrow c-\overrightarrow a\right)+y\left(\overrightarrow b+\overrightarrow c\right)+\overrightarrow a\right)\cdot\left(\overrightarrow b+\overrightarrow c\right)=0.\end{array}\right.

Приведём эту систему к равносильной:

2 x + y - 1 = 0 , x + 2 y = 0 . \left\{\begin{array}{l}2x+y-1=0,\\x+2y=0.\end{array}\right.

Отсюда находим `x=2/3`, `y=-1/3`. Тогда

`vec(P_1P_2)=2/3(vecc-veca)-1/3(vecb+vecc)+veca=1/3veca-1/3vecb+1/3vecc`,

Геометрия. 11 класс

Тема урока: Расстояние между скрещивающимися прямыми

Тер-Ованесян Г.Л., учитель высшей категории, лауреат премии Фонда Сороса

г. Москва

Рассмотрим задачу на нахождение расстояния между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми - это длина общего перпендикуляра к этим прямым.

Пусть нам дан куб АВСDА 1 В 1 С 1 D 1 , ребро которого равно единице АВ=1. Нужно найти расстояние между прямыми АВ и DC 1: ρ(АВ;DС 1) - ?

Эти две прямые лежат в параллельных плоскостях: АВ лежит в плоскости АА 1 В 1 В, DС 1 лежит в плоскости D 1 DС 1 С. Найдем сначала перпендикуляр к этим двум плоскостям. Таких перпендикуляров на рисунке много. Это отрезок ВС, В 1 С 1 , А 1 D 1 и AD. Из них имеет смысл выбрать тот отрезок, который не только перпендикулярен этим плоскостям, а значит перпендикулярен и нашим прямым АВ и DC 1 , но и проходит через эти прямые. Такой отрезок - AD. Он одновременно перпендикулярен прямой АВ, потому что перпендикулярен плоскости АА 1 В 1 В и прямой DC 1 , потому что перпендикулярен плоскости D 1 DС 1 С. И значит, что AD - это общий перпендикуляр к скрещивающимся прямым АВ и DC 1 . Расстояние между этими прямыми - длина этого перпендикуляра, то есть длина отрезка АD. Но AD - это ребро куба. Следовательно, расстояние равно 1:

ρ(АВ;DС 1)=AD=1

Рассмотрим ещё одну задачу, чуть более сложную, о нахождении расстояния между скрещивающимися прямыми.

Пусть нам дан опять куб, ребро которого равно единице. Нужно найти расстояние между диагоналями противоположных граней. То есть, дан куб АВСDА 1 В 1 С 1 D 1 . Ребро АВ=1. Нужно найти расстояние между прямыми ВА 1 и DC 1: ρ(А 1 В;DС 1) - ?

Эти две прямые скрещивающиеся, значит, расстояние - это длина общего перпендикуляра. Можно не рисовать общий перпендикуляр, а сформулировать следующим образом: это длина перпендикуляра между параллельными плоскостями, в которых лежат эти прямые. Прямая ВА 1 лежит в плоскости АВВ 1 А 1 , а прямая DC 1 лежит в плоскости D 1 DCC 1 . Они параллельны, значит, расстояние между ними и есть расстояние между этими прямыми. А расстояние между гранями куба - это длина ребра. Например, длина ребра ВС. Потому что ВС перпендикулярно и плоскости АВВ 1 А 1, и плоскости DСС 1 D 1 . Значит, расстояние между прямыми, данными в условии, равно расстоянию между параллельными плоскостями и равно 1:

ρ(А 1 В;DС 1)=ВС=1

Рассмотрим ещё одну задачу о нахождении расстояния между скрещивающимися прямыми.

Пусть у нас дана правильная треугольная призма, у которой известны все ребра. Нужно найти расстояние между ребрами верхнего и нижнего оснований. То есть нам дана призма АВСА 1 В 1 С 1 . Причем, АВ=3=АА 1 . Нужно найти расстояние между прямыми ВС и А 1 С 1: ρ(ВС;А 1 С 1) - ?

Поскольку эти прямые скрещиваются, то расстояние между ними - это длина общего перпендикуляра, или длина перпендикуляра к параллельным плоскостям, в которых они лежат. Найдем эти параллельные плоскости.

Прямая ВС лежит в плоскости АВС, а прямая А 1 С 1 лежит в плоскости А 1 В 1 С 1 . Эти две плоскости параллельны, поскольку это верхнее и нижнее основания призмы. Значит, расстояние между нашими прямыми - это расстояние между этими параллельными плоскостями. А расстояние между ними равно в точности длине бокового ребра АА 1 , то есть равно 3:

ρ(ВС;А 1 С 1)=АА 1 =3

В данной конкретной задаче можно найти не только длину общего перпендикуляра, но и построить его. Для этого мы из всех боковых рёбер выбираем такое, которое имеет общие точки с прямой ВС и А 1 С 1 . На нашем рисунке это ребро СС 1 . Оно будет перпендикулярно прямой А 1 С 1 , поскольку перпендикулярно плоскости верхнего основания, и прямой ВС, поскольку перпендикулярно плоскости нижнего основания. Таким образом, мы можем найти не только расстояние, но и построить этот общий перпендикуляр.

Сегодня на уроке мы вспомнили, как находить длину общего перпендикуляра между скрещивающимися прямыми.