Краткая история создания сверхпроводимости. Сверхпроводимость - знания по физике и не только

Сверхпроводники - это материалы, электрическое сопротивление которых понижается до нуля при достижении определенной минусовой температуры (чаще всего - в несколько градусов выше абсолютного нуля). При этом материал переходит в сверхпроводящее состояние, приобретая определенные интересные свойства: например, могут «парить» в буквальном смысле, удерживаемые магнитным полем. Особенный интерес для физиков представляют сверхпроводники, способные работать при комнатных температурах. Их появление и производство произвело бы революцию в области материалов.

В конце июня компания Lexus о разрабатываемом ею ховерборде Slide — летающей доске из популярного фантастического фильма «Назад в будущее 2». Журналистам удалось выяснить, что для работы летающей доске от Lexus требуются специальные условия. Для этих целей в Барселоне был построен специальный скейт-парк, под поверхностью которого находятся металлическая подложка, благодаря которой магниты, встроенные в ховерборд, могут удерживать его на весу.

При температуре ниже определённого значения некоторые вещества теряют способность препятствовать прохождению электрического тока. Их электрическое сопротивление становится нулевым. Это свойство называют сверхпроводимостью.

Открытие сверхпроводимости

Явление сверхпроводимости открыл в 1911 г. голландский физик Хейке Камерлинг-Оннес , исследуя зависимость электрического сопротивления металлов от температуры. Сверхнизкими температурами он начал интересоваться ещё в 1893 г. А в 1908 г. ему удалось получить жидкий гелий. Охлаждая с его помощью металлическую ртуть, он с удивлением обнаружил, что при температуре, близкой к абсолютному нулю, электрическое сопротивление ртути скачком падает до нуля.

Согласно существовавшим в то время физическим теориям, с понижением температуры сопротивление должно плавно падать. Но существовала и такая точка зрения, что при очень низкой температуре движение электронов прекратится, сопротивление вырастет, и вещество вообще перестанет проводить электрический ток.

В начале эксперимента всё происходило согласно теории. С понижением температуры сопротивление ртути плавно уменьшалось. Но когда температура опустилась до 4,15 К, ртуть внезапно вообще потеряла сопротивление. Она перешла в совершенно новое состояние, которое было названо сверхпроводимостью .

Природа сверхпроводимости

Что же происходит в металлах при понижении их температуры до значений, близких к абсолютному нулю?

Каждый атом состоит из ядра, заряженного положительно, и электронов, имеющих отрицательный заряд. Электроны вращаются вокруг ядра по орбитам. Чем ближе орбита к ядру, тем сильнее электрон к нему притягивается. Электроны, находящиеся на внешней орбите, называются валентными. Они легко отрываются от ядра, покидают свою орбиту и свободно перемещаются внутри кристаллической решётки. Под воздействием внешнего электрического поля их движение становится упорядоченным, они начинают двигаться в одном направлении. В металле возникает электрический ток. Однако на пути электронов возникают препятствия в виде узлов кристаллических решёток, их дефектов, или атомов примесей, которые присутствуют в веществе. Поэтому возникает электрическое сопротивление току. С понижением температуры нарушения структуры решёток, связанные с тепловыми колебаниями атомов, уменьшаются. Структура становится более правильной. Следовательно, уменьшается и сопротивление.

Объяснение сверхпроводимости на микроскопическом уровне было дано в теории, названной БКШ в честь её создателей - американских физиков Джона Бардина, Леона Купера и Джона Шриффера . В её основу положены куперовские пáры электронов .

Леон Нил Купер

При обычных условиях электроны являются фермионами, частицами с полуцелым спином, имеющим значение -1/2 или +1/2. Каждый из фермионов описывается своей волновой функцией. Двигаются они также поодиночке и самостоятельно преодолевают препятствия на своём пути. Но при определённых условиях они образуют пáры. Электроны со значениями спинов +1/2 и -1/2 объединяются и образуют связанное состояние, которое называют кýперовской парой . Эта пара имеет нулевой спин и удвоенный заряд электрона. А раз её суммарный спин равен нулю, то она обладает свойствами бозона. Бозоны образуют «бозе-конденсат», к которому присоединяются все свободные бозоны. Они становятся единым целым, способным двигаться, не реагируя ни на какие препятствия на своём пути. Так возникает ток сверхпроводимости.

Критическая температура

Оказалось, что не только ртуть обладает сверхпроводимостью при температурах, близких к абсолютному нулю. Такое свойство открыли у свинца, олова, таллия, урана и других металлов. Сверхпроводимость проявляется скачкообразно, когда вещество охлаждается до определённой температуры. Температуру Т с , при которой этот скачок происходит, называют критической. У каждого элемента, обладающего сверхпроводимостью, она своя. Например, ниобий переходит в состояние сверхпроводимости при 9 К, а вольфрам при 0,012 К.

Сверхпроводимостью обладают не только чистые металлы, но и некоторые сплавы. Например, сплав ртути с золотом и оловом. Существуют даже сверхпроводящие сплавы, у которых один из элементов, входящих в его состав, может и не быть сверхпроводником.

Если кольцо из сверхпроводника охладить до критической температуры и возбудить в нём электрический ток, то он будет течь даже после того, как уберут источник тока, и до тех пор, пока в кольце будет поддерживаться температура ниже критической. Но так происходит только в электрическом поле постоянного электрического тока. В переменном электрическом поле сопротивление сверхпроводника увеличивается, если увеличивается частота переменного тока.

В 1983 - 1986 г.г. были созданы новые сверхпроводники. Это сверхпроводящие керамики, сверхпроводники на основе железа и др. Сверхпроводимость в них наступала при температурах, значительно превышающих температуру абсолютного нуля. В 1993 г. было открыто вещество, критическая температура которого равна 135 К.

Эффект Мейснера

В 1933 г. немецкий физик Вальтер Фриц Мейснер вместе с другим немецким физиком Робертом Оксенфельдом открыл ещё одно удивительное и важное свойство сверхпроводников - выталкивание магнитного поля из своего объёма . Это явление было названо эффектом Мейснера .

Вальтер Фриц Мейснер

Эффект Мейснера наглядно демонстрирует опыт, поставленный в 1945 г. российским физиком Владимиром Константиновичем Аркадьевым.

В этом эксперименте постоянный магнит, поднесённый к чашечке, сделанной из сверхпроводящего металла, висит в пространстве над ней. Низкая температура чашечки поддерживается за счёт того, что её ножки погружены в жидкий гелий. Но почему же магнит не притягивается к чашечке? Дело в том, что незатухающий ток внутри сверхпроводника создаёт магнитное поле, направление которого противоположно направлению внешнего магнитного поля, создаваемого магнитом. Это поле уравновешивает и отталкивает внешнее поле, благодаря чему магнит будто парит в пространстве. Это явление называется магнитной левитацией.

Если поместить сверхпроводник в магнитное поле и напряжённость этого поля увеличивать, то при определённом значении напряжённости, равной Н с , сверхпроводимость исчезает. Такое магнитное поле называется критическим полем. При напряжённости выше Н с сверхпроводник становится обычным проводником. Чем ниже температура сверхпроводника, тем большей должна быть напряжённость поля, способного разрушить сверхпроводимость.

В чистых сверхпроводников, состоящих из одного вещества, магнитное поле будет выталкиваться до тех пор, пока напряжённость магнитного поля не достигнет значения Н с . Такие сверхпроводники называются сверхпроводниками I рода .

А для сверхпроводящих сплавов таких значений два: Н с1 и Н с2 . Когда напряжённость внешнего магнитного поля достигнет значения Н с1 , это поле уже начнёт проникать внутрь сверхпроводника. Но его электрическое сопротивление всё ещё остаётся нулевым, и явление сверхпроводимости наблюдается. А когда напряжённость станет равна Н с2 , сверхпроводимость исчезнет совсем. Такие сверхпроводники называются сверхпроводниками II рода .

Применение сверхпроводников

Открытие сверхпроводимости произвело настоящий переворот в науке. Сразу же появилось множество идей по использованию этого уникального явления в технике.

При сверхнизких температурах ток проходит в сверхпроводниках практически без потерь. Поэтому их используют при создании различных кабелей, коммутационных устройств, электродвигателей, турбогенераторов, приборов для измерения температуры, давления и др. Они идеально подходят для создания электромагнитов. С их помощью создаётся электромагнитное поле в магнитно-резонансном томографе. Это позволяет врачам получать качественные изображения тканей внутренних органов человека в разрезе, хотя на самом деле орган не травмируется.

В установках термоядерного синтеза, в крупных ускорителях элементарных частиц используют сверхпроводящие катушки.

Обмотки сверхпроводящих магнитов, с помощью которых создают сильные магнитные поля, изготавливают из сверхпроводников II рода. Сверхпроводящие магниты гораздо экономичнее обычных ферромагнитов.

В 2003 г. в Японии провели испытание поезда на магнитной подвеске. Его движение основано на использовании эффекта Мейснера (магнитной левитации). Электромагнитное поле рельсов отталкивается сверхпроводниками, находящимися в подвеске поезда. И поезд словно летит над рельсами, не касаясь их. Это позволяет ему развивать огромную скорость, сравнимую со скоростью самолёта. Конечно, такие поезда требуют специальных рельсов. Но энергии они затрачивают в десятки раз меньше, чем самолёты. Подобные поезда созданы в Германии, Китае и Южной Корее.

Впервые гелий был ожижен в 1908 г. Хайке Камерлинг-Оннесом в Лейденском университете, и с того времени стало возможным изучать физические явления при температурах лишь на несколько градусов выше абсолютного нуля (точка кипения гелия при атмосферном давлении 4,2 К).

Одно из направлений исследований касалось зависимости сопротивления металлов от температуры. Камерлинг-Оннес уже проводил подобные исследования при температурах, уменьшающихся вплоть до температуры жидкого воздуха (около 80 К).

Для нескольких чистых металлов он обнаружил примерно линейную зависимость, однако он установил, что подобная зависимость не может продолжаться беспредельно, так как в противном случае при абсолютном нуле сопротивление стало бы отрицательным. Сэр Джеймс Дьюар продолжил изыскания Камерлинг-Оннеса и достиг температуры жидкого водорода (20 К), при этом выяснилось, что сопротивление действительно начинает уменьшаться медленнее.

Именно этого и следовало ожидать, причем не только по уже названной причине, но также исходя из принятых в то время представлений о металлах и их свойствах.

Считалось, что электрическая проводимость осуществляется путем переноса электронов, а сопротивление возникает в результате соударений электронов с атомами металлов.

Линейный характер уменьшения сопротивления вполне согласовывался с предполагаемым изменением движения электронов при понижении температуры. Ожидалось, однако, что При достаточно низких температурах электроны «конденсируются» на атомах, тогда сопротивление при какой-то температуре должно быть минимальным, и затем металл должен переходить в диэлектрик.

Наблюдаемое в действительности поведение металлов резко отличалось от предполагаемого. Камерлинг-Оннес обнаружил, что при понижении температуры сопротивление большинства металлов стремится к постоянной величине, тогда как у некоторых металлов оно полностью исчезает при определенной, характеристической, температуре, которая, как выяснилось, зависит от напряженности магнитного поля. Эти эксперименты относятся к числу работ, за которые Камерлинг-Оннес был удостоен в 1913 г. Нобелевской премии по физике.

В течение более двух десятилетий именно исчезновение сопротивления считалось главной, отличительной чертой сверхпроводимости. Однако некоторые особенности этого явления приводили ученых в замешательство.

Так, если магнитное поле приложить к обычному проводнику (только не ферромагнетику), часть магнитного потока проходит через толщу проводника. Если же приложить его к идеальному проводнику, в последнем индуцируются поверхностные токи, которые создают внутри проводника магнитное поле, полностью компенсирующее приложенное внешнее поле, и тем самым поддерживают внутри проводника нулевое значение магнитного потока.

Это означало, что состояние проводника в магнитном поле зависит от того, каким способом это состояние было достигнуто - ситуация в высшей степени неприятная.

Позднее, в 1933 г., В. Мейснер, Р. Оксенфельд и Ф. Хайденрейх показали, что металл, становясь сверхпроводником, в действительности выталкивает магнитный поток, если температура понижается ниже критического значения, когда образец находится в магнитном поле.

Следующий этап исследования заключался в изучении вновь открытого состояния при больших значениях тока. Необходимость такого исследования была продиктована следующим обстоятельством: если бы сопротивление в действительности не равнялось нулю, то больший ток должен был бы приводить к большему, а следовательно, и легче регистрируемому значению разности потенциалов.

Однако полученные результаты лишь еще более запутали ситуацию, так как наблюдалось «особое явление: при любой температуре ниже 4,18 К для ртутной нити, заключенной в стеклянный капилляр, существовало некое пороговое значение плотности тока, при превышении которого характер явления резко изменялся. При плотностях тока ниже пороговой электрический ток проходит без сколько-нибудь заметных разностей потенциалов, приложенных к концам нити. Это говорило о том, что нить не обладает сопротивлением.

Как только плотность тока превосходила пороговое значение, появлялась и разность потенциалов, которая к тому же росла быстрее, чем сам ток». Затем была поставлена серия экспериментов с целью найти объяснение новому эффекту. Прежде всего было замечено, что пороговая плотность тока возрастала с понижением температуры - примерно пропорционально отклонению от температуры перехода в сверхпроводящее состояние (до тех пор, пока разность между температурами была не слишком велика). Естественно напрашивалось предположение, что из-за нагрева, обусловленного каким-то эффектом, температура ртути поднималась выше точки перехода. Была поставлена задача - найти этот источник тепла.

Используя различные конфигурации ртутной нити, удалось установить, что тепло не подводилось снаружи. Рассматривалось влияние примесей в ртути, хотя в процессе перегонки они должны были быть удалены; опыты показали, что эффект нагревания не связан с примесями, специально добавленными в нужных количествах.

Далее было высказано предположение, что, возможно, контакт ртутной нити с обычным проводником, в каком-либо виде оказавшемся в ней или образованным внутри ее, способен аннулировать сверхпроводящие свойства ртути. Для проверки был взят стальной капилляр, но это не привело к каким-либо определенным результатам, и лишь в дальнейшем, в результате опытов того же типа на олове, это предположение было исключено. В целом эксперименты с ртутью не дали ответа на поставленный вопрос.

Однако, как установил Камерлинг-Оннес, ртуть являлась не вполне подходящим объектом для систематических исследований. «Совместное действие многих обстоятельств приводило к трудностям при работе с ртутью в капиллярах.

День эксперимента с жидким гелием требовал огромной подготовки, и, когда дело доходило непосредственно до описанных здесь экспериментов, на них оставалось лишь несколько часов. Чтобы при этих условиях проводить точные измерения с жидким гелием, необходимо заранее наметить программу и быстро и методично выполнять ее в день эксперимента. Изменения в постановке эксперимента, необходимость которых вызывалась наблюдаемыми явлениями, приходилось обычно вносить на следующий день.

Зачастую, в связи с некоторой задержкой, обусловленной трудоемкостью процесса изготовления сопротивлений, гелиевая установка использовалась для каких-либо других целей. Когда же мы могли снова заняться экспериментом, случалось, что приготовленные сопротивления оказывались бесполезными, так как при замораживании ртути нить разрывалась, и все наши усилия становились напрасными. В этих условиях для того, чтобы обнаружить и исключить источники неожиданных и вводящих в заблуждение помех, требовалось очень большое время.

Кроме того, желательно было охлаждать образец не через стенку капилляра, а путем его прямого контакта с жидким гелием. Поэтому, когда Камерлинг-Оннес обнаружил, что олово и свинец обладают свойствами, сходными со свойствами ртути, он продолжил эксперименты с этими двумя металлами. Именно тогда поставленная проблема и была решена.

По существу, надежда на ее решение возникла уже при проведении опытов, в которых была обнаружена сверхпроводимость свинца. Из него можно было легко изготовить проволоку, и было сделано довольно большое количество провода с поперечным сечением 70 мм2. Для одиночного проводника такого размера пороговое значение тока при 4,25 К составляло 8 А. Далее этим проводом на сердечнике диаметром 1 см была намотана катушка длиной 1 см содержащая 1000 витков. Обмотка имела шелковую изоляцию, которая смачивается жидким гелием. Как оказалось, пороговое значение тока составляло лишь 0,8 А.

В 1913 г. интерес к получению сильных магнитных полей уже был достаточно велик, причем не вызывало сомнений, что основная проблема связана с рассеянием мощности в обмотке. Например, Перрен предложил использовать для охлаждения жидкий воздух; ожидалось, что благодаря уменьшению сопротивления обмотки с понижением температуры уменьшится количество выделяемого в ней тепла, что даст определенный выигрыш.

Расчеты показали, однако, что выигрыша таким путем не достичь, в первую очередь это обусловлено тем, что весьма трудно добиться требуемой теплопередачи между предположительно компактной катушкой и охладителем. Камерлииг-Ониес правильно оценил возможности использования с этой целью сверхпроводников, обратив внимание на то, что в них тепло вообще не должно выделяться. Говоря об этом, он, однако, допускал «возможность того, что магнитное поле может привести к возникновению сопротивления в сверхпроводнике». И он приступил к исследованию этого вопроса.

«Были причины предполагать, что этот эффект окажется слабым. Прямое доказательство того, что в сверхпроводниках под действием магнитного поля возникает лишь незначительное сопротивление, было получено, когда оказалось, что описанная выше катушка остается сверхпроводящей, если даже через нее проходит ток 0,8 А. Поле самой катушки достигало в этом случае нескольких сотен гаусс, и в поле такого порядка величины находилась большая часть витков, однако никакого сопротивления не наблюдалось». Поэтому Камерлинг-Оннес создал такую установку для проведения этих экспериментов, которая позволила бы изучать явления, наблюдаемые лишь в полях порядка килогаусс.

Результаты вновь оказались неожиданными. Сверхпроводящую свинцовую катушку, использованную в предшествующих опытах, помещали в криостат так, что плоскость витков была параллельна магнитному полю.

«Прежде всего мы убедились в Том, что катушка будет сверхпроводящей в точке кипения гелия; она оставалась сверхпроводящей и тогда, когда через нее пропускали ток 0,4 А, хотя витки находились в заметном магнитном поле, создаваемом протекающим в них током.

Затем было приложено магнитное поле. При величине поля 10 кГс существовало значительное сопротивление, при 5 кГс оно было несколько меньше. Эти опыты достаточно убедительно показали, что магнитное поле при большой интенсивности вызывает появление сопротивления в сверхпроводниках, а при малой - нет. В ходе дальнейших исследований была получена зависимость сопротивления от поля.

Камерлинг-Оннес еще не был готов к тому, чтобы связать критический ток с критическим значением магнитного поля. Он не имел никаких сомнений в том, что открытое здесь явление связано с внезапным возникновением при определенной температуре обычного сопротивления в сверхпроводниках - эту связь выяснили другие исследователи. Тем не менее можно было считать, что фундамент заложен.

С течением времени, однако, парадокс, описанный в начале этой главы, стал весьма очевидным. Небольшое изменение формулировки еще более усилило его. Если вещество, находясь в магнитном поле, должно было переходить в идеально проводящее состояние при понижении температуры, то пронизывающий образец магнитный поток в момент перехода должен был бы остаться «вмороженным» в него и сохраниться при последующем выключении поля (если температура при этом поддерживается неизменной).

Приготовив подобным образом различные образцы, можно было бы создать множество (в принципе бесконечное) различных состояний, существующих при одинаковых внешних условиях, которые, возможно, могли бы даже находиться в тепловом контакте друг с другом, т. е. в состоянии равновесия.

Вплоть до 1933 г. подобная возможность не была опровергнута экспериментально, а некоторые эксперименты, казалось, даже подтверждали ее. Существовали даже и теоретические соображения в ее пользу. И в этот момент Мейснер, изучая переход в сверхпроводящее состояние, был поражен появлением своеобразного гистерезиса: возврат монокристалла олова в нормальное состояние происходил при температуре, слегка превышающей температуру перехода в сверхпроводящее состояние.

Этот эффект наблюдался даже тогда, когда сопротивление в каждой точке измерялось при двух направлениях тока методом, специально разработанным для исключения термоэлектрических явлений, если направление тока не изменялось, эффект усиливался. Гистерезис наводил на мысль о том, что явление связано с изменением проницаемости образца.

Мейснер писал об этом так: «Если бы распределение измеряемого тока и созданного им магнитного поля не изменялось, не было бы основания для возникновения гистерезисных явлений». Поэтому он вместе со своими сотрудниками предположения, что его проницаемость падает до нуля. Если бы это вообще имело место, то ни одна силовая линия поля не могла бы кончаться на внутренней поверхности полости сверхпроводника, тогда как эксперименты с очевидностью показывают, что ситуация именно такова.

Прошло немало лет, прежде чем удалось создать удовлетворительную теорию сверхпроводимости; по существу, этот вопрос не был окончательно решен даже в 1972 г. Однако открытие Мейснера по крайней мере позволило дать удовлетворительную макроскопическую трактовку наблюдаемых явлений.

Дж. Тригг "Физика ХХ века: Ключевые эксперименты"

Сверхпроводимость – свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определённой критической температуры Т К, характерной для данного материала. Сверхпроводимость обнаружена у более чем 25 металлических элементов, у большого числа сплавов и интерметаллических соединений, а также у некоторых ПП и полимеров. Рекордно высоким значением Т К (около 23 К) обладает соединение Nb 3 Gе.

Основные явления . Скачкообразное исчезновение сопротивления ртути при понижении температуры впервые наблюдал голландский физик X. Камерлинг-Оннес (1911) (рисунок 8.1). Он пришёл к выводу, что ртуть при Т = 4,15 К переходит в новое состояние, которое было названо сверхпроводящим. Несколько позднее Камерлинг-Оннес обнаружил, что электрическое сопротивление ртути восстанавливается при Т < Т К в достаточно сильном магнитном поле.

Рисунок 8.1 – Зависимость сопротивления R от темп-ры Т для Hg и для Pt. Ртуть при Т=4,15 К переходит в сверхпроводящее

состояние. R 0°C – значение R при 0°С

Падение сопротивления до нуля происходит на протяжении очень узкого интервала температур, ширина которого для чистых образцов составляет 10 -3 –10 -4 К и возрастает при наличии примесей и других дефектов структуры.

Отсутствие сопротивления в сверхпроводя­щем состоянии с наибольшей убедительностью демонстрируется опы­тами, в которых в сверхпроводящем кольце возбуждается ток, практиче­ски не затухающий. В одном из вариантов опыта используются два кольца из сверхпроводящего металла. Большее из колец неподвижно закрепля­ется, а меньшее концентрически подвешивается на упругой нити таким образом, что когда нить не закручена, плоскости колец образуют между собой некоторый угол. Кольца охлаждаются в присутствии магнитного поля ниже температуры ТК, после чего поле выключается. При этом в кольцах возбуждаются токи, взаимодействие между которыми стремится уменьшить первоначальный угол между плоскостями колец. Нить закручивается, а наблюдаемое постоянство угла закручивания показывает, что токи в кольцах являются незатухающими. Опыты такого рода позволили установить, что сопротивление металла в сверхпроводящем состоянии меньше, чем 10 -20 Ом·см (сопротивление чистых образцов Си или Ag составляет около 10 -9 Ом∙см при температуре жидкого гелия). Однако сверхпроводник не является просто идеальным проводником, и позднее установили, что слабое магнитное поле не проникает в глубь сверхпроводника независимо от того, было ли поле включено до или после перехода металла в сверхпроводящее состояние. В отличие от этого, идеальный проводник (т. е. проводник с исчезающе малым сопротивлением) должен захватывать пронизывающий его магнитный поток (рисунок 8.2, а, б, в).

Рисунок 8.2 – Распределение магнитного поля около сверхпроводящего шара с исчезающим сопротивлением (идеальный проводник): а – при Т>Т К; б – при Т<Т К, внеш.поле Н ВН ≠0; в – при Т<Т К, Н = Н ВН

Выталкивание магнитного поля из сверхпроводящего образца (эффект Мейснера) означает, что в присутствии внешнего магнитного поля такой образец ведёт себя как идеальный диамагнетик той же формы с магнитной восприимчивостью η=1/4. В частности, если образец имеет форму длинного сплошного цилиндра, а внешнее поле Н однородно и параллельно оси цилиндра, то магнитный момент, отнесённый к единице объёма, М = –Н/4. Это примерно в 106 раз больше по абсолютной величине, чем для металла в нормальном состоянии. Эффект Мейснера связан с тем, что при Н < Н К в поверхностном слое (толщиной 10 -5 –10 -6 см) сверхпроводящего цилиндра появляется круговой незатухающий ток, сила которого как раз такова, что магнитное поле этого тока компенсирует внешнее поле в толще сверхпроводника.

Рисунок 8.3 – Схема образования электронных пар в сверхпроводящем металле

Физическая природа сверхпроводимости. Явление сверхпроводимости можно понять и обосновать только с помощью квантовых представлений. Почти полвека с момента открытия сущность этого явления оставалась неразгаданной из-за того, что методы квантовой механики еще не в полной мере использовались в физике твердого тела. Микроскопическая теория сверхпроводимости, объясняющая все опытные данные, была пред­ложена в 1957 г. американскими учеными Бардиным, Купером и Шриффером (теория БКШ). Значительный вклад в развитие теории сверхпроводимости внесли работы советского академика Н.Н. Боголюбова. Согласно установившимся представлениям, явление сверхпроводимости возникает в том случае, когда электроны в металле притягиваются друг к другу. При­тяжение электронов возможно только в среде, содержащей положительно заряженные ионы, поле которых ослабляет силы кулоновского отталкивания между электронами. Притягиваться могут лишь те электроны, которые принимают участие в электропроводности, т.е. расположенные вблизи уровня Ферми. Если такое притяжение имеет место, то электроны с противоположным направлением импульса и спина связываются в пары, называемые куперовскими. В образовании куперовских пар решающую роль играют взаимодействие электронов с тепловыми колебаниями решетки – фононами. В твердом теле электроны могут как поглощать, так и порождать фононы.

Мысленно представим себе следующий процесс: один из электронов, взаимодействуя с решеткой, переводит ее в возбужденное состояние и изменяет свой импульс; другой электрон, также взаимодействуя с решеткой, переводит ее в нормальное состояние и тоже изменяет свой импульс. В результате состояние решетки не изменяется, а электроны обмениваются квантами тепловой энергии – фононами. Обменное фононное взаимодействие и вызывает силы притяжения между электронами, которые превосходят силы кулоновского отталкивания. Обмен фононами при участии решетки происходит непрерывно. В упрощенном виде обменное фононное взаимодействие проиллюстрировано схемой (рисунок 8.3). Электрон, движущийся среди положительно заряженных ионов, поляризует решетку, т. е. электростатическими силами притягивает к себе ближайшие ионы. Благодаря такому смещению ионов в окрестности траектории электрона локально возрастает плотность положительного заряда. Второй электрон, движущийся вслед за первым, естественно, может притягиваться областью с избыточным положительным зарядом. В результате косвенным образом, за счет взаимодействия с решеткой, между электронами 1 и 2 возникают силы притяжения. Второй электрон становится партнером первого – образуется куперовская пара. Поскольку силы притяжения невелики, спаренные электроны слабо локализованы в пространстве. Эффективный диаметр куперовской пары имеет порядок 10-7 м, т. е. охватывает тысячи элементарных ячеек. Эти парные образования перекрывают друг друга, постоянно распадаются и вновь создаются, но в целом все пары образуют электронный конденсат, энергия которого за счет внутреннего взаимодействия меньше, чем у совокупности разобщенных нормальных электронов. Вследствие этого в энергетическом спектре сверхпроводника появляется энергетическая щель ΔД – область запрещенных энергетических состояний (рисунок 8.4). Спаренные электроны располагаются на дне энергетической щели. Грубая оценка показывает, что количество таких электронов составляет около 10-4 от общего их числа.

Рисунок 8.4 – Распределение электронов по энергиям в металле

Размер энергетической щели зависит от температуры, достигая максимального значения при абсолютном нуле и полностью исчезая при Т = Тсв. Теория БКШ дает следующую связь ширины щели с критической температурой перехода

(8.1)

Формула (8.1) достаточно хорошо подтверждается экспериментально. Для большинства сверхпроводников энергетическая щель составляет 10-4–10-3 эВ.

Как было показано, электрическое сопротивление металла обусловлено рассеянием электронов на тепловых колебаниях решетки и на примесях. Однако при наличии энергетической щели для перехода электронов из основного состояния в возбужденное требуется достаточная порция тепловой энергии, которую при низких температурах электроны не могут получить от решетки, поскольку энергия тепловых колебаний меньше ширины щели. Именно поэтому спаренные электроны не рассеиваются на дефектах структуры. Особенностью куперовских пар является их импульсная упорядоченность, состоящая в том, что все пары имеют одинаковый импульс и не могут изменять свои состояния независимо друг от друга.

Электронные волны, описывающие движение пар, имеют одинаковые длину и фазу. Фактически движение всех электронных пар можно рассматривать как распространение одной электронной волны, которая не рассеивается решеткой, «обтекает» дефекты структуры. Такая согласованность в поведении пар обусловлена высокой мобильностью электронного конденсата: непрерывно меняются наборы пар, происходит постоянная смена партнеров. При абсолютном нуле все электроны, расположенные вблизи уровня Ферми, связаны в пары. С повышением температуры за счет тепловой энергии происходит разрыв некоторой части электронных пар, вследствие чего уменьшается ширина щели. Движение неспаренных электронов, переходящих с основных уровней на возбужденные, затрудняется рассеянием на дефектах решетки. При температуре Т = Тсв происходит полный разрыв всех пар, ширина щели обращается в нуль, сверхпроводимость исчезает.

Переход вещества в сверхпроводящее состояние при его охлаждении происходит в очень узком интервале температур (сотые доли градуса). Неоднородности структуры, создаваемые примесями, искажениями решетки, границами зерен, не приводят к уничтожению сверхпроводимости, а вызывают лишь расширение температурного интервала перехода из одного состояния в другое (рисунок 8.5). Электроны, ответственные за создание сверхпроводимости, не обмениваются энергией с решеткой.

Поэтому при температуре ниже критической наблюдается существенное уменьшение теплопроводности металлов.

Рисунок 8.5

1 – монокристалл; 2 – поликристалл;

Магнитные свойства сверхпроводников. Важнейшая особенность сверхпроводников состоит в том, что внешнее магнитное поле совершенно не проникает в толщу образца, затухая в тончайшем слое.

Силовые линии магнитного поля огибают сверхпроводник. Это явление, получившее название эффекта Мейснера, обусловлено тем, что в поверхностном слое сверхпроводника при его внесении в магнитное поле возникает круговой незатухающий ток, который полностью компенсирует внешнее поле в толще образца. Глубина, на которую проникает магнитное поле, обычно составляет 10-7–10-8 м. Таким образом, сверхпроводники по магнитным свойствам являются идеальными диамагнетиками с магнитной проницаемостью μ = 0. Как всякие диамагнетики, сверхпроводники выталкиваются из магнитного поля. При этом эффект выталкивания выражен столь сильно, что открываются возможности удерживать груз в пространстве с помощью магнитного поля. Аналогичным образом можно заставить висеть постоянный магнит над кольцом из сверхпроводящего материала, в котором циркулируют индуцированные магнитом незатухающие токи (опыт В. К. Аркадьева). Состояние сверхпроводимости может быть разрушено, если напряженность магнитного поля превысит некоторое критическое значение НСВ. По характеру перехода материала из сверхпроводящего состояния в состояние обычной электропроводности под действием магнитного поля различают сверхпроводники I и II рода. У сверхпроводников I рода этот переход происходит скачкообразно, как только напряженность поля достигнет критического значения. Кривая намагничивания таких материалов показана на рисунке 2 13. Сверхпроводники II рода переходят из одного состояния в другое постепенно; для них различают нижнюю НСВ1 и верхнюю НСВ2 критические напряженности поля. В интервале между ними материал находится в промежуточном гетерогенном состоянии, в котором сосуществуют нормальная и сверхпроводящая фазы. Соотношение между их объемами зависит от Н. Таким образом, магнитное поле постепенно проникает в сверхпроводник II рода (рисунок 8.7). Однако материал сохраняет нулевое сопротивление вплоть до верхней критической напряженности поля.

Рисунок 8.6 Зависимость изменения магнитной индукции внутри сверхпроводника от напряженности внешнего магнитного поля: а – сверхпроводник I рода; б – сверхпроводник II рода

Рисунок 8.7 – Температурные зависимости критической напряженности поля для свинца и белого олова (а ); качественные фазовые диаграммы для сверхпроводников I(б ) и II(в ) рода: Св – сверхпроводящее состояние; См – смешанное состояние; П – проводящее нормальное состояние

Критическая напряженность магнитного поля зависит от температуры. При Т = ТСВ она обращается в нуль, но монотонно возрастает при стремлении температуры к ОК. Для сверхпроводников I рода температурная зависимость НСВ в хорошем приближении описывается выражением

где Н СВ (0) – напряженность критического поля при температуре абсолютного нуля. Иллюстрацией зависимости (8.2.) служат кривые на рисунке 8.7, а. Различия в свойствах сверхпроводников I и II рода подчеркивают фазовые диаграммы, показанные на рисунке 8.7,б,в. Область промежуточного (смешанного) состояния, существующая у сверхпроводников II рода, расширяется при понижении температуры. Различие между НСВ1 и НСВ2 может быть в сотни раз. Критическая напряженность магнитного поля для сверхпроводников I рода составляет приблизительно 105 А/м, а у сверхпроводников II рода значение верхней критической напряженности может превышать 107 А/м. Сверхпроводимость может быть разрушена не только внешним магнитным полем, но и током, проходящим по сверхпроводнику, если он превышает некоторое критическое значение I СВ. Для сверхпроводников I рода предельная плотность тока ограничивается достижением на поверхности образца критической напряженности магнитного поля. В случае длинной прямолинейной проволоки круглого сечения радиуса r предельный ток определяется формулой

(8.3)

Поскольку в сверхпроводящих элементах ток проходит в тонком поверхностном слое, средняя плотность тока, отнесенная ко всему поперечному сечению, уменьшается с увеличением диаметра провода. Для сверхпроводников II рода соотношение (8.3) не выполняется и связь между IСВ и IIСВ носит более сложный характер.

Сверхпроводящие материалы. Явление сверхпроводимости при криогенных температурах достаточно широко распространено в природе. Сверхпроводимостью обладают 26 металлов. Большинство из них являются сверхпроводниками I рода с критическими температурами перехода ниже 4,2 К. В этом заключается одна из причин того, что большинство сверхпроводящих металлов для электротехнических целей применить не удается. Еще 13 элементов проявляют сверхпроводящие свойства при высоких давлениях. Среди них такие полупроводники, как кремний, германий, селен, теллур, сурьма и др. Следует заметить, что сверхпроводимостью не обладают металлы, являющиеся наилучшими проводниками в нормальных условиях. К ним относятся золото Au, медь Cu, серебро Ag. Малое сопротивление этих материалов указывает на слабое взаимодействие электронов с решеткой. Такое слабое взаимодействие не создает вблизи абсолютного нуля достаточного межэлектронного притяжения, способного преодолеть кулоновское отталкивание. Поэтому и не происходит их переход в сверхпроводящее состояние.

Кроме чистых металлов сверхпроводимостью обладают многие интерметаллические соединения и сплавы. Общее количество наименований известных в настоящее время сверхпроводников составляет около 2000. Среди них самыми высокими критическими параметрами обладают сплавы и соединения ниобия Nb (таблица 8.1 и таблица 8.2). Некоторые из них позволяют использовать для достижения сверхпроводящего состояния вместо жидкого гелия более дешевый хладагент – жидкий водород.

Несмотря на то, что принципиальные причины возникновения сверхпроводимости твёрдо установлены, современная теория не даёт возможности рассчитать значения Тк или Нк для известных сверхпроводников или предсказать их для нового сверхпроводящего сплава. Однако ряд эмпирических закономерностей – правил Маттиаса (1955) – позволяет определить направление поисков сплавов с высокими Тк и Нк.

Таблица 8.1

Таблица 8.2 - Значения критических параметров сверхпроводников

Все интерметаллические соединения и сплавы относятся к сверхпроводникам II рода. Однако деление веществ по их сверхпроводящим свойствам на два вида не является абсолютным. Любой сверхпроводник I рода можно превратить в сверхпроводник II рода, если создать в нем достаточную концентрацию дефектов кристаллической решетки. Например, у чистого олова Тсв = 3,7 К, но если вызвать в олове резко неоднородную механическую деформацию, то критическая температура возрастет до 9 К, а критическая напряженность магнитного поля увеличится в 70 раз.

Сверхпроводимость никогда не наблюдается в системах, в которых существует ферро- или антиферромагнетизм. Образованию сверхпроводящего состояния в полупроводниках препятствует малая концентрация свободных электронов. Однако в материалах с большой диэлектрической проницаемостью силы кулоновскою отталкивания между электронами в значительной мере ослаблены. Поэтому некоторые из них также проявляют свойства сверхпроводников при низких температурах. Примером может служить титанат стронция (SrTiO3), относящийся к группе сегнетоэлектриков. Ряд полупроводников удается перевести в сверхпроводящее состояние добавкой большой концентрации легирующих примесей (GeTe, SnTe, CuS и др.).

В настоящее время промышленность выпускает широкий ассортимент сверхпроводящих проволок и лент для самых различных целей. Изготовление таких проводников связано с большими технологически ми трудностями. Они обусловлены плохими механическими свойствами многих сверхпроводников, их низкой теплопроводностью и сложной структурой проводов. Особенно большой хрупкостью отличаются интерметаллические соединения с высокими критическими параметрами. Поэтому вместо простых проволок и лент приходится создавать композиции из двух (обычно сверхпроводник с медью) и даже нескольких металлов. Для получения многожильных проводов из хрупких интерметаллов особенно перспективен бронзовый метод (или метод твердофазной диффузии), освоенный промышленностью. По этому методу прессованием и волочением создается композиция из тонких нитей ниобия в матрице из оловянной бронзы. При нагреве олово Sn из бронзы диффундирует в ниобий Nb, образуя на его поверхности тонкую сверхпроводящую пленку станнида ниобия Nb 3 Sn. Такой жгут может изгибаться, но пленки остаются целыми.

Применение сверхпроводников в различных областях науки техники . Сверхпроводящие элементы и устройства находят все более широкое применение в самых различных областях науки и техники. Разработаны крупномасштабные долгосрочные программы промышленного использования сильноточной сверхпроводимости.

Одно из главных применений сверхпроводников связано с получением сверхсильных магнитных полей. Сверхпроводящие соленоиды позволяют получать однородные магнитные поля напряженностью свыше 107 А/м в достаточно большой области пространства, в то время как пределом обычных электромагнитов с железными сердечниками являются напряженности порядка 106 А/м. К тому же в сверхпроводящих магнитных системах циркулирует незатухающий ток, поэтому не требуется внешний источник питания. Сильные магнитные поля необходимы при проведении научных исследований. Сверхпроводящие соленоиды позволяют в значительной мере уменьшить габариты и потребление энергии в синхрофазотронах и других ускорителях элементарных частиц. Перспективно использование сверхпроводящих магнитных систем для удержания плазмы в реакторах управляемого термоядерного синтеза, в магнитогидродинамических (МГД) преобразователях тепловой энергии в электрическую, в качестве индуктивных накопителей энергии для покрытия пиковых мощностей в масштабах крупных энергосистем. Широкое развитие получают разработки электрических машин со сверхпроводящими обмотками возбуждения. Применение сверхпроводников позволяет исключить из машин сердечники из электротехнической стали, благодаря чему уменьшаются в 5 – 7 раз их масса и габариты при сохранении мощности. Экономически обосновано создание сверхпроводящих трансформаторов, рассчитанных на высокий уровень мощности (десятки-сотни мегаватт). Значительное внимание в разных странах уделяют разработке сверхпроводящих линий электропередач на постоянном и переменном токах. Разработаны опытные образцы импульсных сверхпроводящих катушек для питания плазменных пушек и систем накачки твердотельных лазеров. В радиотехнике начинают использовать сверхпроводящие объемные резонаторы, обладающие, благодаря ничтожно малому электрическому сопротивлению, очень высокой добротностью.

Сверхпроводимость

Сверхпроводи́мость - свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура). Известны несколько десятков чистых элементов, сплавов и керамик , переходящих в сверхпроводящее состояние. Сверхпроводимость - квантовое явление . Оно характеризуется также эффектом Мейснера , заключающимся в полном вытеснении магнитного поля из объема сверхпроводника. Существование этого эффекта показывает, что сверхпроводимость не может быть описана просто как идеальная проводимость в классическом понимании.

В 1893 году проблемой сверхнизких температур стал заниматься голландский физик Хейке Камерлинг-Оннес . Ему удалось создать лучшую в мире криогенную лабораторию, в которой 10 июля 1908 года им был получен жидкий гелий . Позднее ему удалось довести его температуру до 1 Кельвина . Камерлинг-Оннес использовал жидкий гелий для изучения свойств металлов , в частности, для измерения зависимости их электрического сопротивления от температуры. Согласно существовавшим тогда классическим теориям, сопротивление должно было плавно падать с уменьшением температуры, однако существовало также мнение, что при слишком низких температурах электроны практически остановятся и совсем перестанут проводить ток. Эксперименты, проводимые Камерлингом-Оннесем со своими ассистентами Корнелисом Дорсманом и Гиллесом Хольстом, вначале подтверждали вывод о плавном спадании сопротивления. Однако 8 апреля 1911 года он неожиданно обнаружил, что при 3 Кельвинах (около −270 °C) электрическое сопротивление практически равно нулю. Следующий эксперимент, проведённый 11 мая, показал, что резкий скачок сопротивления до нуля происходит при температуре около 4,2 К (позднее, более точные измерения показали, что эта температура равна 4,15 К). Этот эффект был совершенно неожиданным и не мог быть объяснён существовавшими тогда теориями.

Нулевое сопротивление - не единственная отличительная черта сверхпроводников. Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера , открытый Вальтером Мейснером и Робертом Оксенфельдом в 1933 году .

Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I типа (к ним, в частности, относится ртуть) и II типа (которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы Л. В. Шубникова в 1930-е годы и А. А. Абрикосова в 1950-е.

Для практического применения в мощных электромагнитах большое значение имело открытие в 1950-х годах сверхпроводников, способных выдерживать сильные магнитные поля и пропускать большие плотности тока . Так, в 1960 году под руководством Дж. Кюнцлера был открыт материал Nb 3 Sn, проволока из которого способна при температуре 4,2 К, находясь в магнитном поле величиной 8,8 Тл , пропускать ток плотностью до 100 кА/см².

Свойства сверхпроводников

Нулевое электрическое сопротивление

Сверхпроводники в высокочастотном поле

Строго говоря, утверждение о том, что сопротивление сверхпроводников равно нулю справедливо только для постоянного электрического тока . В переменном электрическом поле сопротивление сверхпроводника отлично от нуля и растёт с увеличением частоты поля. Этот эффект на языке двухжидкостной модели сверхпроводника объясняется наличием наравне со сверхпроводящей фракцией электронов также и обычных электронов, число которых, однако, невелико. При помещении сверхпроводника в постоянное поле, это поле внутри сверхпроводника обращается в нуль, поскольку иначе сверхпроводящие электроны ускорялись бы до бесконечности, что невозможно. Однако в случае переменного поля поле внутри сверхпроводника отлично от нуля и ускоряет в том числе и нормальные электроны, с которыми связаны и конечное электрическое сопротивление, и джоулевы тепловые потери. Данный эффект особо ярко выражен для таких частот света, для которых энергии кванта достаточно для перевода сверхпроводящего электрона в группу нормальных электронов. Эта частота обычно лежит в инфракрасной области (около 10 11 Гц), поэтому в видимом диапазоне сверхпроводники практически ничем не отличаются от обычных металлов .

Фазовый переход в сверхпроводящее состояние

Характер изменения теплоемкости (c v , синий график) и удельного сопротивления (ρ, зеленый), при фазовом переходе в сверхпроводящее состояние

Температурный интервал перехода в сверхпроводящее состояние для чистых образцов не превышает тысячных долей Кельвина и поэтому имеет смысл определённое значение Т с - температуры перехода в сверхпроводящее состояние. Эта величина называется критической температурой перехода . Ширина интервала перехода зависит от неоднородности металла, в первую очередь - от наличия примесей и внутренних напряжений. Известные ныне температуры Т с изменяются в пределах от 0,0005 К у магния (Mg) до 23,2 К у интерметаллида ниобия и германия (Nb 3 Ge, в плёнке) и 39 К у диборида магния ( 2) у низкотемпературных сверхпроводников (Т с ниже 77 К, температуры кипения жидкого азота), до примерно 135 К у ртутьсодержащих высокотемпературных сверхпроводников. В настоящее время фаза HgBa 2 Ca 2 Cu 3 O 8+d (Hg−1223) имеет наибольшее известное значение критической температуры - 135 К, причем при внешнем давлении 350 тысяч атмосфер температура перехода возрастает до 164 К, что лишь на 19 К уступает минимальной температуре, зарегистрированной в природных условиях на поверхности Земли. Таким образом, сверхпроводники в своём развитии прошли путь от металлической ртути (4.15 К) к ртутьсодержащим высокотемпературным сверхпроводникам (164 К).

Переход вещества в сверхпроводящее состояние сопровождается изменением его тепловых свойств. Однако, это изменение зависит от рода рассматриваемых сверхпроводников. Так, для сверхпроводников Ι рода в отсутствие магнитного поля при температуре перехода Т c теплота перехода (поглощения или выделения) обращается в нуль, а следовательно терпит скачок теплоёмкость , что характерно для фазового перехода ΙΙ рода . Такая температурная зависимость теплоемкости электронной подсистемы сверхпроводника свидетельствует о наличии энергетической щели в распределении электронов между основным состоянием сверхпроводника и уровнем элементарных возбуждений. Когда же переход из сверхпроводящего состояния в нормальное осуществляется изменением приложенного магнитного поля, то тепло должно поглощаться (например, если образец теплоизолирован, то его температура понижается). А это соответствует фазовому переходу Ι рода. Для сверхпроводников ΙΙ рода переход из сверхпроводящего в нормальное состояние при любых условиях будет фазовым переходом ΙΙ рода.

Эффект Мейснера

Даже более важным свойством сверхпроводника, чем нулевое электрическое сопротивление, является так называемый эффект Мейснера , заключающийся в выталкивании сверхпроводником магнитного потока . Из этого экспериментального наблюдения делается вывод о существовании незатухающих токов внутри сверхпроводника, которые создают внутреннее магнитное поле, противоположно направленное внешнему, приложенному магнитному полю и компенсирующее его.

Изотопический эффект

Изотопический эффект у сверхпроводников заключается в том, что температуры Т с обратно пропорциональны квадратным корням из атомных масс изотопов одного и того же сверхпроводящего элемента .

Момент Лондона

Вращающийся сверхпроводник генерирует магнитное поле , точно выровненное с осью вращения, возникающий магнитный момент получил название «момент Лондона». Он применялся, в частности, в научном спутнике «Gravity Probe B », где измерялись магнитные поля четырёх сверхпроводящих гироскопов , чтобы определить их оси вращения. Поскольку роторами гироскопов служили практически идеально гладкие сферы , использование момента Лондона было одним из немногих способов определить их ось вращения .

Теоретическое объяснение эффекта сверхпроводимости

Уже на относительно ранней стадии изучения сверхпроводимости, во всяком случае после создания теории Гинзбурга - Ландау , стало очевидно, что сверхпроводимость является следствием объединения макроскопического числа электронов проводимости в единое квантово-механическое состояние. Особенностью связанных в такой ансамбль электронов является то, что они не могут обмениваться энергией с решёткой малыми порциями, меньшими, чем их энергия связи в ансамбле. Это означает, что при движении электронов в кристаллической решётке не изменяется энергия электронов, и вещество ведёт себя как сверхпроводник с нулевым сопротивлением. Квантово-механическое рассмотрение показывает, что при этом не происходит рассеяния электронных волн на тепловых колебаниях решётки или примесях. А это и означает отсутствие электрического сопротивления. Такое объединение частиц невозможно в ансамбле фермионов. Оно характерно для ансамбля тождественных бозонов. То, что электроны в сверхпроводниках объединены в бозонные пары, следует из экспериментов по измерению величины кванта магнитного потока, который «замораживается» в полых сверхпроводящих цилиндрах. Поэтому уже в середине прошлого века основной задачей создания теории сверхпроводимости стала разработка механизма спаривания электронов. Первой теорией, претендующей на микроскопическое объяснение причин возникновения сверхпроводимости, была теория Бардина - Купера - Шриффера , созданная ими в 50-е годы прошлого столетия. Эта теория получила под именем БКШ всеобщее признание и была удостоена в 1972 году Нобелевской премии . При создании своей теории авторы опирались на изотопический эффект, то есть влияние массы изотопа на критическую температуру сверхпроводника. Считалось, что его существование прямо указывает на формирование сверхпроводящего состояния за счет работы фононного механизма.

Теория БКШ оставила без ответа некоторые вопросы. На её основе оказалось невозможно решить главную задачу - объяснить, почему конкретные сверхпроводники имеют ту или иную критическую температуру. К тому же дальнейшие эксперименты с изотопическими замещениями показали, что из-за ангармоничности нулевых колебаний ионов в металлах существует прямое воздействие массы иона на межионные расстояния в решетке, а значит и прямо на значение энергии Ферми металла. Поэтому стало понятно, что существование изотопического эффекта не является доказательством фононного механизма, как единственно возможного ответственного за спаривание электронов и возникновение сверхпроводимости. Неудовлетворенность теорией БКШ в более поздние годы привела к попыткам создать другие модели, например, модель спиновых флуктуаций и биполяронную модель. Однако, хотя в них рассматривались различные механизмы объединения электронов в пары, к прогрессу в понимании явления сверхпроводимости эти разработки тоже не привели.

Сравнение вычисленных значений критических температур сверхпроводников с данными измерений.

Согласно одной из последних теорий, предложенной Б. В. Васильевым, спаривание электронов является необходимым, но недостаточным условием для существования сверхпроводящего состояния. Более того, какой конкретно механизм приводит к такому спариванию - не так уж важно. Важно, чтобы такой механизм существовал и был работоспособным во всем диапазоне температуры, где существует сверхпроводящее состояние.

Причина этого объясняется следующим образом: объединившись в пары, электроны создают бозоны, не объединенные в единый тождественный ансамбль. Их различают некоррелированные нулевые колебания. Для перехода бозонов в тождественное состояние необходимо упорядочить их нулевые колебания. По этой причине параметры, характеризующие механизм упорядочения нулевых колебаний в электронном газе, оказываются определяющими для свойств сверхпроводников.

Применение сверхпроводимости

Достигнуты значительные успехи в получении высокотемпературной сверхпроводимости . На базе металлокерамики, например, состава YBa 2 Cu 3 O x , получены вещества, для которых температура Т c перехода в сверхпроводящее состояние превышает 77 К (температуру сжижения азота).

Явление сверхпроводимости используется для получения сильных магнитных полей, поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются т. н. сверхпроводники II рода, в которых возможно сосуществование сверхпроводимости и магнитного поля. В таких сверхпроводниках магнитное поле вызывает появление тонких нитей нормального металла, пронизывающих образец, каждая из которых несёт квант магнитного потока. Вещество же между нитями остаётся сверхпроводящим. Поскольку в сверхпроводнике II рода нет полного эффекта Мейснера, сверхпроводимость существует до гораздо больших значений магнитного поля H c 2 . В технике применяются, в основном, следующие сверхпроводники:

См. также

  • Сверхпроводимость и нулевые колебания

Примечания

  1. Dirk van Delft and Peter Kes The discovery of superconductivity (англ.) // Physics Today . - 2010. - Vol. 63. - С. 38-43.
  2. Алексей Левин Сверхпроводимость отмечает столетний юбилей . Элементы.ру (8 апреля 2011). Архивировано из первоисточника 23 августа 2011. Проверено 8 апреля 2011.
  3. В. Л. Гинзбург , Е. А. Андрюшин Глава 1. Открытие сверхпроводимости // Сверхпроводимость ISBN 5-98281-088-6
  4. В. Л. Гинзбург , Е. А. Андрюшин Глава 5. Звезда сверхпроводимости // Сверхпроводимость . - 2-е издание, переработанное и дополненное. - Альфа-М, 2006. - 112 с. - 3000 экз. -