Как решать задания на вероятность огэ. Материал для подготовки к ЕГЭ (ГИА) по алгебре (9 класс) на тему: Готовимся к ОГЭ

События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).

Зачем нужна теория вероятности

Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.

Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.

В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.

Основные понятия теории вероятности

Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.

Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.

Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.

События А и В называется несовместными, если они не могут произойти одновременно.

Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом .

Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом .

Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.

Важным частным случаем является ситуация, когда имеется равновероятных элементарных исходов, и произвольные из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле . Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.

Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов , прямо в условии написано число всех исходов .

Ответ получаем по формуле .

Пример задачи из ЕГЭ по математике по определению вероятности

На столе лежат 20 пирожков — 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?

Решение.

Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть , где А — это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:

Независимые, противоположные и произвольные события

Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.

События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.

Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. .

Теоремы сложения и умножения вероятностей, формулы

Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. .

Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае .

Последние 2 утверждения называются теоремами сложения и умножения вероятностей.

Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.

Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого - 3, для пятого - 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение , которое обозначается символом 6! и читается «шесть факториал».

В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов В нашем случае .

Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение .

В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам

В нашем случае .

И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго - 5 способами, третьего - четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: . В общем случае ответ на этот вопрос дает формула для числа сочетаний из элементов по элементам:

В нашем случае .

Примеры решения задач из ЕГЭ по математике на определение вероятности

Задача 1. Из сборника под ред. Ященко.

На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

.

Ответ: 0,3.

Задача 2. Из сборника под ред. Ященко.

В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.

Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:

Ответ: 0,98.

Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.

Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие «У. верно решит ровно 9 задач» входит в условие «У. верно решит больше 8 задач», но не относится к условию «У. верно решит больше 9 задач».

Однако, условие «У. верно решит больше 9 задач» содержится в условии «У. верно решит больше 8 задач». Таким образом, если мы обозначим события: «У. верно решит ровно 9 задач» — через А, «У. верно решит больше 8 задач» — через B, «У. верно решит больше 9 задач» через С. То решение будет выглядеть следующим образом:

Ответ: 0,06.

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме «Тригонометрия», либо к теме «Внешние углы». По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:

Ответ: 0,35.

Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.

Тогда укажем варианты таких событий. Примем обозначения: — лампочка горит, — лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события «лампочка перегорела», «лампочка горит», «лампочка горит»: , где вероятность события «лампочка горит» подсчитывается как вероятность события, противоположного событию «лампочка не горит», а именно: .

Легкие задания

На столе лежит 25 пирожков: 7 – с повидлом, 9 – с картошкой, остальные с капустой. Какова вероятность, что случайно выбранный пирожок окажется с капустой?

0,36

В такси работает 40 автомобилей: 14 – марки “Лада”, 8 – марки “Рено”, 2 – марки “Мерседес”, а остальные – марки “Шкода”. Какова вероятность того, что на Ваш вызов приедет “Мерседес”?

0,05

Определите вероятность того, что при бросании игрального кубика выпадет число не меньше трех.

Ира, Дима, Вася, Наташа и Андрей сдают норматив по бегу на 60 метров. Найдите вероятность того, что быстрее всех пробежит девочка?

Вероятность того, что телефон, купленный в подземном переходе окажется подделкой, составляет 0,83. Какова вероятность того, что купленный в переходе телефон окажется не подделкой?

0,17

В баскетбольном турнире принимает участие 20 команд, включая команду “Мужики”. Все команды разбивают на 4 группы: A, B, C, D. Какова вероятность того, что команда “Мужики” окажется в группе A?

0,25

В лотерейном мешке содержатся бочонки с номерами от 5 до 94 включительно. Какова вероятность, того, что извлеченный из мешка бочонок содержит двузначное число? Ответ округлите до сотых.

0,94

Перед экзаменом Игорь дотянул до последнего и успел выучить только 5 билетов из 80. Определите вероятность того, что ему попадется выученный билет.

0,0625

Аня включает радио и случайным образом выбирает радиоволну. Всего ее радиоприемник ловит 20 радиоволн и всего на 7 из них в данный момент играет музыка. Най­ди­те ве­ро­ят­ность того, что Аня попадет на музыкальную волну.

0,35

В каждой двадцатой бутылке газировки под крышкой спрятан код с выигрышем. Определите вероятность того, что в купленной бутылке под крышкой окажется выигрышный код.

0,05

Задания посложнее

Какова вероятность, что случайно выбранное трехзначное число делится на 5?

0,2

Записан рост (в см) пяти учащихся: 166, 158, 132, 136, 170. На сколько отличается среднее арифметическое этого набора чисел от его медианы?

По статистическим данным одной небольшой страны известно, что вероятность того, что родившийся младенец окажется мальчиком, равна 0,507. В 2017 г. в этой стране на 1000 родившихся младенцев в среднем пришлось 486 девочек. Насколько частота рождения девочек в 2017 г. в этой стране отличается от вероятности этого события?

0,007

Игральную кость бросают дважды. Найдите вероятность того, что сумма двух выпавших чисел равна 3 или 7. Ответ округлите до сотых.

0,22

Какова вероятность, что случайно выбранное трехзначное число делится на 2?

0,5

Найдите вероятность того, что при двух бросках монетки решка выпадет ровно 1 раз.

0,5

Игральную кость бросают дважды, найдите вероятность того, что оба раза выпадет число, не меньше трех. Ответ округлите до сотых.

0,31

По статистическим данным одной небольшой страны известно, что вероятность того, что родившийся младенец окажется мальчиком, равна 0,594. В 2017 г. в этой стране на 1000 родившихся младенцев в среднем пришлось 513 девочек. Насколько частота рождения девочек в 2017 г. в этой стране отличается от вероятности этого события?

0,107

Записан рост (в см) пяти учащихся: 184, 145, 176, 192, 174. На сколько отличается среднее арифметическое этого набора чисел от его медианы?

1,8

Средний рост жителей деревни “Великаны” составляет 194 см. Рост Николая Петровича составляет 195 см. Какое из следующих утверждений верно?

1) Обязательно рост одного из жителей деревни равен 194 см.

2) Николай Петрович самый высокий житель деревни.

3) Обязательно найдется хоть один мужчина из этой деревни ниже Николая Петровича.

4) Обязательно найдется хоть один житель из этой деревни ниже Николая Петровича.

4

Сложные задания

Стрелок 4 раза стреляет из ружья по мишеням. Вероятность его точного попадания в мишень при одном выстреле равна 0,5. Найдите вероятность того, что стрелок первые два раза попал в мишень, а последние два раза промахнулся.

0,0625

Вероятность того, что батарейка бракованная, равна 0,05. Покупатель в магазине выбирает случайную упаковку с двумя батарейками. Найдите вероятность того, что обе батарейки окажутся исправными.

0,9025

Стрелок стреляет по мишеням 5 раз подряд. Вероятность попадания в мишень при выстреле равна 0,7. Найдите вероятность того, что стрелок первые четыре раза попал в мишени, а последний раз промахнулся. Результат округлите до сотых.

В предлагаемой книге, состоящей из двух частей, подробно рассмотрены основные понятия, относящиеся к теории вероятностей и математической статистике, детально, по шагам разобраны решения задач, которые обычно предлагаются в КИМ на ОГЭ. Кроме того, подробно, на примерах излагаются простейшие понятия комбинаторики (комбинаторные числа для числа перестановок, размещений и сочетаний без повторений). С такой же подробностью ведётся изложение основных положений математической статистики, показаны на примерах отличия выборочного среднего от моды и медианы и дано пояснение, в каких случаях какое из этих средних нужно использовать.
Назначение пособия - отработка практических навыков учащихся по подготовке к экзамену (в новой форме) в 9 классе по математике. В сборнике даны ответы на все варианты заданий.
Пособие предназначено учителям и методистам, использующим тесты для подготовки к Основному государственному экзамену, оно также может быть использовано учащимися для самоподготовки и самоконтроля.

Примеры.
Телевизор у Марины сломался и показывает только один случайный канал. Марина включает телевизор. В это время по восьми каналам из пятидесяти показывают кинокомедии. Найдите вероятность того, что Марина попадет на канал, где комедия не идет.

В чемпионате по гимнастике участвуют 40 спортсменок: 12 из Аргентины, 9 из Бразилии, остальные - из Парагвая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Парагвая.

В соревнованиях по толканию ядра участвуют 4 спортсмена из Аргентины, 7 спортсменов из Бразилии, 10 спортсменов из Парагвая и 4 - из Уругвая. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, который выступает последним, окажется из Парагвая.

Научная конференция проводится в 5 дней. Всего запланировано 75 докладов - первые три дня по 11 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?

СОДЕРЖАНИЕ
Введение
Часть I. Задачи по теории вероятностей
1. Понятие вероятности
2. Классическое определение вероятности
3. Применение классического определения вероятности
3.1. Правило суммы
3.2. Правило произведения
3.3. Задачи на вычисление вероятностей
4. Статистический метод
4.1. Статистическое определение вероятности
4.2. Задачи на вычисление вероятностей
5. Использование комбинаторных чисел
5.1. Перестановки без повторений
5.2. Задачи, в которых используется формула для числа перестановок без повторений
5.3. Размещения без повторений
5.4. Сочетания без повторений
5.5. Выбор пары
5.6. Дополнительные задачи
Часть II. Элементы статистики, таблицы, обработка данных
1. Статистические характеристики
2. Задачи о среднем арифметическом и медиане
3. Выбор статистической характеристики для оценки явления
4. Задания на вычисление вероятностей и статистических характеристик
Ответы.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу ОГЭ 2017, Математика, Теория вероятностей и элементы статистики, Рязановский А.Р., Мухин Д.Г. - fileskachat.com, быстрое и бесплатное скачивание.

  • ОГЭ 2019, Математика, Сборник экзаменационных тестов, Рязановский А.Р., Мухин Д.Г.
  • ОГЭ 2018, Математика, Сборник экзаменационных тестов, Рязановский А.Р., Мухин Д.Г.
  • ОГЭ 2017, Математика, 9 класс, Сборник экзаменационных тестов, Рязановский А.Р., Мухин Д.Г.
  • ОГЭ 2016, Математика, 9 класс, Сборник экзаменационных тестов, Рязановский А.Р., Мухин Д.Г., 2016

Следующие учебники и книги.

ОГЭ 2017. Математика. Теория вероятностей и элементы статистики. Рязановский А.Р., Мухин Д.Г.

М.: 2017. - 48 с.

В предлагаемой книге, состоящей из двух частей, подробно рассмотрены основные понятия, относящиеся к теории вероятностей и математической статистике, детально, по шагам разобраны решения задач, которые обычно предлагаются в КИМ на ОГЭ. Кроме того, подробно, на примерах излагаются простейшие понятия комбинаторики (комбинаторные числа для числа перестановок, размещений и сочетаний без повторений). С такой же подробностью ведётся изложение основных положений математической статистики, показаны на примерах отличия выборочного среднего от моды и медианы и дано пояснение, в каких случаях какое из этих средних нужно использовать. Назначение пособия - отработка практических навыков учащихся по подготовке к экзамену (в новой форме) в 9 классе по математике. В сборнике даны ответы на все варианты заданий. Пособие предназначено учителям и методистам, использующим тесты для подготовки к Основному государственному экзамену, оно также может быть использовано учащимися для самоподготовки и самоконтроля.

Формат: pdf

Размер: 939 Кб

Смотреть, скачать: drive.google

СОДЕРЖАНИЕ
Введение 4
Часть I. Задачи по теории вероятностей 5
1. Понятие вероятности 5
2. Классическое определение вероятности 6
3. Применение классического определения вероятности 8
3.1. Правило суммы 11
3.2. Правило произведения 12
3.3. Задачи на вычисление вероятностей 17
4. Статистический метод 19
4.1. Статистическое определение вероятности 20
4.2. Задачи на вычисление вероятностей 21
5. Использование комбинаторных чисел 22
5.1. Перестановки без повторений 22
5.2. Задачи, в которых используется формула для числа перестановок без повторений 24
5.3. Размещения без повторений 25
5.4. Сочетания без повторений 26
5.5. Выбор пары 28
5.6. Дополнительные задачи 31
Часть II. Элементы статистики, таблицы, обработка данных 33
1. Статистические характеристики 33
2. Задачи о среднем арифметическом и медиане 36
3. Выбор статистической характеристики для оценки явления 38
4. Задания на вычисление вероятностей и статистических характеристик 40
Ответы 46

Несмотря на то, что основы теории вероятностей и математической статистики уже довольно давно преподаются в школах нашей страны, основные понятия и многие положения этой интересной науки всё ещё остаются недостаточно прочно усвоенными многими учащимися средней школы. Результаты проведения ОГЭ для учащихся 9-х классов показывают, что примерно 30% из всех сдававших ОГЭ не справляются с заданиями по теории вероятностей и(или) по статистике. Более того, некоторые задачи, предлагавшиеся в ОГЭ и диагностических работах, вызывают определённую неуверенность у некоторых учителей.
В предлагаемой книге, состоящей из двух частей, подробно рассмотрены основные понятия, относящиеся к теории вероятностей и математической статистике, детально, по шагам разобраны решения задач, которые обычно предлагаются в КИМах на ОГЭ. Кроме этого, подробно, на примерах излагаются простейшие понятия комбинаторики (комбинаторные числа для числа перестановок, размещений и сочетаний без повторений). С такой же подробностью ведётся изложение основных положений математической статистики, показаны на примерах отличия выборочного среднего от моды и медианы и дано пояснение в каких случаях какое из этих средних нужно использовать.

УМК любой

Теория вероятностей

на ОГЭ и ЕГЭ

Алтайского края


Задачи

на вероятность

с игральным кубиком

(игральная кость)


1. Определите вероятность того, что при бросании игрального кубика (игральной кости) выпадет нечетное число очков.

Решение задачи:

Нечетное число – 3 (1; 3; 5)

Ответ: P=0,5


2. Определите вероятность того, что при бросании игрального кубика (игральной кости) выпадет менее 4 очков.

Решение задачи:

Всего событий – 6 (может выпасть 6 чисел от 1 до 6)

Менее 4–х очков – 3 (1; 2; 3)

Ответ: P=0,5


3 . Определите вероятность того, что при бросании игрального кубика (игральной кости) выпадет более 3 очков.

Решение задачи:

Всего событий – 6 (может выпасть 6 чисел от 1 до 6)

Более 3–х очков – 3 (4; 5; 6)

Ответ: P=0,5


4 . Определите вероятность того, что при бросании игрального кубика (игральной кости) выпадет более 2 очков. Ответ округлите до десятых.

Решение задачи:

Всего событий – 6 (может выпасть 6 чисел от 1 до 6)

Более 2–х очков – 2 (3; 4; 5; 6)

P = 4:6 = 0,66…

Ответ: P=0,7


5. Игральную кость бросают дважды. Найдите вероятность того, что сумма двух выпавших чисел нечетна.

Решение задачи:

Сумма будет нечетна, когда: 1) в первый раз выпадет нечетное число, а во второй четное . 2) в первый раз - четное , а во второй раз нечетное .

1) 3: 6 = 0,5 - Вероятность выпадения нечетного числа в первое бросание.

3: 6 = 0,5 - Вероятность выпадения четного числа во второе бросание.

0,5 · 0,5 = 0,25 – т.к. эти два события должны произойти совместно. 2) 3: 6 = 0,5 - Вероятность выпадения четного числа в первое бросание.

3: 6 = 0,5 - Вероятность выпадения нечетного числа во второе бросание.

0,5 · 0,5 = 0,25 – т.к. эти два события должны произойти совместно,.

3) 0,25 + 0,25 = 0,5

Ответ: P=0,5


6. Игральную кость бросают дважды. Найдите вероятность того, что наибольшее из двух выпавших чисел равно 5. Ответ округлите до десятых.

Решение задачи:

1) При первом броске выпадет 1, или 2, или 3, или 4, или 5, а при втором броске выпадет 5 2) При первом броске выпадет 5, а при втором броске выпадет 1, или 2, или 3, или 4, или 5

  • 5: 6 = 5/6 – вероятность того, что выпадут 1; 2; 3; 4; 5

5/6 · 1/6 = 5/36 - вероятность, что произойдут оба события

  • 1: 6 = 1/6 - вероятность выпадения 5

5: 6 = 5/6 - вероятность выпадения 1; 2; 3; 4; 5

1/6 · 5/6 = 5/36 - вероятность, что произойдут оба события

  • 5/36 + 5/36 = 10/36 = 5/18 = 0,277…

Ответ: 0,3


7. Игральную кость бросают дважды. Найдите вероятность того, что хотя бы раз выпало число, большее 3.

Решение задачи:

1) При первом броске выпадет 1, или 2, или 3, а при втором броске выпадет 4; или 5 или 6 2) При первом броске выпадет 4; или 5 или 6, а при втором броске выпадет 1, или 2, или 3. 3) При первом броске выпадет 4; или 5 или 6, а при втором броске выпадет 4, или 5, или 6.

2) 3: 6 = 0,5 - вероятность выпадения 4; 5; 6

3: 6 = 0,5 - вероятность выпадения 1; 2; 3

0,5 · 0,5 = 0,25 - вероятность, что произойдут оба события

3) 3: 6 = 0,5 - вероятность выпадения 4; 5; 6

3: 6 = 0,5 - вероятность выпадения 4; 5; 6

0,5 · 0,5 = 0,25 - вероятность, что произойдут оба события

4) 0,25+ 0,25 + 0,25 = 0,75 Ответ: 0,75


Задачи

на вероятность

с монетами


8. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл выпадет ровно 1 раз .

Решение задачи: Найдём число возможных исходов, переберём все варианты бросков. Составим таблицу и покажем все варианты:

2: 4 = 0,5 - вероятность того, что выпадет орел при броске.

2) Ответ: 0,5


9. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орёл выпадет ровно 3 раза .

Решение задачи:

1 бросок

2 бросок

3 бросок

1: 8 = 0,125 – вероятность того, что выпадет орел при броске.

Ответ: 0,125


10. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орёл выпадет ровно 2 раза .

Решение задачи:

1 бросок

2 бросок

3 бросок

3: 8 = 0,375 – вероятность того, что выпадет орел при броске.

Ответ: 0,375


11 . В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел не выпадет ни разу.

Решение задачи:

1 бросок

2 бросок

3 бросок

1: 8 = 0,125 - вероятность того, что выпадет орел при броске.

Ответ: 0,125


Задачи

на вероятность

(разные)


12. Известно, что в некотором регионе вероятность того, что родившийся младенец окажется мальчиком, равна 0,512. В 2010 г. в этом регионе на 1000 родившихся младенцев в среднем пришлось 477 девочек. Насколько частота рождения девочки в 2010 г. в этом регионе отличается от вероятности этого события?

Решение задачи:

  • 1 - 0,512 = 0,488 –

2) 477: 1000 = 0,477 – вероятность рождения девочек в 2010 г

3) 0,488 - 0,477=0,011

Ответ: 0,011


13. Известно, что в некотором регионе вероятность того, что родившийся младенец окажется мальчиком, равна 0,486. В 2011 г. в этом регионе на 1000 родившихся младенцев в среднем приходилось 522 девочки. На сколько частота рождения девочки в 2011 г. в этом регионе отличается от вероятности этого события?

Решение задачи:

  • 1 - 0,486 = 0,514 – вероятность рождения девочек в регионе

2) 522: 1000 = 0,522 – вероятность рождения девочек в 2011 г

3) 0,522 - 0,514 = 0,008

Ответ: 0,008


14. Стас выбирает трехзначное число. Найдите вероятность того, что оно делится на 48.

Решение задачи:

  • 999 - 99 = 900 – всего трехзначных чисел

2) 999: 48 = 20,8125 - т.е. всего 20 чисел делятся на 48

  • Из них два числа двузначные - это 48 и 96, то 20 – 2 = 18

4) 18: 900 = 0,02

Ответ: 0,02


15 . Андрей выбирает случайное трехзначное число. Найдите вероятность того, что оно делится на 33.

Решение задачи:

  • 999 - 99 = 900 – всего трехзначных чисел

2) 999: 33 = 30,29… - т.е. всего 30 чисел делятся на 33

  • Из них три числа двузначные - это 33, 66, 99 то 30 – 3 = 27

4) 27: 900 = 0,03

Ответ: 0,03


16 . В каждой четвёртой банке кофе согласно условиям акции есть приз. Призы распределены по банкам случайно. Аля покупает банку кофе в надежде выиграть приз. Найдите вероятность того, что Аля не найдёт приз в своей банке.

Решение задачи:

1) 1: 4 = 0,25 - вероятность выпадения приза.

2) 1 – 0,25 = 0,75 – вероятность не выпадения приза

Ответ: 0,75


17. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Внешние углы», равна 0,35. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,2. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение:

Вероятность суммы двух несовместимых событий равна сумме вероятностей этих событий: 0,35 + 0,2 = 0,52

Ответ: 0,52


18. Би­ат­ло­нист пять раз стре­ля­ет по ми­ше­ням. Ве­ро­ят­ность по­па­да­ния в ми­шень при одном вы­стре­ле равна 0,8. Най­ди­те ве­ро­ят­ность того, что би­ат­ло­нист пер­вые три раза попал в ми­ше­ни, а по­след­ние два про­мах­нул­ся. Ре­зуль­тат округ­ли­те до сотых.

Решение:

вероятность попадания - 0,8

вероятность промаха – 0,2

События промаха и попадания независимы, значит


19. В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,12 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.

Решение:

Найдем вероятность, что неисправны оба автомата.

Эти события независимы, т.е. 0,12² = 0,0144

Событие, состоящее в том, что исправен хотя бы один

автомат – противоположное, значит 1 – 0,0144 = 0,9856

Ответ: 0,9856


20. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,16. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

Решение:

Рассмотрим события:

А – кофе закончится в первом автомате

В – кофе закончится во втором автомате

А·В – кофе закончится в обоих автоматах

А+В - кофе закончится хотя бы в одном автомате

Значит, вероятность противоположного события (кофе останется в обоих автоматах) равна

Ответ: 0,56


21. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая – 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая – 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Решение:

Вероятность того, что стекло, купленное на первой фабрике и оно бракованное: 0,45 · 0,03 = 0,0135

Вероятность того, что стекло, купленное на второй фабрике и оно бракованное: 0,55 · 0,01 = 0,0055

Значит, полная вероятность того, что случайно купленное в магазине стекло окажется бракованным: 0,0135 + 0,0055 = 0,019

Ответ: 0,019


Источники

Задачи открытого банка заданий по математике ФИПИ, 2014-2015 http://www.fipi.ru/

Монета - https :// upload.wikimedia.org/wikipedia/commons/e/e8/Russia-1998-Coin-5.jpg

Игральный кубик - http ://clipstock.ucoz.ru/_ ph/21/365284339.jpg

http ://cs.ankaraschool.ru/DwABAIQAzQISAc0BSv_D-w8/6yi0I7wdPdUVWti_caKcxg/sv/image/bc/d7/32/186172/228/% D0%95%D0%93%D0%AD.jpg?1445859675

ОГЭ 2016 - http :// www.school25.nichost.ru/images/banners/oge.jpg