Как правильно строить сечение. §16

Как известно, любой экзамен по математике содержит в качестве основной части решение задач. Умение решать задачи – основной показатель уровня математического развития.

Достаточно часто на школьных экзаменах, а так же на экзаменах, проводимых в ВУЗах и техникумах, встречаются случаи, когда ученики, показывающие хорошие результаты в области теории, знающие все необходимые определения и теоремы, запутываются при решении весьма простых задач.

За годы обучения в школе каждый ученик решает большое число задач, но при этом для всех учеников задачи предлагаются одни и те же. И если некоторые ученики усваивают общие правила и методы решения задач, то другие, встретившись с задачей незнакомого вида, даже не знают, как к ней подступиться.

Одной из причин такого положения является то, что если одни ученики вникают в ход решения задачи и стараются осознать и понять общие приёмы и методы их решения, то другие не задумываются над этим, стараются как можно быстрее решить предложенные задачи.

Многие учащиеся не анализируют решаемые задачи, не выделяют для себя общие приёмы и способы решения. В таких случаях задачи решаются только ради получения нужного ответа.

Так, например, многие учащиеся даже не знают, в чём суть решения задач на построение. А ведь задачи на построение являются обязательными задачами в курсе стереометрии. Эти задачи не только красивы и оригинальны в методах своего решения, но и имеют большую практическую ценность.

Благодаря задачам на построение развивается способность мысленно представлять себе ту или иную геометрическую фигуру, развивается пространственное мышление, логическое мышление, а так же геометрическая интуиция. Задачи на построение развивают навыки решения проблем практического характера.

Задачи на построения не являются простыми, так как единого правила или алгоритма для их решения не существует. Каждая новая задача уникальна и требует индивидуального подхода к решению.

Процесс решения любой задачи на построение – это последовательность некоторых промежуточных построений, приводящих к цели.

Построение сечений многогранников базируется на следующих аксиомах:

1) Если две точки прямой лежат в некоторой плоскости, то и вся прямая лежит в данной плоскости;

2) Если две плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.

Теорема: если две параллельные плоскости пересечены третьей плоскостью, то прямые пересечения параллельны.

Построить сечение многогранника плоскостью, проходящей через точки А, В и С. Рассмотрим следующие примеры.

Метод следов

I. Построить сечение призмы плоскостью, проходящей через данную прямую g (след) на плоскости одного из оснований призмы и точку А.

Случай 1.

Точка А принадлежит другому основанию призмы (или грани, параллельной прямой g) – секущая плоскость пересекает это основание (грань) по отрезку ВС, параллельному следу g.

Случай 2.

Точка А принадлежит боковой грани призмы:

Отрезок ВС прямой AD и есть пересечение данной грани с секущей плоскостью.


Случай 3.

Построение сечения четырехугольной призмы плоскостью, проходящей через прямую g в плоскости нижнего основания призмы и точку А на одном из боковых ребер.

II. Построить сечение пирамиды плоскостью, проходящей через данную прямую g (след) на плоскости основания пирамиды и точку А.

Для построения сечения пирамиды плоскостью достаточно построить пересечения ее боковых граней с секущей плоскостью.

Случай 1.

Если точка А принадлежит грани, параллельной прямой g, то секущая плоскость пересекает эту грань по отрезку ВС, параллельному следу g.

Случай 2.

Если точка А, принадлежащая сечению, расположена на грани, не параллельной грани следу g, то:

1) строится точка D, в которой плоскость грани пересекает данный след g;

2) проводится прямая через точки А и D.

Отрезок ВС прямой АD и есть пересечение данной грани с секущей плоскостью.

Концы отрезка ВС принадлежат и соседним граням. Поэтому описанным способом можно построить пересечение этих граней с секущей плоскостью. И т. д.

Случай 3.

Построение сечения четырехугольной пирамиды плоскостью, проходящей через сторону основания и точку А на одном из боковых ребер.

Задачи на построение сечений через точку на грани

1. Построить сечение тетраэдра АВСD плоскостью, проходящей через вершину С и точки М и N на гранях АСD и АВС соответственно.

Точки С и М лежат на грани АСD, значит, и прямая СМ лежит в плоскости этой грани (рис. 1).

Пусть Р – точка пересечения прямых СМ и АD. Аналогично, точки С и N лежат в грани АСВ, значит прямая СN лежит в плоскости этой грани. Пусть Q – точка пересечения прямых СN и АВ. Точки Р и Q принадлежат и плоскости сечения, и грани АВD. Поэтому отрезок РQ – сторона сечения. Итак, треугольник СРQ – искомое сечение.

2. Построить сечение тетраэдра АВСD плоскостью MPN, где точки M, N, P лежат соответственно на ребре АD, в грани ВСD и в грани АВС, причем MN не параллельно плоскости грани АВС (рис. 2) .

Остались вопросы? Не знаете, как построить сечение многогранника?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Разберем, как построить сечение пирамиды, на конкретных примерах. Поскольку в пирамиде нет параллельных плоскостей, построение линии пересечения (следа) секущей плоскости с плоскостью грани чаще всего предполагает проведение прямой через две точки, лежащие в плоскости этой грани.

В простейших задачах требуется построить сечение пирамиды плоскостью, проходящей через данные точки, уже лежащие в одной грани.

Пример.

Построить сечение плоскостью (MNP)

Треугольник MNP — сечение пирамиды

Точки M и N лежат в одной плоскости ABS, следовательно, через них можем провести прямую. След этой прямой — отрезок MN. Он видимый, значит, соединяем M и N сплошной линией.

Точки M и P лежат в одной плоскости ACS, поэтому через них проведем прямую. След — отрезок MP. Мы его не видим, поэтому отрезок MP проводим штрихом. Аналогично строим след PN.

Треугольник MNP — искомое сечение.

Если точка, через которую требуется провести сечение, лежит не на ребре, а на грани, то она не будет концом следа-отрезка.

Пример. Построить сечение пирамиды плоскостью, проходящей через точки B, M и N, где точки M и N принадлежат, соответственно, граням ABS и BCS.

Здесь точки B и M лежат в одной грани ABS, поэтому можем через них провести прямую.

Аналогично проводим прямую через точки B и P. Получили, соответственно, следы BK и BL.

Точки K и L лежат в одной грани ACS, поэтому через них можем провести прямую. Ее след — отрезок KL.

Треугольник BKL — искомое сечение.

Однако не всегда через данные в условии точки удается провести прямую. В этом случае нужно найти точку, лежащую на прямой пересечения плоскостей, содержащих грани.

Пример. Построить сечение пирамиды плоскостью, проходящей через точки M, N, P.

Точки M и N лежат в одной плоскость ABS, поэтому через них можно провести прямую. Получаем след MN. Аналогично — NP. Оба следа видимые, поэтому соединяем их сплошной линией.

Точки M и P лежат в разных плоскостях. Поэтому соединить их прямой не можем.

Продолжим прямую NP.

Она лежит в плоскости грани BCS. NP пересекается только с прямыми, лежащими в этой же плоскости. Таких прямых у нас три: BS, CS и BC. С прямыми BS и CS уже есть точки пересечения — это как раз N и P. Значит, ищем пересечение NP с прямой BC.

Точку пересечения (назовем ее H), получаем, продолжая прямые NP и BC до пересечения.

Эта точка H принадлежит как плоскости (BCS), поскольку лежит на прямой NP, так и плоскости (ABC), поскольку лежит на прямой BC.

Таким образом мы получили еще одну точку секущей плоскости, лежащей в плоскости (ABC).

Через H и точку M, лежащую в этой же плоскости, можем провести прямую.

Получим след MT.

T — точка пересечения прямых MH и AC.

Так как T принадлежит прямой AC, то через нее и точку P можем провести прямую, так как они обе лежат в одной плоскости (ACS).

4-угольник MNPT — искомое сечение пирамиды плоскостью, проходящей через данные точки M,N,P.

Мы работали с прямой NP, продлевая ее для отыскания точки пересечения секущей плоскости с плоскостью (ABC). Если работать с прямой MN, приходим к тому же результату.

Рассуждаем так: прямая MN лежит в плоскости (ABS), поэтому пересекаться может только с прямыми, лежащими в этой же плоскости. У нас таких прямых три: AB, BS и AS. Но с прямыми AB и BS уже есть точки пересечения: M и N.

Значит, продлевая MN, ищем точку пересечения ее с прямой AS. Назовем эту точку R.

Точка R лежит на прямой AS, значит, она лежит и в плоскости (ACS), которой принадлежит прямая AS.

Поскольку точка P лежит в плоскости (ACS), через R и P можем провести прямую. Получаем след PT.

Точка T лежит в плоскости (ABC), поэтому через нее и точку M можем провести прямую.

Таким образом, получили все то же сечение MNPT.

Рассмотрим еще один пример такого рода.

Построить сечение пирамиды плоскостью, проходящей через точки M, N, P.

Через точки M и N, лежащие в одной плоскости (BCS), проводим прямую. Получаем след MN (видимый).

Через точки N и P, лежащие в одной плоскости (ACS), проводим прямую. Получаем след PN (невидимый).

Через точки M и P прямую провести не можем.

1) Прямая MN лежит в плоскости (BCS), где есть еще три прямые: BC, SC и SB. С прямыми SB и SC уже есть точки пересечения: M и N. Поэтому ищем точку пересечения MN с BC. Продолжив эти прямые, получаем точку L.

Точка L принадлежит прямой BC, а значит, она лежит в плоскости (ABC). Поэтому через L и P, которая также лежит в плоскости (ABC) можем провести прямую. Ее след — PF.

F лежит на прямой AB, а значит, и в плоскости (ABS). Поэтому через F и точку M, которая также лежит в плоскости (ABS), проводим прямую. Ее след — FM. Четырехугольник MNPF — искомое сечение.

2) Другой путь — продолжить прямую PN. Она лежит в плоскости (ACS) и пересекается с прямыми AC и CS, лежащими в этой плоскости, в точках P и N.

Значит, ищем точку пересечения PN с третьей прямой этой плоскости — с AS. Продолжаем AS и PN, на пересечении получаем точку E. Поскольку точка E лежит на прямой AS, принадлежащей плоскости (ABS), то через E и точку M, которая также лежит в (ABS), можем провести прямую. Ее след — FM. Точки P и F лежат водной плоскости (ABC), проводим через них прямую и получаем след PF (невидимый).

Сегодня еще раз разберем, как построить сечение тетраэдра плоскостью .
Рассмотрим самый простой случай (обязательный уровень), когда 2 точки плоскости сечения принадлежат одной грани, а третья точка - другой грани.

Напомним алгоритм построения сечений такого вида (случай: 2 точки принадлежат одной грани).

1. Ищем грань, которая содержит 2 точки плоскости сечения. Проводим прямую через две точки, лежащие в одной грани. Находим точки ее пересечения с ребрами тетраэдра. Часть прямой, оказавшаяся в грани, есть сторона сечения.

2. Если многоугольник можно замкнуть - сечение построено. Если нельзя замкнуть, то находим точку пересечения построенной прямой и плоскости, содержащей третью точку.

1. Видим, что точки E и F лежат в одной грани (BCD), проведем прямую EF в плоскости (BCD).
2. Найдем точку пересечения прямой EF c ребром тетраэдра BD, это точка Н.
3. Теперь следует найти точку пересечения прямой EF и плоскости, содержащей третью точку G, т.е. плоскости (ADC).
Прямая CD лежит в плоскостях (ADC) и (BDC), значит она пересекается с прямой EF, и точка К является точкой пересечения прямой EF и плоскости (ADC).
4. Далее находим еще две точки, лежащие в одной плоскости. Это точки G и K, обе лежат в плоскости левой боковой грани. Проводим прямую GK, отмечаем точки, в которых эта прямая пересекает ребра тетраэдра. Это точки M и L.
4. Осталось "замкнуть" сечение, т.е.соединить точки, лежащие в одной грани. Это точки M и H, и также L и F. Оба этих отрезка - невидимы, проводим их пунктиром.


В сечении получился четырехугольник MHFL. Все его вершины лежат на ребрах тетраэдра. Выделим получившееся сечение.

Теперь сформулируем "свойства" правильно построенного сечения:

1. Все вершины многоугольника, которое является сечением, лежат на ребрах тетраэдра (параллелепипеда, многоугольника).

2. Все стороны сечения лежат в гранях многогранника.
3. В каждой грани многоранника может находиться не более одной (одна или ни одной!) стороны сечения

На этом уроке мы рассмотрим тетраэдр и его элементы (ребро тетраэдра, поверхность, грани, вершины). И решим несколько задач на построение сечений в тетраэдре, используя общий метод для построения сечений.

Тема: Параллельность прямых и плоскостей

Урок: Тетраэдр. Задачи на построение сечений в тетраэдре

Как построить тетраэдр? Возьмем произвольный треугольник АВС . Произвольную точку D , не лежащую в плоскости этого треугольника. Получим 4 треугольника. Поверхность, образованная этими 4 треугольниками, и называется тетраэдром (Рис. 1.). Внутренние точки, ограниченные этой поверхностью, также входят в состав тетраэдра.

Рис. 1. Тетраэдр АВСD

Элементы тетраэдра
А, B , C , D - вершины тетраэдра .
AB , AC , AD , BC , BD , CD - ребра тетраэдра .
ABC , ABD , BDC , ADC - грани тетраэдра .

Замечание: можно принять плоскость АВС за основание тетраэдра , и тогда точка D является вершиной тетраэдра . Каждое ребро тетраэдра является пересечением двух плоскостей. Например, ребро АВ - это пересечение плоскостей АВ D и АВС . Каждая вершина тетраэдра - это пересечение трех плоскостей. Вершина А лежит в плоскостях АВС , АВ D , А D С . Точка А - это пересечение трех означенных плоскостей. Этот факт записывается следующим образом: А = АВС АВ D АС D .

Тетраэдр определение

Итак, тетраэдр - это поверхность, образованная четырмя треугольниками.

Ребро тетраэдра - линия перечесения двух плоскостей тетраэдра.

Составьте из 6 спичек 4 равных треугольника. На плоскости решить задачу не получается. А в пространстве это сделать легко. Возьмем тетраэдр. 6 спичек - это его ребра, четыре грани тетраэдра и будут четырьмя равными треугольниками. Задача решена.

Дан тетраэдр АВС D . Точка M принадлежит ребру тетраэдра АВ , точка N принадлежит ребру тетраэдра В D и точка Р принадлежит ребру D С (Рис. 2.). Постройте сечение тетраэдра плоскостью MNP .

Рис. 2. Рисунок к задаче 2 - Построить сечение тетраэдра плоскостью

Решение :
Рассмотрим грань тетраэдра D ВС . В этой грани точки N и P принадлежат грани D ВС , а значит, и тетраэдру. Но по условию точки N, P принадлежат секущей плоскости. Значит, NP - это линия пересечения двух плоскостей: плоскости грани D ВС и секущей плоскости. Предположим, что прямые NP и ВС не параллельны. Они лежат в одной плоскости D ВС. Найдем точку пересечения прямых NP и ВС . Обозначим ее Е (Рис. 3.).

Рис. 3. Рисунок к задаче 2. Нахождение точки Е

Точка Е принадлежит плоскости сечения MNP , так как она лежит на прямой , а прямая целиком лежит в плоскости сечения MNP .

Также точка Е лежит в плоскости АВС , потому что она лежит на прямой ВС из плоскости АВС .

Получаем, что ЕМ - линия пересечения плоскостей АВС и MNP, так как точки Е и М лежат одновременно в двух плоскостях - АВС и MNP. Соединим точки М и Е , и продолжим прямую ЕМ до пересечения с прямой АС . Точку пересечения прямых ЕМ и АС обозначим Q .

Итак, в этом случае NPQМ - искомое сечение.

Рис. 4. Рисунок к задаче 2.Решение задачи 2

Рассмотрим теперь случай, когда NP параллельна BC . Если прямая NP параллельна какой-нибудь прямой, например, прямой ВС из плоскости АВС , то прямая NP параллельна всей плоскости АВС .

Искомая плоскость сечения проходит через прямую NP , параллельную плоскости АВС , и пересекает плоскость по прямой МQ . Значит, линия пересечения МQ параллельна прямой NP . Получаем, NPQМ - искомое сечение.

Точка М лежит на боковой грани А D В тетраэдра АВС D . Постройте сечение тетраэдра плоскостью, которое проходит через точку М параллельно основанию АВС .

Рис. 5. Рисунок к задаче 3 Построить сечение тетраэдра плоскостью

Решение:
Секущая плоскость φ параллельна плоскости АВС по условию, значит, эта плоскость φ параллельна прямым АВ , АС , ВС .
В плоскости АВ D через точку М проведем прямую PQ параллельно АВ (рис. 5). Прямая PQ лежит в плоскости АВ D . Аналогично в плоскости АС D через точку Р проведем прямую РR параллельно АС . Получили точку R . Две пересекающиеся прямые PQ и РR плоскости РQR соответственно параллельны двум пересекающимся прямым АВ и АС плоскости АВС , значит, плоскости АВС и РQR параллельны. РQR - искомое сечение. Задача решена.

Дан тетраэдр АВС D . Точка М - точка внутренняя, точка грани тетраэдра АВ D . N - внутренняя точка отрезка D С (Рис. 6.). Построить точку пересечения прямой NM и плоскости АВС .

Рис. 6. Рисунок к задаче 4

Решение:
Для решения построим вспомогательную плоскость D МN . Пусть прямая D М пересекает прямую АВ в точке К (Рис. 7.). Тогда, СК D - это сечение плоскости D МN и тетраэдра. В плоскости D МN лежит и прямая NM , и полученная прямая СК . Значит, если NM не параллельна СК , то они пересекутся в некоторой точке Р . Точка Р и будет искомая точка пересечения прямой NM и плоскости АВС .

Рис. 7. Рисунок к задаче 4. Решение задачи 4

Дан тетраэдр АВС D . М - внутренняя точка грани АВ D . Р - внутренняя точка грани АВС . N - внутренняя точка ребра D С (Рис. 8.). Построить сечение тетраэдра плоскостью, проходящей через точки М , N и Р .

Рис. 8. Рисунок к задаче 5 Построить сечение тетраэдра плоскостью

Решение:
Рассмотрим первый случай, когда прямая MN не параллельна плоскости АВС . В прошлой задаче мы нашли точку пересечения прямой MN и плоскости АВС . Это точка К , она получена с помощью вспомогательной плоскости D МN , т.е. мы проводим D М и получаем точку F . Проводим СF и на пересечении MN получаем точку К .

Рис. 9. Рисунок к задаче 5. Нахождение точки К

Проведем прямую КР . Прямая КР лежит и в плоскости сечения, и в плоскости АВС . Получаем точки Р 1 и Р 2 . Соединяем Р 1 и М и на продолжении получаем точку М 1 . Соединяем точку Р 2 и N . В результате получаем искомое сечение Р 1 Р 2 NМ 1 . Задача в первом случае решена.
Рассмотрим второй случай, когда прямая MN параллельна плоскости АВС . Плоскость МNР проходит через прямую МN параллельную плоскости АВС и пересекает плоскость АВС по некоторой прямой Р 1 Р 2 , тогда прямая Р 1 Р 2 параллельна данной прямой MN (Рис. 10.).

Рис. 10. Рисунок к задаче 5. Искомое сечение

Теперь проведем прямую Р 1 М и получим точку М 1 . Р 1 Р 2 NМ 1 - искомое сечение.

Итак, мы рассмотрели тетраэдр, решили некоторые типовые задачи на тетраэдр. На следующем уроке мы рассмотрим параллелепипед.

1. И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М. : Мнемозина, 2008. - 288 с. : ил. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни)

2. Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений

3. Е. В. Потоскуев, Л. И. Звалич. - 6-е издание, стереотип. - М. : Дрофа, 008. - 233 с. :ил. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики

Дополнительные веб-ресурсы

2. Как построить сечение тетраэдра. Математика ().

3. Фестиваль педагогических идей ().

Сделай дома задачи по теме "Тетраэдр", как находить ребро тетраэдра, грани тетраэдра, вершины и поверхность тетраэдра

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил. Задания 18, 19, 20 стр. 50

2. Точка Е середина ребра МА тетраэдра МАВС . Постройте сечение тетраэдра плоскостью, проходящей через точки В, С и Е .

3. В тетраэдре МАВС точка М принадлежит грани АМВ, точка Р - грани ВМС, точка К - ребру АС. Постройте сечение тетраэдра плоскостью, проходящей через точки М, Р, К.

4. Какие фигуры могут получиться в результате пересечения плоскостью тетраэдра?

Дмитриев Антон, Киреев Александр

В данной презентации доходчиво, пошагово показаны примеры построения сечений от простых задач к более сложным. Анимация позволяет увидеть этапы построения сечений

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Построение сечений многогранников на примере пр измы ® Создатели: Антон Дмитриев, Киреев Александр. При содействии: Гудковой Ольги Викторовны

План урока Алгоритмы построения сечений Самопроверка Демонстрационные задачи Задачи для закрепления материала

Алгоритмы построения сечений следов параллельных прямых параллельного переноса секущей плоскости внутреннего проектирования комбинированный метод дополнения n -угольной призмы до треугольной призмы Построение сечения методом:

Построение сечения методом следов Основные понятия и умения Построение следа прямой на плоскости Построение следа секущей плоскости Построение сечения

Алгоритм построения сечения методом следов Выяснить имеются ли в одной грани две точки сечения (если да, то через них можно провести сторону сечения). Построить след сечения на плоскости основания многогранника. Найти дополнительную точку сечения на ребре многогранника (продолжить сторону основания той грани, в которой есть точка сечения, до пересечения со следом). Через полученную дополнительную точку на следе и точку сечения в выбранной грани провести прямую, отметить точки пересечения её с рёбрами грани. Выполнить п.1.

Построение сечения призмы Двух точек принадлежащих одной грани нет. Точка R лежит в плоскости основания. Найдем след прямой KQ на плоскости основания: - KQ ∩K1Q1=T1, T1R- след сечения. 3. T1R ∩CD=E. 4. Проведем EQ. EQ∩DD1=N. 5. Проведем NK. NK ∩AA1=M. 6. Соединяем M и R . Построить сечение плоскостью α , проходящей через точки K,Q,R; K є ADD1, Q є CDD1, R є AB.

Метод параллельных прямых В основу метода положено свойство параллельных плоскостей: «Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны. Основные умения и понятия Построение плоскости параллельной данной Построение линии пересечения плоскостей Построение сечения

Алгоритм построения сечения методом параллельных прямых. Строим проекции точек, определяющих сечение. Через две данные точки (например P и Q) и их проекции проводим плоскость. Через третью точку (например R) строим параллельную ей плоскость α . Находим линии пересечения (например m и n) плоскости α с гранями многогранника содержащими точки P и Q . Через точку R проводим прямую а параллельную PQ . Находим точки пересечения прямой а с прямыми m и n. Находим точки пересечения с ребрами соответствующей грани.

(ПРИЗМА) Строим проекции точек P и Q на плоскости верхнего и нижнего оснований. Проводим плоскость P1Q1Q2P2. Через ребро, содержащее точку R, проводим плоскость α параллельную P1Q1Q2. Находим линии пересечения плоскостей ABB1 и CDD1 с плоскость α . Через точку R проводим прямую a||PQ . a∩n=X, a∩m=Y. XP∩AA1=K, XP∩BB1=L; YQ∩CC1=M, YQ∩DD1=N. KLMNR – искомое сечение. Построить сечение плоскостью α , проходящей через точки P,Q,R; P є ABB1, Q є CDD1, R є EE1.

Метод параллельного переноса секущей плоскости Строим вспомогательное сечение данного многогранника, которое удовлетворяет следующим требованиям: оно параллельно секущей плоскости; в пересечении с поверхностью данного многогранника образует треугольник. Соединяем проекцию вершины треугольника с вершинами той грани многогранника, которую пересекает вспомогательное сечение, и находим точки пересечения со стороной треугольника, лежащей в этой грани. Соединяем вершину треугольника с этими точками. Через точку искомого сечения проводим прямые параллельные построенным отрезкам в предыдущем пункте и находим точки пересечения с ребрами многогранника.

ПРИЗМА R є AA1, P є EDD1, Q є CDD1. Построим вспомогательное сечение AMQ1 ||RPQ. Проведем AM||RP, MQ1||PQ, AMQ1∩ABC=AQ1. P1- проекция точек Р и М на АВС. Проведем Р1В и Р1С. Р1В∩ AQ1=O1, P1C ∩ AQ1=O2. Через точку Р проведем прямые m и n соответственно параллельные МО1 и МО2. m∩BB1=K, n∩CC1=L. LQ∩DD1=T, TP∩EE1=S. RKLTS – искомое сечение Построить сечение призмы плоскостью α , проходящей через точки P,Q,R; P є EDD1, Q є CDD1, R є AA1 .

Алгоритм построения сечения методом внутреннего проектирования. Построить вспомогательные сечения и найти линию их пересечения. Построить след сечения на ребре многогранника. Если точек сечения не хватает для построения самого сечения повторить пп.1-2.

Построение вспомогательных сечений. ПРИЗМА Параллельное проектирование.

Построение следа сечения на ребре

Комбинированный метод. Через вторую прямую q и какую-нибудь точку W первой прямой р провести плоскость β . В плоскости β через точку W провести прямую q‘ параллельную q . Пересекающимися прямыми p и q‘ определяется плоскость α . Непосредственное построение сечения многогранника плоскостью α Суть метода состоит в применении теорем о параллельности прямых и плоскостей в пространстве в сочетании с аксиоматическим методом. Применяется для построения сечения многогранника с условием параллельности. 1. Построение сечения многогранника плоскостью α , проходящей через заданную прямую p параллельно другой заданной прямой q .

ПРИЗМА Построить сечение призмы плоскостью α , проходящей через прямую PQ параллельно AE1; P є BE, Q є E1C1. 1. Проведем плоскость через прямую AE1 и точку P. 2. В плоскости AE1P через точку P проведем прямую q" параллельную AE1. q"∩E1S’=K. 3. Пересекающимися прямыми PQ и PK определяется искомая плоскость α. 4. P1 и K1- проекции точек Р и К на А1В1С1. P1K1∩PK=S”. S”Q∩E1D1=N, S”Q∩B1C1=M, NK∩EE1=L; MN∩A1E1=S”’, S”’L∩AE=T, TP∩BC=V. TVMNL-искомое сечение.

Метод дополнения n -угольной призмы(пирамиды) до треугольной призмы(пирамиды). Данная призма(пирамида) достраивается до треугольной призмы(пирамиды) из тех граней на боковых ребрах или гранях которой лежат точки, определяющие искомое сечение. Строится сечение полученной треугольной призмы(пирамиды). Искомое сечение получается как часть сечения треугольной призмы(пирамиды).

Основные понятия и умения Построение вспомогатель- ных сечений Построение следа сечения на ребре Построение сечения Центральное проектирование Параллельное проектирование

ПРИЗМА Q є BB1C1C, P є AA1, R є EDD1E1. Достраиваем призму до треугольной. Для этого продлим стороны нижнего основания: AE, BC, ED и верхнего основания: A 1 E 1 , B 1 C 1 , E 1 D 1. AE ∩BC=K, ED∩BC=L, A1E1∩B1C1=K1, E1D1∩B1C1=L1. Строим сечение полученной призмы KLEK1L1E1 плоскостью PQR , используя метод внутреннего проектирования. Это сечение является частью искомого. Строим искомое сечение.

Правило для самоконтроля Если многогранник выпуклый, то сечение выпуклый многоугольник. Вершины многоугольника всегда лежат на ребрах многогранника. Если точки сечения лежат на ребрах многогранника, то они являются вершинами многоугольника, который получится в сечении. Если точки сечения лежат на гранях многогранника, то они лежат на сторонах многоугольника, который получится в сечении. Две стороны многоугольника, который получится в сечении, не могут принадлежать одной грани многогранника. Если сечение пересекает две параллельные грани, то и отрезки (стороны многоугольника, который получится в сечении) будут параллельны.

Базовые задачи на построение сечений многогранников Если две плоскости имеют две общие точки, то прямая, проведенная через эти точки, является линией пересечения этих плоскостей. M є AD, N є DCC1, D1 ; ABCDA1B1C1D1- куб M є ADD1, D1 є ADD1, MD1. D1 є D1DC, N є D1DC, D1N ∩ DC=Q. M є ABC, Q є ABC, MQ. II. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны. M є CC1, AD1; ABCDA1B1C1D1- куб. MK||AD1, K є BC. M є DCC1, D1 є DCC1, MD1. A є ABC, K є ABC, AK.

III. Общая точка трех плоскостей (вершина трехгранного угла) является общей точкой линий их парного пересечения (ребер трехгранного угла). M є AB, N є AA1, K є A1D1; ABCDA1B1C1D1- куб. NK∩AD=F1 - вершина трехгранного угла образованного плоскостями α , ABC, ADD1. F1M∩CD=F2 - вершина трехгранного угла образованного плоскостями α , ABC, CDD1. F1M ∩BC=P. NK∩DD1=F3 - вершина трехгранного угла образованного плоскостями α , D1DC, ADD1. F3F2∩D1C1=Q, F3F2∩CC1=L. IV. Если плоскость проходит через прямую, параллельную другой плоскости и пересекает ее, то линия пересечения параллельна данной прямой. A1, C, α ||BC1; ABCA1B1C1- призма. α∩ BCC1=n, n||BC1, n∩BB1=S. SA1∩AB=P. Соединяем A1,P и C.

V. Если прямая лежит в плоскости сечения, то точка ее пересечения с плоскостью грани многогранника является вершиной трехгранного угла, образованного сечением, гранью и вспомогательной плоскостью, содержащей данную прямую. M є A1B1C1, K є BCC1, N є ABC; ABCDA1B1C1- параллелепипед. 1 . Вспомогательная плоскость MKK1: MKK1∩ABC=M1K1, MK∩M1K1=S, MK∩ABC=S, S- вершина трехгранного угла образованного плоскостями: α , ABC, MKK1. 2. SN∩BC=P, SN∩AD=Q, PK∩B1C1=R, RM∩A1D1=L.

Задачи. На каком рисунке изображено сечение куба плоскостью ABC ? Сколько плоскостей можно провести через выделенные элементы? Какие аксиомы и теоремы вы применяли? Сделайте вывод, как построить сечение в кубе? Давайте вспомним этапы построения сечений тетраэдра (параллелепипеда, куба). Какие многоугольники могут при этом получиться?