Как называются составляющие формулы. Формула обращения конечной десятичной дроби в рациональную дробь

Возведение в степень

Элементарные функции

Абсолютная величина, знак и т. п.

Приоритет операций и скобки

Приоритет, ранг или старшинство операции или оператора - формальное свойство оператора/операции, влияющее на очерёдность его выполнения в выражении с несколькими различными операторами при отсутствии явного (с помощью скобок) указания на порядок их вычисления. Например, операцию умножения обычно наделяют бо́льшим приоритетом, чем операцию сложения, поэтому в выражении будет получено сначала произведение y и z, а потом уже сумма.

Примеры

Например:

2 + 2 = 7 {\displaystyle 2+2=7} - пример формулы, имеющей значение «ложь»;

Y = ln ⁡ (x) + sin ⁡ (x) {\displaystyle y=\ln(x)+\sin(x)} - функция одного действительного аргумента или однозначная функция;

Z = y 3 y 2 + x 2 {\displaystyle z={\frac {y^{3}}{y^{2}+x^{2}}}} - функция нескольких аргументов или многозначная функция (график одной из самых замечательных кривых - верзьера Аньези);

Y = 1 − | 1 − x | {\displaystyle y=1-|1-x|} - не дифференцируемая функция в точке x = 1 {\displaystyle x=1} (непрерывная ломаная линия не имеет касательной);

X 3 + y 3 = 3 a x y {\displaystyle x^{3}+y^{3}=3axy} - уравнение, то есть неявная функция (график кривой «декартов лист »); - нечётная функция ;

F (P) = x 2 + y 2 + z 2 {\displaystyle f(P)={\sqrt {x^{2}+y^{2}+z^{2}}}} - функция точки, расстояние от точки до начала (декартовых) координат;

Y = 1 x − 3 {\displaystyle y={\frac {1}{x-3}}} - разрывная функция в точке x = 3 {\displaystyle x=3} ;

X = a [ t − sin ⁡ (t) ] ; y = a [ 1 − cos ⁡ (t) ] {\displaystyle x=a\,;\ y=a} - параметрически заданная функция (график циклоиды);

Y = ln ⁡ (x) , x = e y {\displaystyle y=\ln(x),\ x=e^{y}} - прямая и обратная функции;

F (x) = ∫ − ∞ x | f (t) | d t {\displaystyle f(x)=\int \limits _{-\infty }^{x}|f(t)|\,dt} - интегральное уравнение.

Образование - то, что остается после того, как забыто все, чему учили в школе.

Игорь Хмелинский, новосибирский учёный, ныне работающий в Португалии, доказывает, что без прямого запоминания текстов и формул развитие абстрактной памяти у детей затруднительно. Приведу выдержки из его статьи " Уроки образовательных реформ в Европе и странах бывшего СССР"

Заучивание наизусть и долговременная память

Незнание таблицы умножения имеет и более серьезные последствия, чем неспособность обнаружить ошибки в расчетах на калькуляторе. Наша долговременная память работает по принципу ассоциативной базы данных, то есть, одни элементы информации при запоминании оказываются связанными с другими на основе ассоциаций, установленных в момент знакомства с ними. Поэтому, чтобы в голове образовалась база знаний в какой-либо предметной области, например, в арифметике, нужно для начала выучить хоть что-то наизусть. Далее, вновь поступающая информация попадет из кратковременной памяти в долговременную, если в течение короткого промежутка времени (несколько дней) мы столкнемся с нею многократно, и, желательно, в разных обстоятельствах (что способствует созданию полезных ассоциаций). Однако при отсутствии в постоянной памяти знаний из арифметики, вновь поступающие элементы информации связываются с элементами, которые к арифметике никакого отношения не имеют – например, личностью преподавателя, погодой на улице и т.п. Очевидно, такое запоминание никакой реальной пользы учащемуся не принесет – поскольку ассоциации уводят из данной предметной области, то никаких знаний, относящихся к арифметике, учащийся вспомнить не сможет, кроме смутных идей о том, что он вроде бы что-то когда-то об этом должен был слышать. Для таких учащихся роль недостающих ассоциаций обычно выполняют разного рода подсказки – списать у коллеги, воспользоваться наводящими вопросами в самой контрольной, формулами из списка формул, которым пользоваться разрешено, и т.п. В реальной жизни, без подсказок, такой человек оказывается совершенно беспомощным и неспособным применить имеющиеся у него в голове знания.

Формирование математического аппарата, при котором формулы не заучиваются, происходит медленнее, нежели в противном случае. Почему? Во-первых, новые свойства, теоремы, взаимосвязи между математическими объектами почти всегда используют какие-то особенности ранее изученных формул и понятий. Концентрировать внимание ученика на новом материале будет сложнее, если эти особенности не смогут извлекаться из памяти за короткий промежуток времени. Во-вторых, незнание формул наизусть препятствует поиску решения содержательных задач с большим количеством мелких операций, в которых требуется не только провести определенные преобразования, но и выявить последовательность этих ходов, анализируя применение нескольких формул на два-три шага вперед.

Практика показывает, что интеллектуальное и математическое развитие ребенка, формирование его базы знаний и навыков, происходит значительно быстрее, если большая часть используемой информации (свойства и формулы) находиться в голове. И чем прочнее и дольше она там удерживается, тем лучше.

Математик Анри Пуанкаре в книге «Наука и метод» писал: «Если бы природа не была прекрасна, она не стоила бы того, чтобы ее знать, жизнь не стоила бы того, чтобы ее переживать. Я здесь говорю, конечно, не о той красоте, которая бросается в глаза... Я имею в виду ту более глубокую красоту, которая открывается в гармонии частей, которая постигается только разумом. Это она создает почву, создает каркас для игры видимых красок, ласкающих наши чувства, и без этой поддержки красота мимолетных впечатлений была бы несовершенна как все неотчетливое и преходящее. Напротив красота интеллектуальная дает удовлетворение сама по себе».

П.А.М. Дирак писал: "У теоретической физики есть еще один верный путь развития. Природе присуща та фундаментальная особенность, что самые основные физические законы описываются математической теорией, аппарат которой обладает необыкновенной силой и красотой. Чтобы понять эту теорию, нужно обладать необычайно высокой математической квалификацией. Вы можете спросить: почему природа устроена именно так? На это можно ответить только одно: согласно нашим современным знаниям, природа устроена именно так, а не иначе".

Семь лет назад украинский физик (и художник) Наталия Кондратьева обратилась к ряду ведущих математиков мира с вопросом: «Какие три математические формулы, на ваш взгляд, самые красивые?»
В беседе о красоте математических формул приняли участие сэр Михаэль Атья и Дэвид Элварси из Британии, Яков Синай и Александр Кириллов из США, Фридрих Херцебрух и Юрий Манин из Германии, Давид Рюэль из Франции, Анатолий Вершик и Роберт Минлос из России и другие математики из разных стран. Из украинцев в дискуссии приняли участие академики НАНУ Владимир Королюк и Анатолий Скороход. Часть полученных таким образом материалов и легла в основу изданной Натальей Кондратьевой научной работы «Три самые красивые математические формулы».
— Какую цель вы ставили, обращаясь к математикам с вопросом о красивых формулах?
— Каждое новое столетие приносит обновление научной парадигмы. В самом начале века с ощущением, что мы стоим у порога новой науки, ее новой роли в жизни человеческого общества, я обратилась к математикам с вопросом о красоте идей, стоящих за математическими символами, т.е. о красоте математических формул.
Уже сейчас можно отметить некоторые особенности новой науки. Если в науке ХХ века очень важную роль играла «дружба» математики с физикой, то сейчас математика эффективно сотрудничает с биологией, генетикой, социологией, экономикой… Следовательно, наука будет исследовать соответствия. Математические структуры будут исследовать соответствия между взаимодействиями элементов различных областей и планов. И многое, что раньше мы воспринимали на веру как философские констатации, будет утверждено наукой как конкретное знание.
Этот процесс начался уже в ХХ веке. Так, Колмогоров математически показал, что случайности нет, а есть очень большая сложность. Фрактальная геометрия подтвердила принцип единства в многообразии и т.д.
— Какие же формулы были названы самыми красивыми?
— Сразу скажу, что цели устроить конкурс формулам не было. В своем письме к математикам я писала: «Люди, которые хотят понять, какими законами управляется мир, становятся на путь отыскания гармонии мира. Путь этот уходит в бесконечность (ибо движение вечно), но люди всё равно идут им, т.к. есть особая радость встретить очередную идею или представление. Из ответов на вопрос о красивых формулах, возможно, удастся синтезировать новую грань красоты мира. Кроме того, эта работа может оказаться полезной для будущих ученых как мысль о великой гармонии мира и математики как способе отыскания этой красоты».
Тем не менее среди формул оказались явные фавориты: формула Пифагора и формула Эйлера.
Вслед за ними расположились скорее физические, чем математические формулы, которые в ХХ веке изменили наше преставление о мире, —Максвелла, Шредингера, Эйнштейна.
Также в число самых красивых попали формулы, которые еще находятся на стадии дискуссии, такие, например, как уравнения физического вакуума. Назывались и другие красивые математические формулы.
— Как вы думаете, почему на рубеже второго и третьего тысячелетий формула Пифагора названа одной из самых красивых?
— Во времена Пифагора эта формула воспринималась как выражение принципа космической эволюции: два противоположных начала (два квадрата, соприкасающихся ортогонально) порождают третье, равное их сумме. Можно дать геометрически очень красивые интерпретации.
Возможно, существует какая-то подсознательная, генетическая память о тех временах, когда понятие «математика» означало — «наука», и в синтезе изучались арифметика, живопись, музыка, философия.
Рафаил Хасминский в своем письме написал, что в школе он был поражен красотой формулы Пифагора, что это во многом определило его судьбу как математика.
— А что можно сказать о формуле Эйлера?
— Некоторые математики обращали внимание, что в ней «собрались все», т.е. все самые замечательные математические числа, и единица таит в себе бесконечности! — это имеет глубокий философский смысл.
Недаром эту формулу открыл Эйлер. Великий математик много сделал, чтобы ввести красоту в науку, он даже ввел в математику понятие «градус красоты». Вернее, он ввел это понятие в теорию музыки, которую считал частью математики.
Эйлер полагал, что эстетическое чувство можно развивать и что это чувство необходимо ученому.
Сошлюсь на авторитеты… Гротендик: «Понимание той или иной вещи в математике настолько совершенно, насколько возможно прочувствовать ее красоту».
Пуанкаре: «В математике налицо чувство». Он сравнивал эстетическое чувство в математике с фильтром, который из множества вариантов решения выбирает наиболее гармоничный, который, как правило, и есть верный. Красота и гармония — синонимы, а высшее проявление гармонии есть мировой закон Равновесия. Математика исследует этот закон на разных планах бытия и в разных аспектах. Недаром каждая математическая формула содержит знак равенства.
Думаю, что высшая человеческая гармония есть гармония мысли и чувства. Может быть, поэтому Эйнштейн сказал, что писатель Достоевский дал ему больше, чем математик Гаусс.
Формулу Достоевского «Красота спасет мир» я взяла в качестве эпиграфа к работе о красоте в математике. И он также обсуждался математиками.
— И они согласились с этим утверждением?
— Математики не утверждали и не опровергали этого утверждения. Они его уточнили: «Осознание красоты спасет мир». Здесь сразу вспомнилась работа Юджина Вигнера о роли сознания в квантовых измерениях, написанная им почти пятьдесят лет назад. В этой работе Вигнер показал, что человеческое сознание влияет на окружающую среду, т.е., что мы не только получаем информацию извне, но и посылаем наши мысли и чувства в ответ. Эта работа до сих пор актуальна и имеет как своих сторонников, так и противников. Я очень надеюсь, что в ХХI веке наука докажет: осознание красоты способствует гармонизации нашего мира.

1. Формула Эйлера. Многие видели в этой формуле символ единства всей математики, ибо в ней "-1 представляет арифметику, i - алгебру, π - геометрию и e - анализ".

2. Это простое равенство показывает, величина 0,999 (и так до бесконечности) эквивалентна единице. Многие люди не верят, что это может быть правдой, хотя существует несколько доказательств, основанных на теории пределов. Тем не менее, равенство показывает принцип бесконечности.


3. Это уравнение было сформулировано Эйнштейном в рамках новаторской общей теории относительности в 1915 году. Правая часть этого уравнения описывает энергию, содержащуюся в нашей Вселенной (в том числе" темную энергию"). Левая сторона описывает геометрию пространства-времени. Равенство отражает тот факт, что в общей теории относительности Эйнштейна, масса и энергия определяют геометрию, и одновременно кривизну, которая является проявлением гравитации. Эйнштейн говорил, что левая часть уравнений тяготения в общей теории относительности, содержащая гравитационное поле, красива и как будто вырезана из мрамора, в то время как правая часть уравнений, описывающая материю, всё ещё уродлива, будто сделана из обыкновенной деревяшки.


4. Еще одна доминирующая теория физики — Стандартная модель — описывает электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Некоторые физики считают, что она отображает все процессы, происходящие во Вселенной, кроме темной материи, темной энергии и не включает в себя гравитацию. В Стандартную модель вписывается и неуловимый до прошлого года бозон Хиггса, хотя не все специалисты уверены в его существовании.


5. Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Ее мы помним еще со школы и считаем, что автор теоремы — Пифагор. На самом деле этой формулой пользовались еще в Древнем Египте при строительстве пирамид.


6. Теорема Эйлера. Эта теорема заложила фундамент нового раздела математики — топологии. Уравнение устанавливает связь между числом вершин, ребер и граней для многогранников, топологически эквивалентных сфере.


7. Специальная теория относительности описывает движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. Эйнштейн составил формулу, которая описывает, что время и пространство не являются абсолютными понятиями, а скорее являются относительными в зависимости от скорости наблюдателя. Уравнение показывает, как расширяется или замедляется время в зависимости от того, как и куда движется человек.


8. Уравнение было получено в 1750-х годах Эйлером и Лагранжем при решении задачи об изохроне. Это проблема определения кривой, по которой тяжелая частица попадает в фиксированную точку за фиксированное время, независимо от начальной точки. В общих словах, если ваша система имеет симметрию, есть соответствующий закон сохранения симметрии.


9. Уравнение Каллана — Симанзика. Оно представляет собой дифференциальное уравнение, описывающее эволюцию н-корреляционной функции при изменении масштаба энергий, при которых теория определена и включает в себя бета-функции теории и аномальные размерности. Это уравнение помогло лучше понять квантовую физику.


10. Уравнение минимальной поверхности. Это равенство объясняет формирование мыльных пузырей.


11. Прямая Эйлера. Теорема Эйлера была доказана в 1765 году. Он обнаружил, что середины сторон треугольника и основания его высот лежат на одной окружности.


12. В 1928 году П.А.М. Дирак предложил свой вариант уравнения Шредингера - которое соответствовало теории А. Эйнштейна. Учёный мир был потрясён - Дирак открыл своё уравнение для электрона путём чисто математических манипуляций с высшими математическими объектами, известными как спиноры. И это было сенсацией - до сих пор все великие открытия в физике должны стоять на прочной базе экспериментальных данных. Но Дирак считал, что чистая математика, если она достаточно красива, является надёжным критерием правильности выводов. «Красота уравнений важнее, чем их соответствие экспериментальным данным. … Представляется, что если стремишься получить в уравнениях красоту и обладаешь здоровой интуицией, то ты на верном пути». Именно благодаря его выкладкам был открыт позитрон - антиэлектрон, и предсказал наличие у электрона «спина» - вращения элементарной частицы.


13. Дж. Максвелл получил удивительные уравнения, объединившие все явления электричества, магнетизма и оптики. Замечательный немецкий физик, один из создателей статистической физики, Людвиг Больцман, сказал об уравнениях Максвелла: «Не Бог ли начертал эти письмена?»


14. Уравнение Шредингера.Уравнение, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах. Играет в квантовой механике такую же важную роль, как уравнение второго закона Ньютона в классической механике.

Одним из наиболее сложных видов набора является набор математических формул. Формулы представляют собой тексты, включающие шрифты на русской, латинской и греческой основах, прямого и курсивного, светлого, полужирного начертания, с большим числом математических и других знаков, индексов на верхнюю и нижнюю линии шрифта и различных крупнокегельных знаков. Ассортимент шрифтов для набора формул минимально составляет 2 тыс. знаков. Таблица символов в WORD-98 включает 1148 символов.

Основное отличие формульного набора от всех других видов набора состоит в том, что набор формулы в ее классическом виде производится не параллельными строками, а занимает определенную часть площади полосы.

Формула - математическое или химическое выражение, в котором при помощи цифр, символов и специальных знаков в условной форме выражается соотношение между определенными величинами.

Цифры - знаки, которыми обозначаются или выражаются числа (количества). Цифры бывают арабские и римские.

Арабские цифры : 1, 2. 3, 4, 5, 6, 7, 8, 9, 0. Арабские цифры меняют свое значение в зависимости оттого места, которое они занимают в ряду цифровых знаков. Арабские цифры делятся на два класса - 1-й - единицы, десятки, сотни; 2-й - тысячи, десятки тысяч, сотни тысяч и т.д.

Римские цифры . Основных цифровых знаков семь: I - единица, V - пять, X - десять, L - пятьдесят, С - сто, D - пятьсот, М - тысяча. Римские цифры имеют постоянное значение, поэтому числа получаются сложением или вычитанием цифровых знаков. Например: 28 = XXVIII (10 + 10 + 5 + 1 + 1+ 1); 29 = XXIX (10 + 10 -1 + 10); 150 = CL (100 + 50); 200 = СС (100 + 100); 1980 = MDCCCCLXXX (1000 + 500 + 100 + 100 + 100 + 100 + 50 + 10+ 10 + 10); 2002 = MMII (1000 + 1000 + 1 + 1).

Римскими цифрами обычно обозначают столетия (ХV1в.), номера томов (том IX), глав (глава VII), частей (часть II) и т.д.

Символы - буквенные выражения, входящие в состав формулы (например, математические символы: l - длина, λ - частота отказов (усадка), π - отношение длины окружности к диаметру и т.д.; химические символы: Аl - алюминий, РЬ - свинец, Н - водород и т.д.).

Коэффициенты - цифры, стоящие перед символами, например 2Н 2 О; 4sinx. Символы и цифры часто имеют индексы надстрочные (на верхнюю линию) и подстрочные (на нижнюю линию), которые либо поясняют значение индексов, (например, λ с - линейная усадка, G T - теоретическая масса отливки, С ф -фактическая масса отливки); либо указывают на математические действия (например, х 2 , у 3 , z -2 и т.д.); либо указывают число атомов в молекуле и число зарядов ионов в химических формулах (например, СН 4). В формулах встречаются также индексы к индексам: верхний индекс к верхнему индексу - верхний супраиндекс , нижний индекс к верхнему индексу - верхний субиндекс , верхний индекс к нижнему индексу - нижний супраиндекс и нижний индекс к нижнему индексу - нижний субиндекс.



Знаки математических действий и соотношений - сложение « + », вычитания « - », равенства « = », умножения «х»; действие деление обозначается горизонтальной линейкой, которая будет называться дробной или делительной линейкой..

(9.12)

Основная строка - строка, в которой размещены основные знаки математических действий и соотношений.

Классификация формул .

Математические формулы разделяются по сложности набора, зависящей от состава формулы (однострочные, двухстрочные, многострочные) и насыщенности ее различными математическими знаками и символами, индексами, субиндексами, супраиндексами и приставными знаками. По сложности набора все математические формулы условно можно разделить на четыре основные группы и одну дополнительную:

1 группа. Однострочные формулы (9.13-9.16);

2 группа. Двухстрочные формулы (9.17-9.19). Фактически эти ф-лы состоят из 3-х строк;

3 группа. Трехстрочные формулы (9.20-9.23). Фактически эти ф-лы состоят из 5-и строк;

4 группа. Многострочные формулы (9.24-9.26);

Дополнительная группа (9.27-9.29).

При выделении формул в группы сложности учитывалась трудоемкость набора и время, затрачиваемое на набор.

II группа. Двустрочные формулы :

(9.29)

Правила набора текста математических формул .

При наборе математического текста необходимо соблюдать следующие основные правила.

Набирать цифры в формулах прямым шрифтом, например 2ах; Зу .

Сокращенные тригонометрические и математические термины , например sin, cos, tg, ctg, arcsin. Ig, lim и т.д., набирать шрифтом латинского алфавита прямого светлого начертания.

Сокращенные слова в индексе набирать русским шрифтом прямого начертания на нижнюю линию.

Сокращенные наименования физических, метрических и технических единиц измерения , обозначенные буквами русского алфавита, набирать в тексте прямым шрифтом без точек, например 127 В, 20 кВт . Эти же наименования, обозначенные буквами латинского алфавита, набирать также прямым шрифтом без точек, например 120 V, 20 kW , если нет в оригинале других указаний.

Символы (или цифры и символы ), следующие один за другим и не разделенные какими-либо знаками, набирать без отбивки, например 2ху; 4у .

Знаки препинания в формулах набирать прямым светлым шрифтом. Запятые внутри формулы отбивать от последующего элемента формулы на 3 п .; от предыдущего элемента формулы запятая не отбивается; от предшествующей подстрочной литеры запятая отбивается на 1 п .

Многоточие на нижнюю линию набирать точками с разбивкой на полукегельную. От предыдущего и последующего элементов формулы точки отбивать тоже полукегельной, например:

(9.30)

Символы (или цифры и символы), следующие один за другим, не разделять, а набирать без отбивки.

Знаки математических действий и соотношений, а также знаки геометрических образов , как, например, = ,< ,> , + , - , отбивать от предыдущих и последующих элементов формулы на 2 п

Сокращенные математические термины отбивать от предыдущих и последующих элементов формулы на 2 п.

Показатель степени , следующий непосредственно за математическим термином, набирать вплотную к нему, а отбивку делать после показателя степени.

Буквы «d» (в значении «дифференциал» ), δ (в значении «частная производная») и ∆ (в значении «приращение») отбивать от предшествующего элемента формулы на 2 п., от последующего символа указанные знаки не отбиваются.

Сокращенные наименования физических и технических единиц измерения и метрических мер в формулах отбивать на 3 п. от цифр и символов, к которым они относятся.

Знаки ° , " , " отбивать от последующего символа (или цифры) на 2 п., от предыдущего символа указанные знаки не отбиваются.

Знаки препинания, следующие за формулой , не отбиваются от нее.

Строку отточий в формулах набирают точками, используя полукегельную отбивку между ними.

Формулы, набранные в подбор с текстом, отбивать от предыдущего и последующего текстов полукегельной; эта отбивка при выключке строки не уменьшается, а увеличивается. Так же выключают формулы, следующие одна за другой в подбор с текстом.

Несколько формул, помещенных в одной строке, выключенной по центру, отбивать друг от друга пробелом не менее кегельной и не более 1/2 кв.

Мелкие пояснительные формулы, набираемые в одну строку с основной формулой, выключать в правый край строки, или отбивать на две кегельные от основного выражения (если нет иных указаний в оригинале).

Порядковые номера формул набирать цифрами того же кегля, что и однострочные формулы, и выключать в правый край, например:

Х+У=2 (9.31)

Если формула не умещается в формат строки, а переносить ее нельзя, допускается ее набор меньшим кеглем.

Переносы в формулах нежелательны. Во избежание переноса допускается уменьшение пробелов между элементами формулы. Если уменьшением пробелов не удается довести формулу до нужного формата строки, то переносы допускаются:

1) на знаках соотношения между левой и правой частями формулы (= ,>,< );

2) на знаках сложения или вычитания (+, - );

3) на знаках умножения (х). При этом следующая строка начинается со знака, на котором закончилась формула в предыдущей строке. При переносе формул необходимо смотреть за тем, чтобы переносимая часть не была очень маленькой, не разрывались выражения, заключенные в скобки, выражения, относящиеся к знакам корня, интеграла, суммы; не допускается разделение индексов, показателей степеней, дробей.

В нумерованных формулах номер формулы в случае ее переноса ставят на уровне центральной строки перенесенной части формулы. Если порядковая нумерация на умещается в строке, ее помещают в следующей и выключают в правый край. Формулы, числитель или знаменатель которых не умещается в заданном формате набора, набирают шрифтом меньшего кегля, либо шрифтом этого же кегля, но в две строки с переносом.

Если при переносе формулы разрывается делительная линейка или линейка корня, то место разрыва каждой линейки указывают стрелками.

Стрелки нельзя устанавливать около математических знаков.

На этой странице собраны все формулы, необходимые для сдачи контрольных и самостоятельных работ, экзаменов по по алгебре, геометрии, тригонометрии, стереометрии и другим разделам математики.

Здесь вы можете скачать или посмотреть онлайн все основные тригонометрические формулы, формулу площади круга, формулы сокращенного умножения, формула длины окружности, формулы приведения и многие другие.

Можно так же распечатать необходимые сборники математических формул.

Успехов в учебе!

Формулы Арифметики:

Формулы Алгебры:

Геометрические Формулы:

Арифметические формулы:

Законы действий над числами

Переместительный закон сложения: a + b = b + a.

Сочетательный закон сложения: (a + b) + с = a + (b + c).

Переместительный закон умножения: ab = ba.

Сочетательный закон умножения: (ab)с = a(bc).

Распределительный закон умножения относительно сложения: (a + b)с = aс + bс.

Распределительный закон умножения относительно вычитания: (a — b)с = aс — bс.

Некоторые математические обозначения и сокращения:

Признаки делимости

Признаки делимости на «2»

Число, делящееся на «2» без остатка называется чётным , не делящееся – нечётным . Число делится на «2» без остатка, если его последняя цифра чётная (2, 4, 6, 8) или ноль

Признаки делимости на «4»

Число делится на «4» без остатка, если две последние его цифры нули или в сумме образуют число, делящееся без остатка на «4»

Признаки делимости на «8»

Число делится на «8» без остатка, если три последние его цифры нули или в сумме образуют число, делящееся без остатка на «8» (пример: 1 000 — три последние цифры «00», а при делении 1 000 на 8 получается 125; 104 — две последние цифры «12» делятся на 4, а при делении 112 на 4 получается 28; и.т.д.)

Признаки делимости на «3» и на «9»

Без остатка на «3» делятся только те числа, у которых сумма цифр делится без остатка на «3»; на «9» — только те, у которых сумма цифр делится без остатка на «9»

Признаки делимости на «5»

Без остатка на «5» делятся числа, последняя цифра которых «0» или «5»

Признаки делимости на «25»

Без остатка на «25» делятся числа, две последние цифры которых нули или в сумме образуют число, делящееся без остатка на «25» (т.е. числа, оканчивающиеся на «00», «25», «50», «75»

Признаки делимости на «10», «100» и на «1 000»

Без остатка на «10» делятся только те числа, последняя цифра которых ноль, на «100» — только те числа, у которых две последние цифры нули, на «1000» — только те числа, у которых три последние цифры нули

Признаки делимости на «11»

Без остатка на «11» делятся только те числа, у которых сумма цифр, занимающих нечётные места, либо равна сумме цифр, занимающих чётные места, либо отличается от неё на число, делящееся на «11»

Абсолютная величина — формулы ( модуль)

|a| ? 0, причём |a| = 0 только если a = 0; |-a|=|a| |a2|=|a|2=a2 |ab|=|a|*|b| |a/b|=|a|/|b|, причём b ? 0; |a+b|?|a|+|b| |a-b|?|a|-|b|

Формулы Действия с дробями

Формула обращения конечной десятичной дроби в рациональную дробь:

Пропорции

Два равных отношения образуют пропорцию :

Основное свойство пропорции

Нахождение членов пропорции

Пропорции , равносильные пропорции : Производная пропорция — следствие данной пропорции в виде

Средние величины

Среднее арифметическое

Двух величин: n величин:

Среднее геометрическое (среднее пропорциональное)

Двух величин: n величин:

Среднее квадратичное

Двух величин: n величин:

Среднее гармоническое

Двух величин: n величин:

Некоторые конечные числовые ряды

Свойства числовых неравенств

1) Если a < b , то при любом c : a + с < b + с .

2) Если a < b и c > 0 , то aс < bс .

3) Если a < b и c < 0 , то aс > bс .

4) Если a < b , a и b одного знака, то 1/a > 1/b .

5) Если a < b и c < d , то a + с < b + d , a — d < b — c .

6) Если a < b , c < d , a > 0 , b > 0 , c > 0 , d > 0 , то ac < bd .

7) Если a < b , a > 0 , b > 0 , то

8) Если , то

  • Формулы Прогрессии:

  • Производная

  • Логарифмы:
  • Координаты и векторы

    1. Расстояние между точками A1(x1;y1) и A2(x2;y2) находится по формуле:

    2. Координаты (x;y) середины отрезка с концами A1(x1;y1) и A2(x2;y2) находится по формулам:

    3. Уравнение прямой с угловым коэффициентом и начальной ординатой имеет вид:

    Угловой коэффициент k представляет собой значение тангенса угла, образуемого прямой с положительным направлением оси Ox, а начальная ордината q – значение ординаты точки пересечения прямой с осью Oy.

    4. Общее уравнение прямой имеет вид: ax + by + c = 0.

    5. Уравнения прямых, параллельных соответственно осям Oy и Ox, имеют вид:

    Ax + by + c = 0.

    6. Условия параллельности и перпендикулярности прямых y1=kx1+q1 и y2=kx2+q2 соответственно имеют вид:

    7. Уравнения окружностей с радиусом R и с центром соответственно в точках O(0;0) и C(xo;yo) имеют вид:

    8. Уравнение:

    представляет собой уравнение параболы с вершиной в точке, абсцисса которой

  • Прямоугольная декартова система координат в пространстве

    1. Расстояние между точками A1(x1;y1;z1) и A2(x2;y2;z2) находится по формуле:

    2. Координаты (x;y;z) середины отрезка с концами A1(x1;y1;z1) и A2(x2;y2;z2) находятся по формулам:

    3. Модуль вектора заданного своими координатами, находится по формуле:

    4. При сложении векторов их соответствующие координаты складываются, а при умножении вектора на число все его координаты умножаются на это число, т.е. справедливы формулы:

    5. Единичный вектор сонаправленный с вектором находится по формуле:

    6. Скалярным произведением векторов называется число:

    где — угол между векторами.

    7. Скалярное произведение векторов

    8. Косинус угла между векторами и находится по формуле:

    9. Необходимое и достаточное условие перпендикулярности векторов и имеет вид:

    10. Общее уравнение плоскости, перпендикулярной вектору имеет вид:

    Ax + by + cz + d = 0.

    11. Уравнение плоскости, перпендикулярной вектору и проходящей через точку (xo;yo;zo), имеет вид:

    A(x — xo) + b(y — yo) + c(z — zo) = 0.

    12. Уравнение сферы с центром O(0;0;0) записывается в виде.