Функциональный способ представления зависимостей между величинами. Зависимость между случайными величинами

Величинами являются количественные значения предметов, длин отрезков, времени, углов и т.д.

Определение. Величина - результат измерения, представленный числом и наименованием единицы измерения.

Например: 1 км; 5 ч. 60 км/ч; 15 кг; 180 °.

Величины могут быть независимыми или зависимыми одна от другой. Связь величин может быть жестко установлена (как. например, 1 дм = 10 см) или может отражать зависимость между величинами, выраженную формулой для определения конкретного численного значения (так, например, путь зависит от скорости и продолжительности движения; площадь квадрата — от длины его стороны и т. д.).

Основа метрической системы мер длины - метр - была введена в России в начале XIX века, а до этого для измерения длин использовались: аршин (= 71 см), верста (= 1067 м), косая сажень (= 2 м 13 см), маховая сажень (= 1 м 76 см), простая сажень (= 1 м 52 см), четверть (= 18 см), локоть (приблизительно от 35 см до 46 см), пядь (от 18 см до 23 см).

Как видим, было много величин для измерения длины. С вводом метрической системы мер жестко закреплена зависимость величин длины:

  • 1 км = 1 000 м; 1 м = 100 см;
  • 1 дм = 10 см; 1 см = 10 мм.

В метрической системе мер определены единицы измерения времени, длины, массы, объема, площади и скорости.

Между двумя и более величинами или системами мер тоже можно устанавливать зависимость, она зафиксирована в формулах, а формулы выведены опытным путем.

Определение. Две взаимно зависимые величины называются пропорциональными , если отношение их значений остается неизменным.

Неизменное отношение двух величин называется коэффициентом пропорциональности. Коэффициент пропорциональности показывает, сколько единиц одной величины приходится на единицу другой величины. Если коэффициенты равны. То и отношения равны.

Расстояние есть произведение скорости и времени движения: отсюда вывели основную формулу движении:

где S - путь; V - скорость; t - время.

Основная формула движения — это зависимость расстояния от скорости и времени движения. Такая зависимость называется пряно пропорциональной .

Определение. Две переменные величины прямо пропорциональны, если с увеличением (или уменьшением) в несколько раз одной величины другая величина увеличивается (или уменьшается) во столько же раз; т.е. отношение соответствующих значений таких величин является величиной постоянной.

При неизменном расстоянии скорость и время связаны другой зависимостью, которая называется обратно пропорциональной .

Правило. Две переменные величины обратно пропорциональны, если с увеличением (или уменьшением) одной величины в несколько раз другая величина уменьшается (или увеличивается) во столько же раз; т.е. произведение соответствующих значений таких величин является величиной постоянной.

Из формулы движения можно вывести еще два соотношения, выражающих прямую и обратную зависимости входящих в них величин:

t = S: V - время движения прямо пропорционально пройденному пути и обратно пропорционально скорости движении (для одинаковых отрезков пути чем больше скорость, тем меньше времени требуется для преодоления расстояния).

V = S: t - скорость движения прямо пропорциональна пройденному пути и обратно пропорциональна времени движения (для одинаковых отрезков пути чем больше
времени движется предмет, тем меньшая скорость требуется для преодоления расстояний).

Все три формулы движения равносильны и используются для решения задач.

Конспект урока по информатике и ИКТ в 11 классе

Самарин Александр Александрович, учитель информатики МБОУ Савинской СОШ, п. Савино, Ивановской области.
Тема: «Моделирование зависимостей между величинами».
Описание материала: данный конспект урока будет полезен учителям информатики и ИКТ, реализующих общеобразовательные программы в 11 классах. В ходе урока обучающиеся знакомятся с математическим моделированием и способами моделирования величин. Данный урок является вводным к теме «Технологии информационного моделирования».
Цель: создание условий для овладения детьми знаниями математического моделирования и закрепить умения работы в программе Microsoft Exсеl.
Задачи:
- сформировать знания о математическом моделировании;
- закрепить навыки работы в программе Microsoft Exсel.
Планируемые результаты:
Предметные:
- сформировать представления о математическом моделировании;
- сформировать представления о функциональном, табличном и графическом способах моделированиях.
Метапредметные:
- сформировать умения и навыки использования средств информационных и коммуникационных технологий для создания табличных и графических моделей;
- сформировать навыки рационального использования имеющихся инструментов.
Личностные:
- понимать роль фундаментальных знаний как основы современных информационных технологий.
Ход урока:
Организационный момент и актуализация знаний
Учитель: «Здравствуйте, ребята. Сегодня мы с вами начинаем новую большую тему «Технологии информационного моделирования». Но сначала давайте запишем домашнее задание § 36, вопросы 1,3 подготовить устно, вопрос №2 письменно в тетради». На экран проецируется домашнее задание.
Дети открывают дневники и записывают задание. Учитель объясняет домашнее задание.
Учитель: «Ребята, давайте вспомним, что такое «Модель», «Моделирование», «Компьютерное моделирование». На экран проецируется слайд «Давайте вспомним».
Дети: «Модель – это объект-заменитель, который в определенных условиях может заменять объект-оригинал. Модель воспроизводит интересующие нас свойства и характеристики оригинала.
Моделирование – это построение моделей, предназначенных для изучения и исследования объектов, процессов или явлений.
Компьютерное моделирование – это моделирование, реализующееся с помощью компьютерной техники».
Учитель: «Как вы думаете, а что такое математическое моделирование? Что оно собой представляет?»
Дети: «Это модели, построенные с помощью математических формул».
Учитель: «Приведите примеры математической модели».
Дети приводят примеры различных формул.
Учитель: «Давайте рассмотрим пример. На экран проецируются примеры.
«Время падения тела зависит от его первоначальной высоты. Уровень заболеваемости жителей города бронхиальной астмой зависит от концентрации вредных примесей в городском воздухе». На слайде приведены зависимости одних величин от других. Тема нашего сегодняшнего занятия «Моделирование зависимостей между величинами». На экран проецируется тема занятия «Моделирование зависимостей между величинами».
Дети записывают тему в тетрадь.
Изучение нового материала
Учитель: «Чтобы реализовать математическую модель на компьютере необходимо владеть приемами представления зависимостей между величинами. Рассмотрим различные методы представления зависимостей. Любое исследование необходимо начинать с выделения количественных характеристик исследуемого объекта. Такие характеристики называются величинами. На экран проецируется определение «величины».
Давайте вспомним, какими тремя основными свойствами обладает величина?»
Дети: «Имя, значение, тип»
Учитель: «Правильно. Имя величины может быть смысловым и символическим. Например, «время» - это смысловое имя, а «t» - символическое имя. Ребята, приведите примеры смыслового и символического имен». На экран проецируются виды имён и их примеры.
Примеры детей.
Учитель: «Если значение величины не изменяется, то она называется постоянной величиной или константой. Пример константы – скорость света в вакууме – с = 2,998*10^8м/с. На экран проецируются значения величины.
А какие постоянные величины вы знаете, ребята?»
Ответы детей.
Учитель: А как вы думаете, какая величина называется переменной?
Ответы детей.
Учитель: Итак, переменная величина – величина, значение которой может меняться. Например, в описании процесса падения тела переменными величинами являются высота H и время падения t.
Третьим свойством величины является ее тип. Тип определяет множество значений, которые может принимать величина. Основные типы величин: числовой, символьный, логический. Мы будем рассматривать величины, числового типа. На экран проецируются основные типы величин.
А теперь вернемся, к примеру, падения тела на землю. Обозначим все переменные величины, также укажем их размерности (размерности определяют единицы, в которых представляются значения величин). Итак, t (с) – время падения, Н (м) – высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха; ускорение свободного падения g (м/с2) будем считать константой. В данном примере зависимость между величинами является полностью определенной: значение Н однозначно определяет значение t. На экран проецируется пример 1.
Теперь подробнее рассмотрим пример про уровень заболеваемости жителей города бронхиальной астмой. Загрязнённость воздуха будем характеризовать концентрацией примесей – С (мг/м2), уровень заболеваемости – число хронически больных астмой, приходящихся на 1000 жителей данного города – Р (бол./тыс.). В данном примере зависимость между значениями носит более сложный характер, так как при одном и том же уровне загрязнённости в разные месяцы в одном и том же городе уровень заболеваемости может быть разным, так как на него влияют и другие факторы. На экран проецируется пример 2.
Рассмотрев два этих примера, делаем вывод, в первом примере зависимость является функциональной, а во втором нет. Если зависимость между величинами удается представить в математической форме, то мы имеем математическую модель. На экран проецируется вывод.
Математическая модель – это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики. Первый пример отражает физический закон. Данная зависимость является корневой. В более сложных задачах математические модели представляются в виде уравнения или систем уравнений. Во втором примере зависимость можно представить не в функциональной форме, а в иной (это мы будем рассматривать на следующих уроках). На экран проецируется, что отражает пример 1.
Пример падения тела рассмотрим в табличном и графическом виде. Проверим закон всемирного падения тела экспериментальным путем (в табличном и графическом виде). Будем бросать стальной шарик с шести метровой высоты, 9 метровой и так далее (через 3 метра), замеряя начальную высоту положения шарика и время падения. По результатам составим таблицу и нарисуем график. На экран проецируется график и таблица примера 1.
Если каждую пару значений H и t из данной таблицы подставить в формулу для первого примера, то формула превратится в равенство. Значит, модель работает хорошо.
В данном примере рассмотрено три способа моделирования величин: функциональный (формула), табличный и графический; однако математической моделью процесса можно назвать только формулу. На экран проецируются способы моделирования.
Ребята, а как вы думаете, какой способ моделирования наиболее универсальный? На экран проецируется вопрос.
Формула более универсальна, она позволяет определить время падения тела с любой высоты; имея формулу, можно легко создать таблицу и построить график.
Информационные модели, которые описывают развитие систем во времени, называются динамическими моделями. В физике динамические модели описывают движение тел, в биологии – развитие организмов или популяций животных, в химии – протекание химических реакций и т.д.»
Физкультминутка
Учитель: «А сейчас немножко отдохнем. Ребята, сядьте поудобнее на стул, расслабьтесь, расправьте плечи, прогните спину, потянитесь, повертите головой, «поболтайте ножками». А теперь, не поворачивая головы, посмотрите направо, налево, вверх, вниз. А сейчас следить за движения моей руки». Учителя водит рукой в разные стороны.
Практическая работа
Учитель: «Ребята, а теперь полученные знания мы закрепим практической работой на компьютере». На экран проецируется задание на практическую работу.
Задание
Постройте табличную и графическую зависимости скорости от времени
v=v0+a*t, если известно, что при t = 2 с, v = 8 м/с. Первоначальная скорость v0 равняется 2 м/с.
Ребята выполняют задание в программе Microsoft Excel. Затем задание проверяется. На экран проецируется правильный ответ к практической работе.
Рефлексия и подведение итогов
Учитель: «Ребята, что сегодня вы узнали нового? Что было для вас тяжело? С какими затруднениями вы столкнулись при выполнении практической работы На экран проецируется рефлексия.
Ответы детей.
Учитель: «Спасибо за работу на уроке. До свидания».

Зависимость одной случайной величины от значений, которые прини- мает другая случайная величина (физическая характеристика), в статистике называется регрессией. Если этой зависимости придан аналитический вид, то такую форму представления изображают уравнением регрессии.

Процедура поиска предполагаемой зависимости между различными числовыми совокупностями обычно включает следующие этапы:

установление значимости связи между ними;

возможность представления этой зависимости в форме математиче- ского выражения (уравнения регрессии).

Первый этап в указанном статистическом анализе касается выявления так называемой корреляции, или корреляционной зависимости. Корреляция рассматривается как признак, указывающий на взаимосвязь ряда числовых последовательностей. Иначе говоря, корреляция характеризует силу взаимосвязи в данных. Если это касается взаимосвязи двух числовых массивов xi и yi, то такую корреляцию называют парной.

При поиске корреляционной зависимости обычно выявляется вероятная связь одной измеренной величины x (для какого-то ограниченного диапазона ее изменения, например от x1 до xn) с другой измеренной величиной y (также изменяющейся в каком-то интервале y1 … yn). В таком случае мы будем иметь дело с двумя числовыми последовательностями, между которыми и надлежит установить наличие статистической (корреляционной) связи. На этом этапе пока не ставится задача определить, является ли одна из этих случайных величин функцией, а другая – аргументом. Отыскание количественной зависимости между ними в форме конкретного аналитического выражения y = f(x) - это задача уже другого анализа, регрессионного.

Таким образом, корреляционный анализ позволяет сделать вывод о силе взаимосвязи между парами данных х и у, а регрессионный анализ используется для прогнозирования одной переменной (у) на основании другой (х). Иными словами, в этом случае пытаются выявить причинно-следственную связь между анализируемыми совокупностями.

Строго говоря, принято различать два вида связи между числовыми совокупностями – это может быть функциональная зависимость или же статистическая (случайная). При наличии функциональной связи каждому значению воздействующего фактора (аргумента) соответствует строго определенная величина другого показателя (функции), т.е. изменение результативного признака всецело обусловлено действием факторного признака.

Аналитически функциональная зависимость представляется в следую-щем виде: y = f(x).

В случае статистической связи значению одного фактора соответствует какое-то приближенное значение исследуемого параметра, его точная величина является непредсказуемой, непрогнозируемой, поэтому получаемые показатели оказываются случайными величинами. Это значит, что изме-нение результативного признака у обусловлено влиянием факторного признака х лишь частично, т.к. возможно воздействие и иных факторов, вклад которых обозначен как є: y = ф(x) + є.



По своему характеру корреляционные связи – это соотносительные связи. Примером корреляционной связи показателей коммерческой деятельности является, например, зависимость сумм издержек обращения от объема товарооборота. В этой связи помимо факторного признака х (объема товарооборота) на результативный признак у (сумму издержек обращения) влияют и другие факторы, в том числе и неучтенные, порождающие вклад є.

Для количественной оценки существования связи между изучаемыми совокупностями случайных величин используется специальный статистический показатель – коэффициент корреляции r.

Если предполагается, что эту связь можно описать линейным уравне- нием типа y=a+bx (где a и b - константы), то принято говорить о существовании линейной корреляции.

Коэффициент r - это безразмерная величина, она может меняться от 0 до ±1. Чем ближе значение коэффициента к единице (неважно, с каким знаком), тем с большей уверенностью можно утверждать, что между двумя рассматриваемыми совокупностями переменных существует линейная связь. Иными словами, значение какой-то одной из этих случайных величин (y) существенным образом зависит от того, какое значение принимает другая (x).

Если окажется, что r = 1 (или -1), то имеет место классический случай чисто функциональной зависимости (т.е. реализуется идеальная взаимосвязь).

При анализе двумерной диаграммы рассеяния можно обнаружить различные взаимосвязи. Простейшим вариантом является линейная взаимосвязь, которая выражается в том, что точки размещаются случайным образом вдоль прямой линии. Диаграмма свидетельствует об отсутствии взаимосвязи, если точки расположены случайно, и при перемещении слева направо невозможно обнаружить какой-либо уклон (ни вверх, ни вниз).

Если точки на ней группируются вдоль кривой линии, то диаграмма рассеяния характеризуется нелинейной взаимосвязью. Такие ситуации вполне возможны

Регрессионного анализа

Обработка результатов эксперимента методом

При изучении процессов функционирования сложных систем приходится иметь дело с целым рядом одновременно действующих случайных величин. Для уяснения механизма явлений, причинно-следственных связей между элементами системы и т.д., по полученным наблюдениям мы пытаемся установить взаимоотношения этих величин.

В математическом анализе зависимость, например, между двумя величинами выражается понятием функции

где каждому значению одной переменной соответствует только одно значение другой. Такая зависимость носит название функциональной .

Гораздо сложнее обстоит дело с понятием зависимости случайных величин. Как правило, между случайными величинами (случайными факторами), определяющими процесс функционирования сложных систем, обычно существует такая связь, при которой с изменением одной величины меняется распределение другой. Такая связь называется стохастической , или вероятностной . При этом величину изменения случайного фактора Y , соответствующую изменению величины Х , можно разбить на два компонента. Первый связан с зависимостью Y от X , а второй с влиянием "собственных" случайных составляющих величин Y и X . Если первый компонент отсутствует, то случайные величины Y и X являются независимыми. Если отсутствует второй компонент, то Y и X зависят функционально. При наличии обоих компонент соотношение между ними определяет силу или тесноту связи между случайными величинами Y и X .

Существуют различные показатели, которые характеризуют те или иные стороны стохастической связи. Так, линейную зависимость между случайными величинами X и Y определяет коэффициент корреляции.

где – математические ожидания случайных величин X и Y .

– средние квадратические отклонения случайных величин X и Y .


Линейная вероятностная зависимость случайных величин заключается в том, что при возрастании одной случайной величины другая имеет тенденцию возрастать (или убывать) по линейному закону. Если случайные величины X и Y связаны строгой линейной функциональной зависимостью, например,

y=b 0 +b 1 x 1 ,

то коэффициент корреляции будет равен ; причем знак соответствует знаку коэффициента b 1 .Если величины X и Y связаны произвольной стохастической зависимостью, то коэффициент корреляции будет изменяться в пределах

Следует подчеркнуть, что для независимых случайных величин коэффициент корреляции равен нулю. Однако коэффициент корреляции как показатель зависимости между случайными величинами обладает серьезными недостатками. Во-первых, из равенства r = 0 не следует независимость случайных величин X и Y (за исключением случайных величин, подчиненных нормальному закону распределения, для которых r = 0 означает одновременно и отсутствие всякой зависимости). Во- вторых, крайние значения также не очень полезны, так как соответствуют не всякой функциональной зависимости, а только строго линейной.



Полное описание зависимости Y от X , и притом выраженное в точных функциональных соотношениях, можно получить, зная условную функцию распределения .

Следует отметить, что при этом одна из наблюдаемых переменных величин считается неслучайной. Фиксируя одновременно значения двух случайных величин X и Y , мы при сопоставлении их значений можем отнести все ошибки лишь к величине Y . Таким образом, ошибка наблюдения будет складываться из собственной случайной ошибки величины Y и из ошибки сопоставления, возникающей из-за того, что с величиной Y сопоставляется не совсем то значение X , которое имело место на самом деле.

Однако отыскание условной функции распределения, как правило, оказывается весьма сложной задачей. Наиболее просто исследовать зависимость между Х и Y при нормальном распределении Y , так как оно полностью определяется математическим ожиданием и дисперсией. В этом случае для описания зависимости Y от X не нужно строить условную функцию распределения, а достаточно лишь указать, как при изменении параметра X изменяются математическое ожидание и дисперсия величины Y .

Таким образом, мы приходим к необходимости отыскания только двух функций:

(3.2)

Зависимость условной дисперсии D от параметра Х носит название сходастической зависимости. Она характеризует изменение точности методики наблюдений при изменении параметра и используется достаточно редко.

Зависимость условного математического ожидания M от X носит название регрессии , она дает истинную зависимость величин Х и У , лишенную всех случайных наслоений. Поэтому идеальной целью всяких исследований зависимых величин является отыскание уравнения регрессии, а дисперсия используется лишь для оценки точности полученного результата.

Понятие величины, принимающей различные численные зна­чения, является отражением изменяемости окружающей нас дей­ствительности.

Математика изучает взаимосвязи между различными величинами. Из школьного курса нам известны формулы, связывающие различные величины:

    площадь квадрата и длину его стороны: S = а 2 ,

    объем куба и длину его ребра: V = а 3 ,

    расстояние, скорость, время: S = V t,

    стоимость, цену и количество: М = с k и др.

Дошкольники не изучают точные связи, но встречаются со свойствами этих зависимостей. Например:

Чем длиннее путь, тем больше времени необходимо затра­тить,

Чем больше цена, тем больше стоимость товара,

У большего квадрата сторона длиннее.

Эти свойства используются детьми в рассуждениях и помога­ют им правильно делать выводы.

4.5. История развития системы единиц величин

Примечание: Лекция начинается с сообщений на темы: «История создания и развития систем единиц величин»; «Международная система единиц», предварительно подготовленные студентами.

В истории развития единиц величин можно выделить несколь­ко периодов:

I . Единицы длины отождествляются с частями тела:

ладонь – ширина четырех пальцев,

локоть – длина руки от кисти до локтя,

фут - длина ступни,

дюйм - длина сустава большого пальца и др.

В качестве единиц площади использовались такие единицы: колодец – площадь, которую можно полить из одного колод­ца,

соха или плуг – средняя площадь, обработанная за день со­хой или плугом.

Недостаток таких единиц – нестабильные, необъективные.

II . В XIV-XVI веках появляются объективные единицы в связи с развитием торговли:

дюйм длина трех приставленных друг к другу ячменных зерен;

фут – ширина 64 ячменных зерен, положенных бок о бок,

карат – масса семени одного из видов бобов.

Недостаток: нет взаимосвязи между единицами величин.

III . Введение единиц, взаимосвязанных друг с другом:

3 аршина – сажень,

500 саженей – верста,

7 верст - миля.

Недостаток: в разных странах различные единицы величин, что тормозит международные отношения, например, торговлю.

IV . Создание новой системы единиц во Франции в конце XVIII в.

Основная единица длины – метр – одна сорокамиллионная часть длины земного меридиана, проходящего через Париж, «метр» - греч. metron – «мера».

Все остальные величины были связаны с метром, поэтому но­вая система величин получила название метрической системы мер:

ар площадь квадрата со стороной 10 м;

литр – объем куба с длиной ребра 0,1 м;

грамм – масса чистой воды, занимающей объем куба с дли­ной ребра 0,01 м.

Были введены десятичные кратные и дольные единицы с по­мощью приставок:

кило – 10 3 деци – 10 -1

гекто – 10 2 санти – 10 -2

дека – 10 1 милли – 10 -3 .

Недостаток: с развитием пауки потребовались новые единицы и более точное измерение.

V . В 196Ог. XI Генеральная конференция мер и весов приняла решение о введении Международной системы единиц СИ.

SI - система интернациональная.

В этой системе 7 основных единиц (метр, килограмм, секунда, ампер, кельвин, моль, кандела ) и 2 дополнительные (радиан, стерадиан ).

Эти единицы, определенные в курсе физики, не изменяются в любых условиях.

Величины, которые определяются через них, называются про­изводными величинами:

площадь – квадратный метр - м 2 ,

объем – кубический метр – м 3 ,

скорость – метр в секунду - м/с и др.

В нашей стране используются и внесистемные единицы:

масса – тонна,

площадь – гектар,

температура – градус Цельсия,

время – минута, час, год, век и др.

Задания для самостоятельной работы.

    Придумайте задания для дошкольников, отражающие свой­ства длины, площади, массы, времени.

    Придумайте план обучения дошкольников измерению дли­ны (полосками), объема (стаканами).

    Придумайте беседу с дошкольниками о системных единицах величин: метре, килограмме, секунде и др.

    Выпишите старинные единицы величин, встречающиеся в детской литературе. Найдите в справочниках их значения в системе СИ. В каких странах они зародились?

Например, почему Дюймовочку так назвали? Чему равен 1дюйм в мм?